
International Journal of Information Technology, Vol. 9. No. 1

 1

BEATING THE POPCOUNT
Eyas El-Qawasmeh

Dept. of Computer Science and Information Systems
Jordan University of Science and Technology

P.O. Box 3030
Irbid 22110, Jordan

eyas@just.edu.jo
http://www.cis.just.edu.jo/People/Faculty/eyas/index.htm

Abstract

Popcount is a built-in function that was implemented using some extra hardware in many
computers. Its purpose is to count the number of ones in a given computer word. This
built-in function was able to beat other software implementations such as serial shifting.
In this paper, we propose a software algorithm of this function that achieves the same
purpose without the need for any extra hardware. The suggested algorithm is faster than
the hardware implementation of popcount. In addition, the performance of the suggested
algorithm is investigated and evaluated.

Key words. Bit-Counting, Bit-Parallelism, Counters, Document Retrieval, Frequency
Division, Performance, Popcount.

Eyas El-Qawasmeh
Beating the Popcount

2

1. INTRODUCTION

Given an array of binary vectors, it is often necessary to determine how many “1” bits the
array contains. This problem, which is called the population count problem or bit-
counting problem, is abbreviated by popcount. It is used in many applications such as
information retrieval, file processing, and coding theory (Berkovich et al., 2000). For
example, consider an information system such as a database where the relevant
information is presented in terms of “1” and the non-relevant information in terms of “0”.
In this case, the bit-counting can be used to respond to the user queries. Popcount was
used for SQL run optimization, when joining bitmaps to determine the best evaluation
order, and to implement function count-trailing-zeros(), which are used heavily in the
binary GCD (greatest common divisor). Other examples include a comparison between a
query and a document signature during the search for a query answer, and finding the
difference between two documents. All the previous examples can benefit from reducing
the retrieved time of queries.

The popcount operation was implemented using extra hardware with low cost. It was
introduced in the Control Data’s CDC 6000 series that had a “count ones” instruction that
worked on 60-bit word. After that, Gray Research, Inc, uses a 64-bit hardware
implementation to perform the popcount upon the request of one customer, and then
added by other companies such as Digital, and HP.

On the other hand, popcount can be implemented using software without the need for any
special hardware. Currently, there are several software implementations for the popcount
function, although the word popcount is not used. These implementations are: a) Serial
shifting, b) Arithmetic logic counting (AL), c) Emulated popcount, d) Lookup table e)-
Hamming distance bit vertical Counter (HC), and f) Frequency division (Berkovich et al.,
2000)(Berkovich et al., 1998)(El-Qawasmeh, Hemidi, 2000)(Gutman, 2000)(Reingold et
al., 1977).

The main objective of this paper is to present a new technique for popcount that is based
on the frequency division principle. In addition, the performance analysis of the
suggested technique will be investigated and compared with the hardware
implementation of popcount. Experimental results showed that the proposed scheme is
the best among all known techniques, whether they are implemented in software or
hardware.

This paper is organized as follows: Section 2 describes current related work. Section 3
describes the hardware implementation. Section 4 is the suggested count technique.

International Journal of Information Technology, Vol. 9. No. 1

 3

Section 5 is remedy improvements. Section 6 is the performance experimental results,
followed by conclusions in section 7.

2. CURRENT RELATED WORK

The popcount operation takes an array of binary vectors, A[I],(I=1,…,n), and returns the
number of “1”s the array contains. Despite the apparent simplicity, this problem is
associated with interesting algorithmic issues. The popcount operation has been
considered so intuitive that it was frequently performed without any research required.
The methods used were simple in concept with varying degrees of efficiency. The details
of these schemes are out of the scope of this paper, but they can be found in (El-
Qawasmeh, 2001). However, we will list these schemes very briefly with an explanation
for two of them that are necessary for clarifying our technique in this paper (The
Hamming distance bit vertical counter and the frequency division, since our algorithm is
based on them).

