
International Journal of Information Technology, Vol. 18 No. 1, 2012

Abstract

Software refactoring is the process of improving the internal structure of the software while not

affecting its external behavior. Refactoring to framework is a software refactoring process that is

applied to an existing software application to produce reusable domain classes while improving their

quality. These produced classes form the software architecture and can be reused in the development

of other applications. In this paper, we propose two approaches for refactoring to framework; the

quality attribute based refactoring to framework (QARtF) and the level based refactoring to

framework (LRtF). We empirically validate these two proposed approaches. Results show that these

two approaches can produce high quality domain classes that can be used to form software

frameworks.

Keyword: Refactoring to framework; software architecture; quality improvement.

I. Introduction

Application frameworks are semi-complete applications that can be reused to produce custom

applications [1]. The application frameworks tend to improve software quality through building

reusable components. These reusable components can be used further by other applications.

However, the application frameworks improve software quality by localizing the impact of design

and implementation changes. Thus, the effort required for understanding and maintaining existing

software is reduced [1]. Examples of frameworks include: Microsoft Foundation Classes (MFC),

Approaches for Refactoring to Frameworks

Mohammad Alshayeb and Faisal Banaeamah

Information and Computer Science Department

King Fahd University of Petroleum and Minerals

Dhahran 31261, Saudi Arabia

 {alshayeb, fmb}@kfupm.edu.sa

mailto:alshayeb,%20fmb%7d@kfupm.edu.sa

Mohammad Alshayeb and Faisal Banaeamah

Approaches for Refactoring to Frameworks

Distributed Component Object Model (DCOM) and Common Object Requesting Broker

Architecture (CORBA) [1].

Software refactoring is restructuring internal structure of an existing software application without

affecting its external behaviors. The software refactoring can also be used to improve the software

quality [2].

Refactoring to framework is a software refactoring process which is applied to an existing software

application to produce an application framework (domain classes). In refactoring to framework, the

internal structure of the software application is changed to improve certain software quality goals

that are related to framework. The produced set of domain classes (framework) can be reused in

future to implement other custom applications. Refactoring to framework process suggests a

sequence of refactoring methods to be applied on any software application in order to produce a set

of domain class that can be used as a framework.

It is expected that the refactoring to framework improves the software quality of software

applications. This is because the application frameworks enhance software quality via building

reusable components [1]. Therefore, the software quality of the software applications is improved

when reusing the application frameworks.

There are a number of methods exist that help designers create frameworks [3, 4], however, none of

these methods provide guidelines or steps to refactor existing software applications to frameworks.

Therefore, the objective of this paper is to propose a process for the refactoring to framework which

consists of a set of refactoring methods that can be applied in sequence to produce a framework. We

propose two approaches for refactoring to framework, these are: quality attribute based refactoring to

framework (QARtF) and the level based refactoring to framework (LRtF). These refactoring to

International Journal of Information Technology, Vol. 18 No. 1, 2012

framework processes are empirically validated using two different software applications from

different domains with different sizes.

II. Literature Review

Software refactoring has been investigated extensively. In this section we review the work that was

done in the areas of improving quality using refactoring, refactoring processes, and automating

refactoring using tools.

Tiarks discussed refactoring a system due to specific quality requirements, such as the

maintainability [5]. He considered relationships and dependencies between quality goals of software.

The result was a framework to visualize quality requirements and their dependencies using software

metrics to evaluate and measure the refactoring quality [5]. Tahvildari showed a framework of re-

engineering of object-oriented systems to improve software quality [6]. The framework considered

specific design and quality requirements namely, performance and maintainability. The evaluation

procedure upon each transformation step was done using software metrics.

There are many refactoring processes which are followed to perform refactoring on applications.

Some processes target implementation phase while others target the design phase [5-7] .Tahvildari et

al. proposed a refactoring process for object-oriented legacy systems to improve the fulfillment of

the non-functional requirements, such as reusability, performance and maintainability [8]. Geppert et

al. applied refactoring on a part of a large legacy business communication product [9]. They

proposed a number of strategies and effects of the refactoring effort for changeability. Kolb et al.

described several-model refactoring processes of systematic refactoring of an existing software

component for reuse in a product line by improving the design and implementation for reusability

and maintainability [10]. As advantage of their work, maintainability, reusability and hence

Mohammad Alshayeb and Faisal Banaeamah

Approaches for Refactoring to Frameworks

suitability of a legacy product line were increased [10]. However, their work is limited to quality

needed for legacy system, not for any type of application. Refactoring with contract [11], or

refactoring by contract (RbC) [12], is another process of refactoring. It is a refactoring technique to

verify refactoring based on contracts [11, 12]. Bryton and Abreu proposed modularity-oriented

refactoring process (MORe) and developed a MORe Eclipse plug-in tool [13]. The modularity-

oriented refactoring is a cross-paradigm and language independent refactoring process, based on

modularity metrics [13]. S. Shrivastava and V. Shrivastava presented a metrics based refactoring

process to improve software quality [14]. Tsantalis and Chatzigeorgiou proposed a methodology to

automatically identify Extract Method refactoring opportunities [15]. The refactoring methodology

adheres on preserving behavior of a program after refactoring, containing all computations of

variables declarations in extracted code and duplicating extracted code in original method [15].

Refactoring of software architecture is the first step in maintaining system quality during evolution

[16]. This is because software architecture is the highest level of design and implementation phases

and the first step of matching requirements. Ivkovic and Kontogiannis introduced a framework of

software architecture refactoring using model transformations and quality improvement semantic

annotations [16]. Grunske and Neumann proposed a refactoring process focused on architecture

specifications such as safety, reliability, maintainability, availability and temporal correctness [17].

Each component of the application refactored should be annotated with an evaluation model such as

Component Fault Trees (CFT).

Refactoring tools automate refactorings rather than refactoring manually with an editor [18-20].

Many development environments of different programming languages include refactoring tool [18,

21], for example, Eclipse, Microsoft Visual Studio, Xcode and Squeak [18]. The main advantages of

the refactoring tools are to make the refactoring process less mistakable and faster [18], (i.e. quick

and correct [22]).

International Journal of Information Technology, Vol. 18 No. 1, 2012

III. Application Frameworks Quality Attributes

The application framework quality attributes are set of external quality attributes which characterize

application frameworks. The application frameworks quality attributes are reusability, modularity,

extensibility, flexibility, maintainability [1] and usability [3].

3.1 Reusability

Reusability is the ability of using software components or an existing source code in the

development of another software application. It improves quality of the software application [23].

The reusability of software is one of the most essential benefits and characteristics of the application

frameworks [1]. Reusability of software can be addressed by the generalization of software via

generalizing common features of software [24]. The reusable software should extend and reuse

existing software components [24, 25] and capture components constraints and design decisions [24].

The reusability of software also relies on abstract software architecture [25]. The reusability of

software is enhanced by creating documentation and comments [24]. However, the reusability is

affected by some other quality attributes such as complexity, testability and modularity [23, 26].

3.2 Modularity

Modularity is the ability of making software more consisting of separate independence parts or

components, called modules [23]. The modularity of software is a primary feature of the application

frameworks [1]. Modularity is affected by cohesion and coupling [23].

3.3 Extensibility

Extensibility is the ability to extend a system, with minimum level of implementations and minimum

impact on existing functions. It is a system design principle that takes into consideration future

Mohammad Alshayeb and Faisal Banaeamah

Approaches for Refactoring to Frameworks

growth [27]. Software extensibility is one of the primary benefits and features of the application

frameworks [1]. The extensibility of software is enhanced by providing syntactic definitions for all

extensible software components. It is as well improved by providing precise semantic definitions and

documentations [27].