The first, and simplest scheme for popcount is serial shifting, which is implemented as
follows:

Counter = 0;
While the Number ≠ 0 do
 If the lowest bit of Number is 1 then

Increase Counter by one.
 Shift the Number to the right one bit.
End If

End while

The second implementation of popcount is called Arithmetic Logic counting (AL). This
method depends on doing the mask operation (AND) for a number with itself after
subtracting one from it. The same logic operation is repeated as long as the number does
not equal to zero. Further details can be found in (El-Qawasmeh, Hemidi, 2000) (El-
Qawasmeh, 2001).

The third implementation is called emulated popcount. The emulated popcount algorithm
successively groups the bits into sub-groups of 2, 4, 8, 16, and 32, while maintaining a
count of “1”s in each group.

The fourth implementation uses Lookup tables. This algorithm constructs static table(s)
only once. In a 32-bit machine we construct a single table of size equal to 232. Once the
table has been defined, each element will be filled with the number of “1”s that exists in

Eyas El-Qawasmeh
Beating the Popcount

4

the index of the element. Therefore, to determine the number of “1”s for any given 32-bit
computer word, we use the given 32-bit computer word as an index to the table.
Therefore, a single read statement is enough.

However, a table of size equal to 232 elements might be a restriction. Therefore, it is
possible to reduce the size of the table to 216. Although the reduction is an advantage, it is
accompanied with a disadvantage that the 32-bit computer word is divided into two 16-
bit groups where each 16-bit will be an index to the table. Thus, two read statements, and
an extra splitting operation are needed.

The fifth implementation is called Hamming distance bit vertical Counter (HC). This
algorithm finds the total number of “1”s for a collection of vectors rather than one vector.
However, for a single vector, we can make the number of the vectors in the collection to
be equal to one. It uses a half adder calculation form to determine the total through the
sum and carry values principle. Each vector use the following two formulas

sum = vector ⊕ carry where ⊕ is an Exclusive OR (XOR)
and

carry = vector * carry where * is an AND

where sum, vector, and carry are binary vectors consisting of n-bit. As an example,
consider a set of 4 vectors each one consists of 4-bits (see Figure 1). At the start of the
calculation, the Exclusive OR, will be applied between the carry, which is zero, and the
first vector so that the result will be stored in the vertical counter (An array of size equal
to (or less than) log2 (No. of vectors in the collection)). After that, the second vector will
be added to the generated carry resulted from the previous sum step using the same half
adder procedure, and so on. Once all the vectors are exhausted, the answer will be in a
vertical format. Now, for all the elements in the collection, a single serial shift will be
used to pull the answer into a horizontal form.

International Journal of Information Technology, Vol. 9. No. 1

 5

Figure 1: Popcount using Hamming distance bit vertical counter

The reader should be aware that the example given in figure 1 is for illustration purposes
and might not show clear time saving. However, if the number of vectors in a collection
is large, then more saving will be gained. Figure 2 shows the exact details of the
Hamming distance bit vertical Counter (HC) (El-Qawasmeh, Hemidi, 2000).

Serial
Shifting Horizontal

Counter

Vertical
Counter

Vector no. 1

Vector no. 2

Vector no. 3

Vector no. m

Horizontal
Counter

Vertical
Counter

1
1
0
1

1
1
0
1

1
1
1
0

1
0
1
1

Horizontal
Counter

Vertical
Counter

1
1
0
1
1
0
1
1

Horizontal
Counter

Vertical
Counter

1
0
1
1

Horizontal
Counter

Vertical
Counter

Horizontal
Counter

Vertical
Counter

1
1
1
0

1
0
1
1

1
1
0
1

1
1
0
1

10
10
01
01

11
11
01
10

100
100
001
011

1100

A) Block diagram B) Before executio n C) First iteration

D) Intermediate iteration E) Intermediate ite ration F) Final stage

Eyas El-Qawasmeh
Beating the Popcount

6

For (each bit in the vector) do // vector is the number in binary
Set Vertical_Counter[bit] = 0

End for
Set Total_Number_of_Ones = 0
While (there are more vectors) do
 Set Carry = vector
 Set Index = 0
 While ((Carry ≠ 0) and (Index < No_of_bits in the vector)) do
 Set Temp = Vertical_Counter[Index]

Set Vertical_Counter[Index] = Temp ⊕ Carry where ⊕ stands for Exclusive OR
Set Carry = Temp * Carry where * is AND operation
Increment Index by 1

 End While
End While
For (Index = No_of_bits in the vector down to 1) do
 Shift Total_Number_of_Ones to the left one bit
 Set Temp = Vertical_Counter[Index]
 If (Temp ≠ 0) then
 For (each bit in the vector) do

If (the most significant bit of Temp is “one”) then
Increment Total_Number_of_Ones by 1

 End If
 Shift Temp one bit to the right
 End For
 End If
End For

Figure 2: The algorithm for counting the number of “1”s using the HC

The sixth approach is the Frequency Division (FD) technique. This algorithm is designed
to find the total number of “1”s for a set of vectors. However, it can work for a single
vector. This method uses the Hamming distance bit vertical Counter (HC), however, it is
improved by incorporating Arithmetic Logic (AL) algorithm. The new algorithm is called
the Frequency Division algorithm (Berkovich et al., 2000). The FD technique consists of
two stages. In the first stage, the incoming binary vectors are processed in the same way
as in the vertical counter of some fixed number of columns. In the second stage, the bits
passing through the Low-bit Sieve (The rightmost bits of HC) are counted by the
arithmetic logic (AL) scheme mentioned previously.

The HC part of the Frequency Division technique is performed with a small number of
relatively fixed columns in Low-bit Sieve. The AL part of the algorithm is performed by
dropping bits for every 2K incoming “1” bits. A complete listing of this algorithm can be

International Journal of Information Technology, Vol. 9. No. 1

 7

found in (Berkovich et al., 2000). The algorithm that implements the FD for k=2 is given
below:

Set V0 = 0; V1 = 0; Set Total_Number_of_Ones = 0
While (there are more vectors) do

Set carry1 = V0 & vector // & represents AND operator
Set V0 = V0 ^ vector // ^ represents Exclusive OR (XOR)

 Set carry2 = V1 & carry1
 Set V1 = V1 ^ carry1
 While (carry2 ≠ 0) do

 Set carry2 = carry2 & (carry2 -1)
 Increase Total_Number_of_Ones by four

End While
End While
While (V1 ≠ 0) do

Set V1 = V1 & (V1 -1)
Increase Total_Number_of_Ones by two

End While
While (V0 ≠ 0) do
 Set V0 = V0 & (V0 - 1)
 Increase Total_Number_of_Ones by one
End While

Figure 3: Frequency Division algorithm for K= 2 (FD2)

3. HARDWARE IMPLEMENTATION

The built-in popcount function allows you to use directly the supported hardware
designed for it and the machine instructions. It is available in a limited number of
programming languages such as C/C++. The syntax for calling this function varies from
one language to another. For example in C/C++, the call to this function is achieved by
writing “_popcnt(unsigned integer)”. To do this in C/C++, you must include the
<machine/builtins.h> header file in your source program to access this function. This
intrinsic function is processed completely by the compiler. Because “_popcnt” is an
intrinsic function, which is executed using the designated hardware circuitry, no
externally visible library function is available for it. The compiler generates inline code,
which is one or two instructions in many cases, to produce the result. It is called a
function because it is invoked with the syntax of function calls (El-Qawasmeh, 2001).