3.4 Maintainability

Maintenance is the process of implementing corrective, adaptive or perfective software changes [28].

Maintainability is defined as the ability of a software application to be indicative of amount of effort

necessary to perform maintenance changes [28]. The software maintainability can be estimated by

the average maintenance effort and the complexity of software [28, 29]. The maintainability of

software can be improved using hierarchical multidimensional design methodology. The hierarchical

multidimensional design methodology consists of decomposing a software application into

hierarchical levels from different dimensions; control, information and typography structures [28].

3.5 Usability

Usability can be defined as the ease of use of a software application or product [30, 31]. It also

means the level of ease to understand, learn, and use a software application [31]. The usability of

software can be measured by different criteria such as the understandability of the software

application [32]. The usability of software is affected by the functionality, consistency and self-

explanatory of software components and messages [30]. The source code of software becomes

usable through aggregating and combining data, long-running statements and multi-step commands

[24].

3.6 Flexibility

International Journal of Information Technology, Vol. 18 No. 1, 2012

Flexibility is the ease with which a software application or component can be modified for use in

applications or environments other than those for which it was specifically designed for [33]. The

flexibility of software is affected by the evolution cost and evolution complexity [33].

IV. Refactoring Improvements on Software Quality

In the previous section, we identified the application framework quality attributes. In this section, we

compose a list of refactoring methods that positively contribute to the quality attributes of

application framework. Then, we provide explanation of each refactoring method and its positive

effects on the application framework quality attributes. Finally, we summarize the refactorings

improvements on the application framework quality attributes.

4.1 Selected Refactorings

We select a list of refactorings consisting of 23 refactoring methods which contribute positively to

quality attributes of the application framework. We rely on previous studies to determine positive

effects of the refactoring methods on the quality attributes. However, some of these refactorings may

affect the performance of the application which is not a core design attribute of framework as the

framework causes performance degradation due to the additional overhead of dynamic invoking of

methods [1]. The refactoring list covers all the categories of the refactorings in different structural

levels: package, class, method, field, if-clause and iterative loop. These refactoring methods are

among the most popular and most widely used methods.

4.1.1 Add Parameter

Add Parameter is a very common refactoring that is used when a method needs more information

from its caller which can be passed by an object [2, 34]. When a method requires information that

was not passed in before, then it needs to be changed by adding a parameter [2]. Adding parameter

Mohammad Alshayeb and Faisal Banaeamah

Approaches for Refactoring to Frameworks

reduces application-specific details and makes the application more flexible and extensible [1].

Therefore, the refactoring Add Parameter improves the flexibility and extensibility of the application

framework.

4.1.2 Decompose Conditional

It is an extraction of methods from complicated conditions statements [2, 34]. Complex conditional

logic is one of a common complexity areas in software [2]. This refactoring decomposes the

complex conditional logic into a method and replaces its chunks of code with the method call [2].

Decompose conditional is an example of decomposing complex algorithms as it is easy to maintain

[28] as well as the decomposed method can be reused [15]. Therefore, the refactoring “Decompose

Conditional” improves the reusability and maintainability of the application frameworks.

4.1.3 Encapsulate Field

When there is a public field in a class, it is changed to private and accessors are provided [2, 34]. It

keeps the data and its behavior clustered together such that it makes the code easy to maintain, more

modular [2] and so more reusable [23]. Therefore, the refactoring “Encapsulate Filed” improves the

reusability, modularity and maintainability of the application framework.

4.1.4 Extract Method

It can be implemented by grouping a code fragment together into a method with a name that explains

its purpose [2, 34]. Method extraction positively affects maintenance [15] because it simplifies the

code by decomposing large methods into simple ones [15, 28]. It also creates new methods which

can be reused [15]. Thus, Extract Method improves the reusability and maintainability of the

application framework.

4.1.5 Extract Package

International Journal of Information Technology, Vol. 18 No. 1, 2012

A package with too many classes and not easily understandable can be extracted into sub-packages

based on dependencies or usages [34]. Class packaging makes the code more flexible because it

makes classes' dependencies more explicit [34]. It only concentrates on packaging classes together;

therefore, it does not change the internal structures of classes, methods and fields. Thus, the

refactoring “Extract Package” improves the flexibility of the application framework.

4.1.6 Extract Subclass

When a certain class contains a subset of features or members only used in some instances, a

subclass is created for that subset [2, 34]. Subclass extraction is an implementation of inheritance

and abstraction which are essential architecture designs of frameworks [1, 3, 4, 35]. The class

abstraction provides more reusability [25]. Subclassing also reduces application-specific details in

the source class and makes it more flexible and extensible [1]. Therefore, Extract Subclass improves

the reusability, flexibility and extensibility of the application framework.

4.1.7 Extract Super-Class

It is the extraction of a super-class from a set of classes with similar features or members to contain

the common features and members [2, 34]. The extracted subclass is defined to be inherited by the

source class. It has more general behavior than the behavior of its subclass. Super-class extraction is

an implementation of inheritance, generalization and abstraction architecture design of frameworks

[1, 3, 4, 35], which provides more reusability [25]. It also includes subclasses creation which

provides more flexible and extensible application because it reduces application-specific details in

the super-class [1]. Thus, Extract Super-Class improves the reusability, flexibility and extensibility

of the application framework.

4.1.8 Hide Delegate

Mohammad Alshayeb and Faisal Banaeamah

Approaches for Refactoring to Frameworks

When a client calls a delegate class of an object, methods are created on the server to hide the

delegate [2, 34]. This refactoring provides objects encapsulation [2]. The modularity [1] and

reusability [36] of the application are enhanced by encapsulation. It also facilitates maintenance

because it limits the changes to the server and doesn't require propagation to the client [2]. Thus, the

refactoring “Hide Delegate” improves the reusability, modularity and maintainability of the

application framework.

4.1.9 Inline Class

When a class is not doing very much, all its features are moved into another class and that class is

deleted [2, 34]. The target class is more reusable as it contains more methods which can be reused

[15]. Consequently, the refactoring “Inline Class” improves the reusability of the application

framework.

4.1.10 Move Field

If a field in a class is used by another class more than its class, a new field is created in the other

class and all its users are changed to the new field [2, 34]. When a field is located in a class which

uses the field more than other classes, the cohesion of the classes is increased and the coupling

among the classes is decreased [23, 26]. Therefore, Move Field improves the reusability and

modularity [23].

4.1.11 Parameterize Method

When there are several methods do similar things but with different values contained in the method

body, a new method is created using a parameter for the different values [2, 34]. Parameterization

provides more flexible [1, 2] and extensible [1] application as it reduces application-specific details

[1] and removes duplicate code [2]. Thus, the refactoring “Parameterize Method” improves the

flexibility and extensibility of the application framework.

International Journal of Information Technology, Vol. 18 No. 1, 2012

4.1.12 Pull Up Field

When two or more subclasses have same fields, the fields are moved to the super-class [2, 34]. It

develops the inheritance and abstraction, essential design features of frameworks [1, 3, 4, 35] and

hence provides more reusability [25]. Thus, the refactoring “Pull Up Field” can be used to improve

the reusability of the application framework.

4.1.13 Pull Up Method

When a set of subclasses have methods with identical results, the methods are moved to the super-

class [2, 34]. This refactoring reduces method duplication among classes and effort for alteration and

maintenance by doing generalization and abstraction [2]. It develops generalization, inheritance and

abstraction, which are essential architecture designs of frameworks [1, 3, 4, 35] and then provides

more reusability [25]. Therefore, Pull Up Method can be used to improve the reusability and

maintainability of the application framework.