Eyas El-Qawasmeh
Beating the Popcount

8

A vector version of the popcount intrinsic function exists on some machines such as
UNICOS and UNICOS/mk systems. On UNICOS/mk systems, the vector version of this
intrinsic is used when -O vector3 or -O 3 is specified on the compiler command line. If a
vector version of an intrinsic function exists and the intrinsic is called within a vectorized
loop, the compiler uses the vector version of the intrinsic.

The difference between all these algorithms (Software and hardware implementations) is
in the execution time of the popcount. In addition, some other factors might affect the
performance, for example, the nature of computer words. By this we mean if the binary
representation of the numbers has the majority of its bits “zeros” or “ones”.

To measure the performance of all the previous schemes we simulate a system by
creating several tens of thousands of 64-bit binary vectors using Unix machine. The
execution time for these vectors was measured after they are loaded into the memory
using all the previous software implementations and also the hardware implementation of
the popcount. For reliable timing, the execution was repeated several hundreds of times,
and the average execution time was considered. The creation of these vectors was done
with a certain probability of “1”s that range from zero to one. Each bit in any given
vector was generated randomly and independently from all other bits. The random
number generator that was used can be found in (Press et al., 1995). To understand the
generation process, consider any probability such as 0.25, then the probability that a
given bit in a 64-bit vector is “1” will be 0.25. This means that the majority of the 64-bit
binary vectors will have 16 “ones” on average. This is helpful in order to relate the nature
of the binary vectors with the performance. Using the same sets of vectors with different
probabilities of “1”s, the computation time for each algorithm is measured. Figure 4
shows a comparison between all these techniques except serial shifting (Serial shifting
was omitted since it is the worst among all of them).

International Journal of Information Technology, Vol. 9. No. 1

 9

Figure 4: Time comparison between different counters vs.
probability of “1”s using a 64-bit machine

To understand Figure 4 let us select a probability of 0.5. This means that most of the
items in a database will have about 50% of the computer word as “1”. In this case, the AL
execution time is more than the emulated popcount by a factor of 6 approximately. For
HC, it will need about 2.5 times more than the emulated popcount. In Figure 4 and all the
following figures, the time was computed using the built-in clock() function at the
beginning and at the end of each algorithm. The results of this experiment and all
following experiments are normalized to the execution time of the built-in hardware
implementation of popcount. Also, the timing is averaged over hundreds of runs for this
figure and all the following figures. Figure 4 shows that the emulated popcount is the best
one, and its execution time is very close to the built-in function popcount that uses a
special hardware. However, for very sparse/dense systems of “1”s, FD procedure will be
better than the emulated popcount.

As can be seen from Figure 4, we have FD2 although using the Frequency Division
principle we can have FD3, FD4, and so on. The difference between them is in the timing
that a count operation occurs. For example, in FD2, we do the count operation when two
bits filled with “1”s are encountered while for FD4 we do the count operation when four
bits filled with “1”s are encountered. The same idea is applicable to FD5, FD6, and FD7.

In FD family (FD2, FD3, FD4,…..), the time to do the counting operation has a relation
with the number of vectors in the system. For example, suppose that you are using FD7
when the number of vectors in your system is 128 vectors. Then you need only log2 128
= 7 bits for the vertical counter. Now if the size of your system is increased by a factor of

Eyas El-Qawasmeh
Beating the Popcount

10

1000. i.e., it becomes 128000 vectors, then you still need only 7-bits, but you need to do
the count operation every k2= 128 vectors approximately.

4. SUGGESTED COUNT TECHNIQUE

The suggested technique is based on the FD algorithm. The FD scheme is always
handling one vector (computer word) at a time into the vertical counter. For this purpose,
we will call the previous FD scheme a single word FD scheme. Our suggested technique
is to handle two words at the same time instead of one. Handling two words will be called
double word scheme. Figure 5 shows the difference between single and double word for
FD2.