4.1.14 Push Down Field

When a field in a super-class is used only by some subclasses, the field is moved to those subclasses

[2, 34]. It improves the inheritance and abstraction, fundamental design features of frameworks [1, 3,

4, 35] and provides more reusability [25]. Thus, Push Down Field can be used to improve the

reusability of the application framework.

4.1.15 Remove Assignments to Parameters

A temporary variable is used instead of assignment to a parameter [2, 34]. It limits parameters to

only represent the passed data to the method [2]. It also reduces confusion and provides consistency

within the method body code [2] to be more maintainable [28]. Therefore, Remove Assignments to

Parameters improves the maintainability of the application framework.

Mohammad Alshayeb and Faisal Banaeamah

Approaches for Refactoring to Frameworks

4.1.16 Remove Parameter

A parameter, not used by method body, is removed [2, 34]. This refactoring reduces the number of

parameters to be passed in method calling and hence the method becomes easy to reuse [2]. Thus,

Remove Parameter improves the reusability of the application framework.

4.1.17 Remove Setting Method

If a field is set at creation time and is never altered, any setting method of that field is removed [2,

34]. This refactoring keeps the necessary setting methods [2], which have high reuse potential, and

hence provides more reusability [23]. Thus, Remove Setting Method improves the reusability of the

application framework.

4.1.18 Rename Method

If the name of a method does not reveal its purpose, its name should be changed [2, 34]. However,

the refactoring Rename Method can be generalized to rename variable, field, class, interface or

package. This refactoring makes methods names meaningful, self-explained and unambiguous and

hence more maintainable [28] and usable [30]. Therefore, the refactoring “Rename Method”

improves the maintainability and usability of the application framework.

4.1.19 Replace Conditional with Polymorphism

If a condition chooses a different behavior based on the type of an object, each clause of the

condition is moved to an overriding method in a subclass and the original method is converted to

abstract [2, 34]. This refactoring is an implementation of inheritance and abstraction, essential

architecture designs of frameworks [1, 3, 4, 35], to make the application more reusable [25], flexible

and extensible [2]. It also reduces efforts for maintenance and update and decreases dependencies

among components when adding new type to the conditional [2]. Thus, the refactoring “Replace

International Journal of Information Technology, Vol. 18 No. 1, 2012

Conditional with Polymorphism” improves the reusability, maintainability, flexibility and

extensibility of the application framework.

4.1.20 Replace Delegation with Inheritance

When many simple delegations are used for the entire interface, then the delegating class can be

extracted as a subclass of the delegate [2, 34]. This refactoring implements inheritance and

abstraction, essential architecture designs of frameworks [1, 3, 4, 35] and makes the application

more reusable [25], flexible and extensible [2]. Therefore, Extract Subclass improves the reusability,

flexibility and extensibility of the application framework.

4.1.21 Replace Magic Number with Symbolic Constant

If a literal number with a particular meaning exists, a constant is created with a meaningful name to

replace the number [2, 34]. It facilities exploring the logic and provides a great improvement in

readability [2] and hence the maintainability [29]. Consequently, Replace Magic Number with

Symbolic Constant improves the reusability and maintainability of the application framework.

4.1.22 Reverse Conditional

A condition, which would be easier to understand when it is reversed, should be reversed and

reordered [34]. This refactoring allows to re-phrase conditional statements in order to be more

readable and understandable [34] and hence more maintainable [28] and usable [30]. Thus, Reverse

Conditional improves the maintainability and usability of the application framework.

4.1.23 Split Loop

If a loop does two jobs, the loop is duplicated per job. This refactoring makes the loop blocks clearer

[34]. It is an example of decomposing complex algorithms to be maintainable [28]. Therefore, the

refactoring “Split Loop” improves the maintainability of the application frameworks. Table 1 shows

Mohammad Alshayeb and Faisal Banaeamah

Approaches for Refactoring to Frameworks

the refactorings methods verses the quality attributes of application frameworks. The sign () is

placed beside any refactoring method under quality attributes positively affected by the refactoring

method. The empty cells represent that neither positive nor negative effects investigated.

Table 1 – Refactorings and the Positive Effects on Quality

Refactoring Method Reusability Modularity Maintainability Usability Flexibility Extensibility

1. Add Parameter

2. Decompose Conditional

3. Encapsulate Field

4. Extract Method

5. Extract Package

6. Extract Subclass

7. Extract Super-Class

8. Hide Delegate

9. Inline Class

10. Move Field

11. Parameterize Method

12. Pull Up Field

13. Pull Up Method

14. Push Down Field

15. Remove Assignments to

Parameters

16. Remove Parameter

17. Remove Setting Method

18. Rename Method

19. Replace Conditional with

Polymorphism

20. Replace Delegation with

Inheritance

21. Replace Magic Number

with Symbolic Constant

22. Reverse Conditional

23. Split Loop

V. Refactoring to Framework

In this section, we present two approaches for refactoring to framework. The objective of these two

approaches is to produce domain classes from existing applications to be used as framework in

building other applications. The first approach is based on quality attributes of application

framework. The second approach is composed of a sequence of ordered refactoring methods and is

based on the refactoring level. These approaches are applied using two software applications and are

also compared with each other. As an experimental procedure, we perform each refactoring to

framework approach on two different applications from different domains and with different project

International Journal of Information Technology, Vol. 18 No. 1, 2012

size. These applications are JAVA Encryption Algorithm (SJEA) [37] and JAVA File Transfer

Protocol Client (JFTP) [38]. SJEA is a simple command-line binary encryption algorithm of files

(symmetric block cipher) written in JAVA. It uses a password and a byte-vector array to scramble

the input file [37, 39] (http://sourceforge.net/projects/sjea/). SJEA application consists of 3 classes.

On the other hand JFTP is a simple cross-platform ftp-client coded in JAVA with a command-line

interface (CLI) and capable to support Graphical User Interface (GUI)

(http://sourceforge.net/projects/javaftp/) [38, 39]. JFTP application consists of 23 classes.

To demonstrate the changes done on each application during the phases of refactoring to framework

in terms of size and complexity; system-level results are presented using the software metrics: Line

of Code (LOC), Number of Local Methods (NLM), Number of Classes (NOCL) and Number of

Packages (NOP). LOC counts total number the physical lines of codes, NLM is the total number of

methods with different scopes including private, protected, default and public. NOCL represents the

number of classes of the software application and NOP is the number of packages in the software

applications. To automate the process of software metrics analysis, we used “Metamata” metrics tool

to collect the software metrics for the source code among the phases [40].

5.1 Refactoring to Domain

Domain classes are the classes that implement and provide functionality of a certain domain area

while application classes implement the specific application functionality and behavior. To facilitate

the refactoring to framework process and prepare the application's classes to be ready for refactoring

to framework we apply Refactoring to Domain (RtD) method. The purpose of RtD is to refactor

existing classes of applications to domain classes while enhancing their object-oriented features such

as inheritance and abstraction.

Refactoring to Domain is done by separating domain and application classes. Therefore, when there

is a class that contains both domain and application functionality, a new class is created to contain

http://sourceforge.net/projects/sjea/
http://sourceforge.net/projects/javaftp/

Mohammad Alshayeb and Faisal Banaeamah

Approaches for Refactoring to Frameworks

the application functionality and the source class becomes a domain class. The domain functionality

provides a common core service for the domain while the application functionality provides a

specific-application behavior. If the domain functionality of a class is defined as a static method, the

static method is replaced with a dynamic one to support object-oriented abstraction which is an

essential architecture design of frameworks [1, 3, 4, 35]. In order to do that, the common parameters

of the static method are removed and replaced with local variables and their references are replaced

too. Constructors with different signatures are created according to the new local variables. Instances

of the objects are used in replacing the references of the removed parameters of the static method. If

a domain class is final class, the final keyword is removed to allow class extension or inheritance.

5.1.1 Refactoring SJEA to Domain

The SJEA application originally consists of three classes; Checksum, Decryption and Encryption.

All of the three classes contain domain and application functionalities. The domain functions are the

methods responsible for creating checksum, decryption and encryption. The application functions

are the main methods in each class providing the command-line interface of each class.

To refactor SJEA to domain, we first create a new class for the application functions (main methods)

in order to separate the application class from the domain classes. Consequently, the domain classes

SJEA are Checksum, Decryption and Encryption while the application class is SJEAApplication.

Since the domain functions of the SJEA classes are originally implemented as static methods, they

are converted to dynamic methods. To perform this, the common parameter of the static methods

(file) is replaced with a local variable and two constructors are created. As a result of applying

refactoring to domain, the SJEA application is ready to be refactored to framework.

5.1.2 Refactoring JFTP to Domain

International Journal of Information Technology, Vol. 18 No. 1, 2012

The JFTP design distinguishes and separates the domain classes from the application classes.

However, it has a domain class named FTPCmdServer that includes all FTP command services

functions. This class is final. The final class in java cannot be inherited or extended. Therefore, the

final keyword is removed as a step of refactoring to domain, as a result, the JFTP application

becomes ready to be refactored to framework.

5.2 Quality Attribute Based Refactoring To Framework (QARtF)

In this section, we propose a quality attribute based approach refactoring to framework (QARtF). It

can be followed to improve the domain classes of an existing application to be used as framework.

QARtF focuses on improving the framework quality attributes of an application.

5.2.1 Quality Attribute Based Refactoring To Framework Process

QARtF process consists of three ordered phases: reusability and modularity, maintainability and

usability and flexibility and extensibility. The process merges the reusability and modularity phase

because they include a large set of refactoring methods and also the reusability is improved when the

modularity is improved [23]. Then, it merges the maintainability and usability in one phase because

they share the same refactoring methods. It merges the flexibility and extensibility in the last phase

because they cover same set of refactorings. We structure the phases based on the number of

refactoring methods per phase in descending order. The reason of this structuring order is to apply

maximum number of refactoring methods and to cover overlapping refactorings in early phases of

the approach. As a suggested recommendation, meaningful code statements and clear comments

should be used in each step of the phases of QARtF. However, the refactoring methods of each

phase of QARtF are not ordered.

 Reusability and Modularity Refactoring

Mohammad Alshayeb and Faisal Banaeamah

Approaches for Refactoring to Frameworks

Reusability and modularity refactoring is the first phase of QARtF approach. It encompasses

refactoring methods that positively affect the reusability and modularity of an application. There are

16 refactorings in the usability and modularity phase as shown in Table 1.

 Maintainability and Usability Refactoring

Maintainability and usability refactoring is the second phase of QARtF approach. It covers

refactorings that improve the maintainability and usability of an application. There are 11

refactorings methods in the maintainability and usability phase as shown in Table 1.

 Flexibility and Extensibility Refactoring

Flexibility and extensibility refactoring is the last phase of QARtF approach. It includes a set of

refactorings that positively affect the flexibility and extensibility of an application. There are 7

refactoring methods in this phase as shown in Table 1.

 Meaningful Coding and Clear Commenting

The maintainability of an application is improved when its source code has meaningful components

identification and names and understandable statement, commands and understandable comments

[28]. This step is applicable in any phase of QARtF. Rename Method, Field, Variable, Class,

Interface and Package refactorings are useful in this step.

5.2.2 Refactoring SJEA to Framework Using QARtF

The SJEA application is refactored to framework using the QARtF approach in three phases. First,

the reusability and modularity refactorings are applied on each bad smells of the SJEA application

(bad smells are symptom or warning signs in the source code of the program that possibly indicates a

potential problem, these bad smells are indicators that the code should be refactored). Second, all of

applicable maintainability and usability refactorings are made on the SJEA classes. Finally, the

International Journal of Information Technology, Vol. 18 No. 1, 2012

flexibility of the SJEA is improved by applying the last phase of QARtF. In each phase QARtF,

meaningful coding and clear commenting step is used.

In refactoring SJEA to framework, most of the refactoring methods of the phases of QARtF are

applied. Table 2 shows the refactoring methods that are applied on SJEA system.

Table 2 – SJEA Classes Refactoring Using QARtF

Class Type Refactorings Applied (Phase Number)

Checksum Domain

Encapsulate Field (1), Remove Setting Method (1), Replace

Magic Number with Symbolic Constant (1), Extract

Method (1), Extract Package (3)

ChecksumMD5 Domain Extract Subclass (1), Extract Package (3)

Cryptography Domain
Extract Super-Class (1), Pull Up Method (1), Replace

Delegation with Inheritance (1), Extract Package (3)

Decryption Domain
Encapsulate Field (1), Remove Setting Method (1), Hide

Delegate (1), Extract Method (1), Extract Package (3)

Encryption Domain
Encapsulate Field (1), Remove Setting Method (1), Hide

Delegate (1), Extract Method (1), Extract Package (3)

SJEAApplication Application N/A

The results, in terms of system-level LOC, NLM, NOCL and NOP, of each phase of the QARtF

approach are presented in Table 3.

Table 3 – Results of SJEA Refactoring Using QARtF

Phase LOC NLM NOCL NOP

SJEA Application 334 7 4 1

Reusability and Modularity of SJEA 328 11 6 1

Maintainability and Usability of SJEA 328 11 6 1

Flexibility and Extensibility of SJEA 331 11 6 3

SJEA Framework 331 11 6 3

5.2.3 Refactoring JFTP to Framework Using QARtF

The JFTP application is refactored to framework via the phases of the QARtF approach. First, the

reusability and modularity refactorings are applied on each bad smells of the JFTP application.

Second, all of applicable maintainability and usability refactorings are applied on the JFTP classes.

Finally, the flexibility and extensibility of the JFTP are improved by applying the flexibility and

extensibility refactorings. In each phase of QARtF, meaningful coding and clear commenting step is

Mohammad Alshayeb and Faisal Banaeamah

Approaches for Refactoring to Frameworks

used. In refactoring JFTP to framework, all of the refactoring methods of the QARtF phases are

applied. Table 4 shows the refactoring methods applies on JFTP system.

Table 4 – JFTP Classes Refactoring Using QARtF

Class Type Refactorings Applied (Phase Number)

Authenticateable FTP Domain Inline Class (1), Extract Package (3)

CommandLineParser FTP Domain

Decompose Conditional (1), Hide Delegate (1), Remove

Assignments to Parameters (2), Rename Method (2), Add

Parameter (3), Extract Package (3)

Connectable FTP Domain Inline Class (1), Extract Package (3)

Createable FTP Domain Inline Class (1), Extract Package (3)

DataTypeChangeable FTP Domain Extract Subclass (1), Inline Class (1), Extract Package (3)

DirectoryChangeable FTP Domain Extract Subclass (1), Inline Class (1), Extract Package (3)

FTPASCIIData FTP Domain
Decompose Conditional (1), Replace Conditional with

Polymorphism (1), Extract Package (3)

FTPAuthentication FTP Domain
Decompose Conditional (1), Extract Subclass (1), Push

Down Field (1), Extract Package (3)

FTPBinaryData FTP Domain
Decompose Conditional (1), Replace Conditional with

Polymorphism (1), Extract Package (3)

FTPCmdServer FTP Domain
Encapsulate Field (1), Remove Setting Method (1), Extract

Package (3)

FTPConnection FTP Domain

Decompose Conditional (1), Extract Method (1), Extract

Subclass (1), Extract Super-Class (1), Hide Delegate (1),

Pull Up Method (1), Push Down Field (1), Remove

Parameter (1), Remove Assignments to Parameters (2),

Extract Package (3), Parameterize Method (3)