Figure 5: FD2 Block diagram of single and double word

While (there are more vectors) do
Set carry1 =V0 & vector
Set V0 = V0 ̂vector
Set carry2 = V1 & carry1
Set V1 = V1 ̂carry1
While (carry2 ≠ 0) do

Set carry2 = carry2 & (carry2 -1)
Increase Total_Number_of_Ones by four

End While
End While

Vo V1

carry1

V0

carry2

V1

End for
Process V1

Process V0

Process
carry2

While (V1 ≠ 0) do
Set V1 = V1 & (V1 -1)
Increase Total_Number_of_Ones by two

End While
While (V0 ≠ 0) do

Set V0 = V0 & (V0 - 1)
Increase Total_Number_of_Ones by one

End While

For I = 1 to n step 1 do

Vector i

a)- Single Word

P1 carry2 Process
carry2

For I = 1 to n step 2 do

V0

V1

Vector i

Vector i+1

End For
Process V1

Process V0

While (there are more vectors) do

Set P1 = Vector i & Vector i+1;
Set C1 = Vector i ^ Vector i+1;
Set P2 = V0 & C1;
Set carry1 = P1 | P2;
Set V0 = V0 ^ C1;
Set carry2 = V1 & carry1;
Set V1 = V1 ^ carry1;
While (carry2 ≠ 0) do

Set carry2 = carry2 & (carry2 -1);
Increase Total_Number_of_Ones by four

End While
End While

While (V1 ≠ 0) do
Set V1 = V1 & (V1 -1)
Increase total_Number_of_Ones by two

End While

While (V0 ≠ 0) do
Set V0 = V0 & (V0 - 1)
Increase Total_Number_of_Ones by one

End While

carry1

C1 P2

b)- Double Word

V1

V0

International Journal of Information Technology, Vol. 9. No. 1

 11

Figure 5 shows our suggested technique using double word. In this technique, no logic
gates exists, since all of them are implemented using the code on the right hand side of
Figure 5. The logic gates serves only to count the number of operations required in our
suggested technique.

Given any n numbers, if we apply the FD2 using a single word then the main block of
Figure 5.a will be executed n times since we are handling one vector at a time. However,
in Figure 5.b, we will execute the main block only n/2 since we are handling two words
at the same time.

Thus, there will be a saving of one operation. In Figure 5.a, we will need n4 operations
(each gate represents one operation), while in Figure 5.b we need only 2

7
27 nn =

operations. Although, it is not big saving, but if we use double word with higher FDi’s,
then larger saving will occur.

From Figure 3 and Figure 5, we see that we need to process carry2 box (presented by
in Figure 5). However we can add a test (if statement) that avoids the while loop if the
contents of carry2 is zero. This has a small saving on FD2, but if we proceed to other
FDi’s, then larger saving will be gained.

We applied the double word suggestion to FD2, FD3, FD4,….,FD7, meanwhile we use to
check whether the first carry is zero or not in order to avoid the while loop. In each case
of FDi’s, we have verified that using double word would take less time than single word.
From these FDi’s results, we selected FD5, which is depicted in Figure 6

Figure 6: FD5 using double word and check for the first carry

FD5

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P ro bability o f "o nes"

P o pC o unt

Single Wo rd

D o uble Wo rd

D o uble, C hk C 2

Eyas El-Qawasmeh
Beating the Popcount

12

Figure 6 shows the execution time of FD5 and the built-in popcount function. The
execution time of the built-in popcount function was constant regardless of the number of
“1”s in our vector. In Figure 6, the FD5 was applied with a single word, double word, and
double word that checks if the carry2 is zero. If carry2 is zero, then the rest of the while
loop will be skipped. Figure 6 verifies that using double word with check for carry
provides the best execution time.

A further improvement is to use 4 words at the same time instead of 2 words. In this case,
the main block in Figure 5 part a will be repeated 3 times instead of 1. However, we will
process 4 words instead of single word. Experiment for this was done on FD2,
FD3,…FD6, FD7. Results of all of them verified that moving to 4 words is much better
than double word.