FTPDataType FTP Domain
Extract Method (1), Extract Subclass (1), Replace Magic

Number with Symbolic Constant (1), Extract Package (3)

FTPDirectory FTP Domain

Decompose Conditional (1), Extract Subclass (1), Hide

Delegate (1), Push Down Field (1), Reverse Conditional

(2), Split Loop (2), Extract Package (3)

FTPTransfer FTP Domain

Decompose Conditional (1), Extract Subclass (1), Hide

Delegate (1), Push Down Field (1), Replace Delegation

with Inheritance (1), Extract Package (3)

JFTP Application

Decompose Conditional (1), Extract Method (1), Extract

Subclass (1), Move Field (1), Remove Assignments to

Parameters (2)

JFTPSuper FTP Domain Extract Package (3)

Listable FTP Domain Inline Class (1), Extract Package (3)

NetIO IO Domain
Encapsulate Field (1), Inline Class (1), Pull Up Field (1),

Pull Up Method (1), Extract Package (3)

NetReader IO Domain Extract Package (3)

NetWriter IO Domain Move Field (1), Extract Package (3)

Parser FTP Domain Extract Package (3)

Progressbar Application Extract Package (3)

Removeable FTP Domain Inline Class (1), Extract Package (3)

ServerResponseParser FTP Domain Extract Package (3)

StdErr IO Domain Inline Class (1), Extract Package (3)

StdIn IO Domain Inline Class (1), Extract Package (3)

StdOut IO Domain Inline Class (1), Move Field (1), Extract Package (3)

Transferable FTP Domain Inline Class (1), Extract Package (3)

International Journal of Information Technology, Vol. 18 No. 1, 2012

The results, in terms of system-level LOC, NLM, NOCL and NOP, of each phase of the QARtF

approach are presented in Table 5

Table 5 – Results of JFTP Refactoring Using QARtF

Phase LOC NLM NOCL NOP

JFTP Application 0991 081 32 1

Reusability and Modularity of JFTP 0700 356 38 1

Maintainability and Usability of JFTP 0807 380 28 1

Flexibility and Extensibility of JFTP 0865 382 38 6

JFTP Framework 0865 382 38 6

5.3 Level-Based Refactoring to Framework (LRtF)

In this section, we propose a level-based approach of refactoring to framework (LRtF).

5.3.1 Level-Based Refactoring to Framework Process

LRtF process consists of a sequence of ordered refactoring methods. The refactoring methods of the

level-based refactoring to framework include all refactorings of the quality attribute based

refactoring to framework (QARtF). It covers all refactorings which improve and enhance the

application framework quality attributes. In the level-based refactoring to framework, we classify

and organize the refactorings in a sequential approach. They are classified into five different levels

that are applied in the following sequence: class level, package level, field level, method level and

block level. The block level is divided into if-clause level and loop level. The level classification

identifies the type of changes that a refactoring does on the source code. It can be used to avoid

overlap and conflict between the refactoring methods. Table 6 summarizes the steps of the level-

based refactoring to framework (LRtF); it lists the order of refactoring methods that should be

applied to refactor to framework.

Table 6 – Level-Based Refactoring to Framework (LRtF)

 Refactoring Level

1 Extract Subclass Class

2 Extract Super-Class Class

3 Replace Conditional with Polymorphism Class

4 Hide Delegate Class

5 Replace Delegation with Inheritance Class

6 Inline Class Class

Mohammad Alshayeb and Faisal Banaeamah

Approaches for Refactoring to Frameworks

7 Extract Package Package

8 Replace Magic Number with Symbolic Constant Field

9 Encapsulate Field Field

10 Push Down Field Field

11 Move Field Field

12 Pull Up Field Field

13 Extract Method Method

14 Decompose Conditional Method

15 Remove Setting Method Method

16 Pull Up Method Method

17 Remove Parameter Method

18 Add Parameter Method

19 Parameterize Method Method

20 Remove Assignments to Parameters Method

21 Rename Method Method

22 Reverse Conditional If Clause

23 Split Loop Loop

 Class-Level Refactorings

The class-level refactorings are applied first because classes determine the size of the application in

terms of number of classes in early stage of the refactoring to framework. The class-level

refactorings are performed according to extract refactorings, abstract refactorings, delegate

refactorings and remove refactorings. First, All possible subclasses are created using Extract

Subclass. Extract Subclass because some of the extracted subclasses can be refactored using next

class-level refactorings. Then, the common features of classes can be combined in a super-class

using Extract Super-Class refactoring. Extract Super-Class refactoring can be applied on the

refactored subclasses resulted by Extract Subclass. Next, the abstract refactoring is applied using

Replace Conditional with Polymorphism method. The type conditional expression is changed to

polymorphism using the refactoring method Replace Conditional with Polymorphism. This improves

inheritance and abstraction levels of the application. Hide Delegate and Replace Delegation with

Inheritance are delegate refactorings and applied after abstract refactoring. This is to finalize the

inheritance and abstraction level of the classes. Hide Delegate is used to hide all delegates of classes.

Then, Replace Delegation with Inheritance refactoring method is used on existing delegates and

hidden delegates to be replaced by inheritance. This increases the level of abstraction and inheritance.

Finally at class-level refactoring, all unnecessary classes and interfaces are removed through Inline

International Journal of Information Technology, Vol. 18 No. 1, 2012

Class refactoring method. The class-level refactorings fix the size of the application in terms of the

number of classes and finalize the level of abstraction and inheritance.

 Package-Level Refactorings

Since the application size is fixed and the number of classes and interfaces are determined in the

class-level refactorings phase, it is easy to group classes into different scopes or packages based on

their functionalities. Different packages can be extracted using the refactoring Extract Package.

 Field-Level Refactorings

The field-level refactorings are done before the method-level refactoring because some field-level

refactorings cause creating new methods and these new methods may need to be refactored using the

method-level refactorings. The field-level refactoring starts with Replace Magic Number with

Symbolic Constant because the symbolic constant can be replaced by a field in the class which may

need some other field-level refactorings. Then, all fields of the class are encapsulated in getter and

setter methods via the refactoring method Encapsulate Field. After field encapsulation, the

specialized fields of a super-class are pushed down with their encapsulations to appropriate

subclasses using Push Down Field. Move Field refactoring is useful to transfer certain fields with

their encapsulations from a class to another. The common original or refactored fields are pulled up

with their encapsulations to a super-class by the refactoring method Pull Up Field.

 Method-Level Refactorings

The method-level refactorings begin with Extract Method as a kind of decomposing complex

algorithms. Complex conditional is extracted to a new method using Decompose Conditional

refactoring. Unnecessary encapsulation methods are removed through the refactoring method

Remove Setting Method. Then, the exiting, extracted or decomposed methods are moved from a

subclass to a super-class using Pull Up Method refactoring. The external structures of classes are

Mohammad Alshayeb and Faisal Banaeamah

Approaches for Refactoring to Frameworks

finalized by the refactoring Pull Up Method. After that, all needless parameters of methods are

removed by the refactoring Remove Parameter. Add Parameter refactoring is used to add parameters

to methods to increase the flexibility of the methods. Sometimes, a method is more useful if it is

overloaded with different signature to have parameters using the refactoring Parameterize Method.

However, method parameters should be read only by applying Remove Assignments to Parameters

refactoring. Rename Method refactoring is used to make the method reveal its purpose. The method-

level refactorings finalize and fix total number of methods of an application.