Following is the algorithm for FD5 using Quadruple word (4 words). This algorithm can
also be applied to other FDi’s with slight modifications.

V0 = 0; V1 = 0;V2 = 0;V3=0; V4=0; V5=0;Counter = 0;
 /* The meaning of the following symbols is as follows */
 /* & : The logic AND operation */
 /* ^ : The logic Bitwise Exclusive OR */
 /* | : The logic OR operation */
 /* Propi: Denote a propagate with associated number */
 /* Ci : Indicate a carry associated with a number */
 For (J=0;J<No_of_Elements - 3;J=J+4) do
 Prop1 = Value[J] & Value[J+1];
 C1 = Value[J] ^ Value[J+1];
 Prop2 = V0 & C1;
 carry1 = Prop1 | Prop2;
 V0 = V0 ^ C1; // The HC part
 /**** First two words ****/
 Prop3 = Value[J+2]&Value[J+3];
 C2 = Value[J+2]^Value[J+3];
 Prop4 = V0 & C2;
 carry2 = Prop3 | Prop4;
 V0 = V0 ^ C2;
 //**** Second two words ****/
 Prop5 = carry1 & carry2;
 Merged_Cs = carry1 ^ carry2;
 Prop6= V1 & Merged_Cs;///
 Merged_Carrys = Prop5 | Prop6;
 V1= V1 ^ Merged_Cs;
 //**** Result of first level ****/
 carry3 = V2 & Merged_Carrys;
 V2 = V2 ^ Merged_Carrys;
 carry4 = V3 & carry3;
 V3 = V3 ^ carry3;
 carry5 = V4 & carry4;
 V4 = V4 ^ carry4;
 While(carry5 ≠ 0) do
 /* The AL part counting every 32th bit */

International Journal of Information Technology, Vol. 9. No. 1

 13

 carry5 = carry5 & (carry5 -1);
 Counter= Counter + 32; // Increment counter by 32
 End While

 End For
 /* Appending the contents of LS*/
 While (V4 ≠ 0) do
 { V4 = V4 & (V4 -1); Counter = Counter + 16;}
 While (V3 ≠ 0) do
 { V3 = V3 & (V3 -1); Counter = Counter + 8;}
 While (V2 ≠ 0) do
 { V2 = V2 & (V2 -1); Counter = Counter + 4;}
 While (V1 ≠ 0) do
 { V1 = V1 & (V1 -1); Counter = Counter + 2;}
 While (V0 ≠ 0) do
 { V0 = V0 & (V0 -1); Counter = Counter + 1;}

Figure 7: FD5 with Quadruple words code

We continue in this process by handling every 8 words, then handling every 16 words
instead of 4 words. This was done by changing the step increment in the for loop and
modifying the algorithm listed in Figure 7. Results showed that using 16 words is better
than using 2, 4, or 8 words. This has been verified with all FDi’s ranging from FD2 to
FD7. However, if we fix the number of treated words, say 16 words, then the execution
time of FD7 will be better than the execution time of FD6 always. FD6 is better than FD5
and so on. In fact, the execution time for FD7, and F6 was always below the hardware
implementation of popcount when we used 16 words. For FD5, it was most of the time.
As an example, we have selected both FD5 and FD6 that are depicted in Figure 8.

Figure 8: Comparison between FD5 and FD6 shows that higher FDi is better

Figure 8 shows clearly that using 16 words in FD6 will achieve the minimum execution
time. This time is below the popcount time no matter what probability of “ones” we have.
The new execution time will be 20% - 50% less than the popcount implemented in
hardware. In case, the user decided to use FD7, then more saving will be achieved.

FD5

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
P robability of "ones"

P opCount
Single Word
8 Words
16 Words

FD6

0.0

0.5

1.0

1.5

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
P robability of "ones"

P opCount
Single Word
8 Words
16 Words

Eyas El-Qawasmeh
Beating the Popcount

14

5. REMEDY IMPROVEMENTS

As we saw in the last section we are able to get an execution time that is less than the
hardware implementation of popcount function. However, if we merge the hardware
implementation of popcount with our technique then we will improve the performance.
Thus we will use our technique over 16 words; meanwhile, we will use the hardware
implementation of the popcount inside the loop of our technique. Thus, for every 16
words that we handle, we will use the hardware implementation to find the number of
ones for carry5 (carry5 is the normal carry at the fifth level). Note that within our
technique, we will use the hardware implementation of popcount 16 times since we are
dealing with 16 different words.

According to the above mentioned, we will replace the following while loop (listed in
Figure 7)

While (carry5 ≠ 0) do // carry5 is the normal carry at the fifth level

/* The AL part counting every 32th bit */
 carry5 = carry5 & (carry5 -1);
 Counter = Counter + 32; // Increment counter by 32
End While

by a popcount statement. Thus, we will have:

Counter = Counter + popcount(carry5) * 8
// Since the AL part counts every 32th bit, then consider log2 32 = 5 bits. This 5 //
// bits will be presented by (10000)2 which is equal to 16 //

Using the previous explanation we will be able to remove the while loop. The same
technique that we use for finding the popcount of carry5 will be applied to Vi’s. Thus, for
8 words and FD5 we replace all the following statement:

While (V4 ≠ 0) do
{ V4 = V4 & (V4 -1); Counter = Counter + 16;}
While (V3 ≠ 0) do
{ V3 = V3 & (V3 -1); Counter = Counter + 8;}
While (V2 ≠ 0) do
{ V2 = V2 & (V2 -1); Counter = Counter + 4;}
While (V1 ≠ 0) do
{ V1 = V1 & (V1 -1); Counter = Counter + 2;}
While (V0 ≠ 0) do
{ V0 = V0 & (V0 -1); Counter = Counter + 1;}

by the following statement:

Counter = Counter + popcount(V4)* log2 16 + popcount(V3) log2 8 + popcount (V2) log2

4 + popcount(V1) * log2 2 + popcount (V0) * log2 1.

International Journal of Information Technology, Vol. 9. No. 1

 15

After finding the log2 values and using Horner’s rule, we will be able to reduce the last
equation to:

Counter = Counter + 2 (popcount(V0) + 2 (popcount(V1)+2 (popcount(V2)+2

(popcount(V3)+2 (popcount(V4))))

The last equation provides the minimum number of operations. In this equation the
hardware implementation of popcount was combined with our method. However, for a
set of 16 words, we call the hardware implementation of popcount only once, instead of
16 calls.

6. PERFORMANCE RESULTS

Experimental results of merging the hardware implementation of popcount with our
technique give us an execution time that is almost half the execution time with the
hardware implementation of popcount. Figure 9 presents the results of the execution time.

Figure 9: The execution time for FD5 using 16 words technique and the hardware
implementation of popcount

Another experiment was conducted to see when our approach would not be able to beat
the popcount if we change the number of words we are handling at the same time. We run
our algorithm to handle 2, 4, 8, and 16 words with FD2, FD3,…, FD7, meanwhile, we did
not use the hardware implementation of popcount. Results showed that the behavior of
FDi family is close. As an example, we have selected FD5

F D 5

0.0

0.5

1.0

1.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
P robability of "ones"

PopCount
16 Words,Chk C4

16 Words, Pop(C4)

16 Words, Pop(C4), Pop(vi)

Eyas El-Qawasmeh
Beating the Popcount

16

Figure 10: Break points for FD5 with the built-in popcount

As can be seen from Figure 10, our algorithm will be able to beat the popcount when the
number of the values we are interested in finding their popcount exceeds 120 values
approximately. In our suggested technique we never use the hardware implementation of
popcount. However, merging our technique with hardware implementation of popcount
for 16 words gives us less execution time than using hardware implementation of the
popcount alone or the software implementation.