 If-Clause-Level Refactorings

The block-level refactoring comes after the method-level refactoring because the method-level

refactoring finalizes the number of methods of classes. The if-clause-level refactorings should come

before the loop-level refactoring. This is because the loop-level results code duplication because it

splits a single loop into multiple loops. If the split loop contains a condition that needs some if-

clause refactorings, then starting with the if-clause-level refactorings reduces the amount of

refactoring work at loop-level refactoring. Therefore, it is better to do if-clause-level refactorings

before loop-level refactorings. When a condition expression is needed to be reversed to be more

readable and understandable, the if-clause-level refactoring Reverse Conditional is applied.

 Loop-Level Refactorings

The loop-level refactoring is performed after the if-clause-level refactoring. Split Loop refactoring

method is used to decompose a complex loop into several duplicated simple loops.

 Name and Comment Refactorings

The naming refactoring methods can be used in any phase of the level-based refactoring to

framework without any negative effects on other refactorings. The naming refactorings includes

Rename Method, Rename Variable, Rename Field, Rename Class, Rename Interface and Rename

International Journal of Information Technology, Vol. 18 No. 1, 2012

Package. The main advantage of the naming refactoring is to make method, variable, field, class,

interface, or package more readable and more understandable. In addition, meaningful comments on

source code statements, explaining the input and output specifications, help and improve the

readability of the source code statements. They can be done using Add Comments. However, this

phase can be done during all other phases of LRtF.

5.3.2 Refactoring SJEA to Framework Using LRtF

The SJEA application is refactored to framework using the LRtF approach. First, the class-level

refactorings are applied on each bad smells of the SJEA application. Then, the package-level

refactoring is made on the SJEA classes. The field-level refactorings, after that, are applied on the

SJEA application. Some method-level refactorings are also done on the SJEA classes. In each phase

LRtF, meaningful coding and clear commenting are used.

In refactoring SJEA to a framework, most of the refactoring methods of the phases of LRtF are

applied. The class-level refactorings include Extract Subclass, Extract Super-Class, Hide Delegate

and Replace Delegation with Inheritance. The package-level refactoring is Extract Package. The

field-level refactorings applied are Encapsulate Field, Pull Up Field and Replace Magic Number

with Symbolic Constant. The method-level refactorings applied include Extract Method, Pull Up

Method and Remove Setting Method. The SJEA application does not have bad smells for the if-

clause-level and loop-level refactorings Table 7 shows the refactoring methods of LRtF applied on

SJEA classes.

Mohammad Alshayeb and Faisal Banaeamah

Approaches for Refactoring to Frameworks

Table 7 – SJEA Classes Refactoring Using LRtF

The system-level results, in terms of LOC, NLM, NOCL and NOP, of each phase of the LRtF

approach are presented in Table 8. It shows that there is no change accomplished in if-clause-level

and loop-level phases because there are no suitable bad smells in the SJEA. It presents increment in

NLM, NOCL and NOP. NLM is increased due to methods extraction during LRtF phases. NOCL is

increased because of classes’ extraction as new subclasses and super-classes are created. NOP is

increased because packages are extracted to group relevant classes together.

Table 8 – Results of SJEA Refactoring Using LRtF

Phase LOC NLM NOCL NOP

SJEA Application 334 7 4 1

Class-Level of SJEA 314 5 6 1

Package-Level of SJEA 317 5 6 3

Field-Level of SJEA 331 11 6 3

Method-Level of SJEA 331 11 6 3

If-Clause-Level of SJEA 331 11 6 3

Loop-Level of SJEA 331 11 6 3

SJEA Framework 331 11 6 3

5.3.3 Refactoring JFTP to Framework Using LRtF

The JFTP application is refactored to framework via the phases of the LRtF approach. First, the

class-level refactorings are applied on each bad smells of the JFTP application. Then, the package-

level refactoring is made on the JFTP classes. The field-level refactorings, after that, are applied on

the JFTP application. The method-level refactorings are also done on the JFTP classes. Finally, the

block-level refactorings (if-clause-level and loop-level) are applied. Meaningful coding and clear

commenting are used while refactoring the JFTP application in each phase LRtF.

Class Type Refactorings Applied (Phase Number)

Checksum Domain
Encapsulate Field (3), Remove Setting Method (4), Replace Magic Number

with Symbolic Constant (3), Extract Method (4), Extract Package (2)

ChecksumMD5 Domain Extract Subclass (1), Extract Package (2)

Cryptography Domain
Extract Super-Class (1), Pull Up Method (4), Replace Delegation with

Inheritance (1), Extract Package (2)

Decryption Domain
Encapsulate Field (3), Remove Setting Method (4), Hide Delegate (1), Extract

Method (4), Extract Package (2)

Encryption Domain
Encapsulate Field (3), Remove Setting Method (4), Hide Delegate (1), Extract

Method (4), Extract Package (2)

SJEAApplication Application N/A

International Journal of Information Technology, Vol. 18 No. 1, 2012

In refactoring JFTP to a framework using LRtF, all of the refactoring methods of the LRtF phases

are applied. The class-level refactorings include Inline Class, Extract Subclass, Extract Super-Class,

Replace Conditional with Polymorphism, Hide Delegate and Replace Delegation with Inheritance.

The package-level refactoring is Extract Package. The field-level refactorings applied are Replace

Magic Number with Symbolic Constant, Encapsulate Field, Push Down Field, Move Field and Pull

Up Field. The method-level refactorings applied includes Extract Method, Decompose Conditional,

Remove Setting Method, Pull Up Method, Remove Parameter, Add Parameter, Parameterize Method,

Remove Assignments to Parameters, and Rename Method. The loop-level refactoring applied is

Split Loop and the if-clause-level refactoring applied is Reverse Conditional. Table 9 shows the

refactoring methods of LRtF applied on JFTP classes.

Table 9 – JFTP Classes Refactoring Using LRtF

Class Type Refactorings Applied (Phase Number)

Authenticateable FTP Domain Inline Class (1), Extract Package (2)

CommandLineParser FTP Domain

Decompose Conditional (4), Hide Delegate (1), Remove

Assignments to Parameters (4), Rename Method (4), Add

Parameter (4), Extract Package (2)

Connectable FTP Domain Inline Class (1), Extract Package (2)

Createable FTP Domain Inline Class (1), Extract Package (2)

DataTypeChangeable FTP Domain Extract Subclass (1), Inline Class (1), Extract Package (2)

DirectoryChangeable FTP Domain Extract Subclass (1), Inline Class (1), Extract Package (2)

FTPASCIIData FTP Domain
Decompose Conditional (4), Replace Conditional with

Polymorphism (1), Extract Package (2)

FTPAuthentication FTP Domain
Decompose Conditional (4), Extract Subclass (1), Push

Down Field (3), Extract Package (2)

FTPBinaryData FTP Domain
Decompose Conditional (4), Replace Conditional with

Polymorphism (1), Extract Package (2)

FTPCmdServer FTP Domain
Encapsulate Field (3), Remove Setting Method (4), Extract

Package (2)

FTPConnection FTP Domain

Decompose Conditional (4), Extract Method (4), Extract

Subclass (1), Extract Super-Class (1), Hide Delegate (1),

Pull Up Method (4), Push Down Field (3), Remove

Parameter (4), Remove Assignments to Parameters (4),

Extract Package (2), Parameterize Method (4)

FTPDataType FTP Domain
Extract Method (4), Extract Subclass (1), Replace Magic

Number with Symbolic Constant (3), Extract Package (2)

FTPDirectory FTP Domain

Decompose Conditional (4), Extract Subclass (1), Hide

Delegate (1), Push Down Field (3), Reverse Conditional

(5), Split Loop (6), Extract Package (2)

FTPTransfer FTP Domain

Decompose Conditional (4), Extract Subclass (1), Hide

Delegate (1), Push Down Field (3), Replace Delegation

with Inheritance (1), Extract Package (2)

Mohammad Alshayeb and Faisal Banaeamah

Approaches for Refactoring to Frameworks

JFTP Application

Decompose Conditional (4), Extract Method (4), Extract

Subclass (1), Move Field (3), Remove Assignments to

Parameters (4)

JFTPSuper FTP Domain Extract Package (2)

Listable FTP Domain Inline Class (1), Extract Package (2)

NetIO IO Domain
Encapsulate Field (3), Inline Class (1), Pull Up Field (3),

Pull Up Method (4), Extract Package (2)

NetReader IO Domain Extract Package (2)

NetWriter IO Domain Move Field (3), Extract Package (2)

Parser FTP Domain Extract Package (2)

Progressbar Application Extract Package (2)

Removeable FTP Domain Inline Class (1), Extract Package (2)

ServerResponseParser FTP Domain Extract Package (2)

StdErr IO Domain Inline Class (1), Extract Package (2)

StdIn IO Domain Inline Class (1), Extract Package (2)

StdOut IO Domain Inline Class (1), Move Field (3), Extract Package (2)

Transferable FTP Domain Inline Class (1), Extract Package (2)

The system-level results are presented in terms of LOC, NLM, NOCL and NOP for each phase of

the LRtF approach in Table 10. It illustrates the changes of the JFTP application accomplished in

each phase of LRtF. It shows increment occurred on NLM, NOCL and NOP. NLM is increased due

to methods extraction and decomposition during the refactoring to framework phases. NOCL is

increased because of classes’ extraction and abstraction as new subclasses and super-classes are

created. NOP is increased because packages are extracted to group related classes together.

Table 10 – Results of JFTP Refactoring Using LRtF

Phase LOC NLM NOCL NOP

JFTP Application 1490 180 23 1

Class-Level of JFTP 1577 191 28 1

Package-Level of JFTP 1611 191 28 6

Field-Level of JFTP 1754 223 28 6

Method-Level of JFTP 1861 283 28 6

If-Clause-Level of JFTP 1861 283 28 6

Loop-Level of JFTP 1865 283 28 6

JFTP Framework 1865 283 28 6

We notice from Table 11 and Table 12 that the two approaches of refactoring generate the same set

of domain and application classes.

Table 11 – SJEA Classes after Refactoring to Framework

International Journal of Information Technology, Vol. 18 No. 1, 2012

Table 12 – JFTP Classes after Refactoring to Framework

Class Type Description

Connectable FTP Domain An Interface includes methods for FTP connection

Authenticateable FTP Domain An Interface includes methods for FTP authentication

Listable FTP Domain An Interface includes methods for FTP directory list

DataTypeChangeable FTP Domain An Interface includes methods for FTP data mode change

DirectoryChangeable FTP Domain An Interface includes methods for FTP directory change

Createable FTP Domain An Interface includes methods for FTP directory creation

Removeable FTP Domain An Interface includes methods for FTP directory remove

Transferable FTP Domain An Interface includes methods wrapping all FTP data transfer

JFTPSuper FTP Domain A Super-Class of all FTP activities classes

FTPCmdServer FTP Domain A Super-Class of FTP activities and commands classes

FTPConnection FTP Domain A Class implements FTP connection activities

FTPAuthentication FTP Domain A Class implements FTP authentication activities

FTPDataType FTP Domain A Class implements FTP data mode change activities

FTPASCIIData FTP Domain A Class implements FTP data type change to ASCII

FTPBinaryData FTP Domain A Class implements FTP data type change to Binary or Image

FTPDirectory FTP Domain A Class implements FTP directory manipulation activities

FTPTransfer FTP Domain A Class implements FTP data transfer activities

Parser FTP Domain A Super-Class of all FTP messages parsing classes

CommandLineParser FTP Domain A Class implements FTP command parsing for requests

ServerResponseParser FTP Domain A Class implements FTP command parsing for responses

NetIO IO Domain A Class implements network IO operations

NetReader IO Domain A Class implements network reading operation

NetWriter IO Domain A Class implements network writing operation

StdErr IO Domain A Class implements standard error reporting operation

StdIn IO Domain A Class implements standard input reporting operation

StdOut IO Domain A Class implements standard output reporting operation

JFTP Application A Class implements the application user interface operation

Progressbar Application A Class implements progress bar for interface operation

VI. Conclusion

Refactoring to framework is software refactoring or restructuring to produce reusable domain classes

for a specific problem domain that can be used as a common application framework. In this paper we

proposed two refactoring to framework approaches consisting of a set of refactoring methods: the

quality attribute based refactoring to framework (QARtF) and the level based refactoring to

framework (LRtF). The two refactoring to framework approaches provide a standard approach for

application frameworks development using refactoring.

Class Type Description

Checksum Domain A Class implements checksum creation

ChecksumMD5 Domain A Class implements checksum creation using MD5 algorithm

Cryptography Domain A Class implements cryptography of MD5 algorithm

Decryption Domain A Class implements decryption using MD5 algorithm

Encryption Domain A Class implements encryption using MD5 algorithm

SJEAApplication Application A Class implements the application user interface operation

Mohammad Alshayeb and Faisal Banaeamah

Approaches for Refactoring to Frameworks

We validated the two approaches empirically using two open source systems. We conclude that

although QARtF and LRtF share common features, each one also has its own characteristics. Both

approaches yield to the same set of domain classes and application classes. They both have the same

quality attributes improvement for the application framework at system level. However, QARtF is an

ordered phase level approach while LRtF is a sequential ordered level approach. QARtF requires the

designer to be experienced with quality attributes. However, LRtF does not rely on the designer’s

experience in quality attributes as it is a sequence of refactoring methods.

In future work we plan to apply the refactoring to framework approaches in many applications from

diverse domain areas in different scales, enhance the refactoring to framework approaches to include

more refactoring methods that positively affect quality attributes of framework and develop a

refactoring process approach to convert a set of existing applications to a product line.

Acknowledgement

The authors acknowledge the support of King Fahd University of Petroleum and Minerals in the

development of this work.

References

[1] M. Fayad and D. Schmidt, "Object-Oriented Application Frameworks," Communications of

the ACM, vol. 40, October, 1997 1997.

[2] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring: Improving the

Design of Existing Code, First ed.: Addison-Wesley Longman Publishing Co., Inc., 1999.

[3] M. Fayad, D. Schmidt, and R. Johnson, Building Application Frameworks: Object-Oriented

Foundations of Framework Design, First ed.: John Wiley and Sons, Inc., 1999.

International Journal of Information Technology, Vol. 18 No. 1, 2012

[4] M. Fayad, D. Schmidt, and R. Johnson, Implementing Application Frameworks: Object-

Oriented Frameworks at Work, First ed.: John Wiley and Sons, Inc., 1999.

[5] R. Tiarks, "Quality-Driven Refactoring," presented at the Informatic Seminar

Transformation (IST'05), University of Bremen, Bremen, Germany, 2005.

[6] L. Tahvildari, "Quality-Driven Object-Oriented Re-Engineering Framework," presented at

the The 20th IEEE International Conference on Software Maintenance (ICSM'04), Chicago,

IL, USA, 2004.

[7] Z. Xing and S. Eleni, "Refactoring Practice: How it is and How it Should be Supported - An

Eclipse Case Study," presented at the The 22nd IEEE International Conference on Software

Maintenance (ICSM'06), Philadelphia, Pennsylvania, USA, 2006.

[8] L. Tahvildari, K. Kontogiannis, and J. Mylopoulos, "Quality-Driven Software Re-

Engineering," Journal of Systems and Software, vol. 66, pp. 225-239, June, 2003 2003.