The last experiment that was conducted is to determine the speedup gained from using
our technique combined with the hardware implementation of popcount against single
word technique. We checked this for 2, 4, 8, and 16 words merged with the popcount
technique for the carry. Results showed that our technique would be faster than the built-
in popcount function in most of the cases. The speedup was maximized when we used 16
words. Results of these experiments are depicted in Figure 11.

FD5 Breakpoint

0.0

0.5

1.0

1.5

2.0

0 64 112 160 208 256

Number of Vectors

P o pC o unt

8 Wo rds, C hk C 3

16 Wo rds, C hk C 4

16 Wo rds, P o p(C 4)

16 Wo rds, P o p(C 4), P o p(Vi)

International Journal of Information Technology, Vol. 9. No. 1

 17

FD5 Speedup

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
P robability of "ones"

2 wo rds

4 wo rds

8 wo rds

16 wo rds

Figure 11: Gained speedup resulted against single word

In Figure 11, if we select a point like 0.05, which means that most of the bits in the binary
vector will have, 0’s and the others will have 1’s, then our suggested technique will be
faster than the hardware implementation of popcount by a factor of 2.

7. CONCLUSIONS

Popcount is used in various applications such as information retrieval, file processing,
and coding theory. In information retrieval, the number of “1”s in the array of binary
vectors presets the characteristic function of a set of retrieved values. This can be used to
decide whether to constrain or broaden the search criteria to ensure selection of the
desired items. The comparison operation between two given files in terms of Hamming
distance can also employ popcount operation. Important demands of graphics
manipulation have prompted using the popcount in some graphic routines in Windows
system (such as routine one ()).

In this paper, we have presented a software technique for counting the number of “ones”
that is faster than the hardware implementation. The speedup varies depending on the
nature of the numbers. Further merging popcount hardware implementation with the
software implementation will improve the speedup.

The presented results are a product of the machine, operating system, implementation,
and compiler design. These factors are related to each other and they might affect our
results.

Eyas El-Qawasmeh
Beating the Popcount

18

Popcount is an unusual instruction since it would be hard to generate from most
programming languages. It is recommended to add this instruction to all programming
languages such that it should operate on nonnegative integers. There is absolutely no
difficulty in adding this instruction as an intrinsic function, library macro, etc., and/or a
compiler generating inline code and using hardware support where, or/and when
appropriate (El-Qawasmeh, 2001).

 REFERENCES

1- Berkovich, S., Lapir, G., and Mack, M. (2000): A Bit-Counting Algorithm Using the

Frequency Division Principle. Software: Practice and Experience 30(14):1531-1540.

2- Berkovich, S., El-Qawasmeh, E., Lapir, G., Mack, M., and Zincke, C. (1998):

Organization of Near Matching in Bit Attribute Matrix Applied to Associative Access
Methods In Information Retrieval. Proc. of the 16th IASTED International Conference
Applied Informatics, Garmisch-Partenkirchen, Germany: 62-64.

3- El-Qawasmeh, E. and Hemidi, I. (2000): Performance Investigation of Hamming

Distance Bit Vertical Counter Applied to Associative Access Methods in Information
Retrieval. Journal of the American Society for Information Science, USA, 51(5):427-
432.

4- El-Qawasmeh, E. (2001): Performance Investigation of Bit-Counting Algorithms

With a Speedup to Lookup Table. Journal of Research and Practice in Information
Technology, Australia, 32(3/4), pp. 215-230.

5- Gutman, R. (2000): Bit-Parallelism. Dr. Dobb’s Journal 25(9):133-134.

6- Reingold, E., Nievergeit, J. and Deo, N. (1977): Combinatorial Algorithms: Theory

and Practice. Englewood Cliffs, New Jersey 07632, Prentice Hall.

7- Press, W., Teukolsky, S., Vetterling, W., and Flannery, B. (1995) Numerical Recipes

in C. Second edition. Reprinted with correction, Cambridge University Press.