[9] B. Geppert, A. Mockus, and F. Rossler, "Refactoring for Changeability: A Way to Go?,"

presented at the The 11th IEEE International Software Metrics Symposium (METRICS'05),

Como, Italy, 2005.

[10] R. Kolb, D. Muthig, T. Patzke, and K. Yamauchi, "A Case Study in Refactoring a Legacy

Component for Reuse in a Product Line," presented at the The 21st IEEE International

Conference on Software Maintenance (ICSM'05), Budapest, Hungary, 2005.

[11] M. Goldstein, Y. A. Feldman, and S. Tyszberowicz, "Refactoring with Contracts,"

presented at the IEEE Agile Conference (AGILE'06), Minneapolis, Minnesota, USA, 2006.

[12] N. Ubayashi, J. Piao, S. Shinotsuka, and T. Tamai, "Contract-Based Verification for Aspect-

Oriented Refactoring," presented at the The 2008 International Conference on Software

Testing, Verification, and Validation (ICST'08), Lillehammer, Norway, 2008.

[13] S. Bryton and F. Abreu, "Modularity-Oriented Refactoring," presented at the The 12th

European Conference on Software Maintenance and Reengineering (CSMR'08), Athens,

Greece, 2008.

Mohammad Alshayeb and Faisal Banaeamah

Approaches for Refactoring to Frameworks

[14] S. Shrivastava and V. Shrivastava, "Impact of Metrics Based Refactoring on the Software

Quality: a Case Study," presented at the The 2008 IEEE Region 10 Conference

(TENCON'08), Hyderabad, India, 2008.

[15] N. Tsantalis and A. Chatzigeorgiou, "Identification of Extract Method Refactoring

Opportunities," presented at the The 13th European Conference on Software Maintenance

and Reengineering (CSMR'09), Kaiserslautern, Germany, 2009.

[16] I. Ivkovic and K. Kontogiannis, "A Framework for Software Architecture Refactoring using

Model Transformations and Semantic Annotations," presented at the The Conference on

Software Maintenance and Reengineering (CSMR'06), Bari, Italy, 2006.

[17] L. Grunske and R. Neumann, "Process Components for Quality Evaluation and Quality

Improvement," presented at the The 2nd Workshop on Method Engineering for Object-

Oriented and Component-Based Development (OOPSLA'04), The International Conference

on Object Oriented Programming, Systems, Languages and Applications, 2004.

[18] E. Murphy-Hill and A. Black, "Refactoring Tools: Fitness for Purpose," IEEE Software,

vol. 25, pp. 38-44, September-October, 2008 2008.

[19] N. C. Mendonca, P. H. Maia, L. A. Fonseca, and R. M. Andrade, "RefaX: A Refactoring

Framework Based on XML," presented at the The 20th IEEE International Conference on

Software Maintenance (ICSM'04), Chicago, IL, USA, 2004.

[20] K. Maruyama and S. Yamamoto, "Design and Implementation of an Extensible and

Modifiable Refactoring Tool," presented at the The 13th International Workshop on

Program Comprehension (IWPC'05), St. Louis, MO, USA, 2005.

[21] R. Marticorena, C. Lopez, Y. Crespo, and F. J. Perez, "Reuse Based Refactoring Tools,"

presented at the The 1st Workshop on Refactoring Tools (WRT'07), The 21st European

Conference on Object-Oriented Programming (ECOOP'07), Berlin, Germany, 2007.

International Journal of Information Technology, Vol. 18 No. 1, 2012

[22] E. Murphy-Hill and A. Black, "Breaking the Barriers to Successful Refactoring:

Observations and Tools for Extract Method," presented at the ACM/IEEE 30th International

Conference on Software Engineering (ICSE'08), Leipzig, Germany, 2008.

[23] S. Lai and C. Yang, "A Software Metric Combination Model for Software Reuse,"

presented at the Fifth Asia-Pacific Software Engineering Conference (APSEC'98), Taipei,

Taiwan, 1998.

[24] J. Perry, "Perspective on Software Reuse," Software Engineering Institute (SEI), Technical

Report CMU/SEI-88-SR-022September, 1988 1988.

[25] J. Estublier and G. Vega, "Reuse and Variability in Large Software Applications," Special

Interest Group on Software Engineering (SIGSOFT) Software Engeering Notes, vol. 30, pp.

316-325, September, 2005 2005.

[26] F. Dandashi, "A Method for Assessing the Reusability of Object-Oriented Code Using a

Validated Set of Automated Measurements," presented at the The 2002 ACM Symposium

on Applied Computing (SAC'02), Madrid, Spain, 2002.

[27] T. Lopes, I. Neag, and J. Ralph, "The Role of Extensibility in Software Standards for

Automatic Test Systems," presented at the IEEE Autotestcon (AUTOTESTCON'05), 2005.

[28] F. Zhuo, B. Lowther, P. Oman, and J. Hagemeister, "Constructing and Testing Software

Maintainability Assessment Models," presented at the First International Software Metrics

Symposium (METRICS'93), Baltimore, Maryland, USA, 1993.

[29] R. Land, "Measurements of Software Maintainability," presented at the Graduate Student

Conference, Uppsala University, Uppsala, Sweden, 2002.

[30] N. Bevan, "Measuring Usability as Quality of Use," Journal of Software Quality, vol. 4, pp.

115-130, March, 1995 1995.

[31] N. Bevan and M. Macleod, "Usability Measurement in Context," Behaviour and

Information Technology (BIT), vol. 13, pp. 132-145, 1994.

Mohammad Alshayeb and Faisal Banaeamah

Approaches for Refactoring to Frameworks

[32] M. Bertoa and A. Vallecillo, "Usability Metrics for Software Components," presented at the

Workshop on Quantitative Approaches in Object-Oriented Software Engineering

(QAOOSE'04), The 8th European Conference on Object-Oriented Programming

(ECOOP'04), Oslo, Norway, 2004.

[33] A. Eden and T. Mens, "Measuring Software Flexibility," IEE Proceedings Software, vol.

153, pp. 113-126, June, 2006 2006.

[34] M. Fowler. (2008, November 18, 2008). Refactoring Catalog: Refactorings in Alphabetical

Order. Available: http://www.refactoring.com/catalog/index.html

[35] R. E. Johnson, "How Frameworks Compare To Other Object-Oriented Reuse Techniques:

Frameworks = (Components + Patterns)," Communications of the ACM, vol. 40, October,

1997 1997.

[36] K. Rubin, "Reuse in Software Engineering: an Object-Oriented Perspective," presented at

the IEEE COMPCON, 1990.

[37] SJEA. (2009, March 21, 2009). Simple JAVA Encryption Algorithm (SJEA). Available:

http://sourceforge.net/projects/sjea/

[38] JFTP. (2001, March 21, 2009). JAVA File Transfer Protocol Client (JFTP). Available:

http://sourceforge.net/projects/javaftp/

[39] SourceForge. (2009, March 21, 2009). Source Forge: Find and Build Open Source

Software. Available: http://sourceforge.net/index.php

[40] MetaMata. (2000). MetaMata Metrics Tool v2.0. Available: http://www.metamata.com

Mohammad Alshayeb is an associate professor in Software Engineering

at the Information and Computer Science Department, King Fahd

University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia.

He received his MS and PhD in Computer Science and certificate of

Software Engineering from the University of Alabama in Huntsville. He

worked as a senior researcher and Software Engineer and managed

software projects in the United States and Middle East. He is a certified

project manager (PMP). His research interests include Software quality,

software measurement and metrics, and empirical studies in software

engineering.

http://www.refactoring.com/catalog/index.html
http://sourceforge.net/projects/sjea/
http://sourceforge.net/projects/javaftp/
http://sourceforge.net/index.php
http://www.metamata.com/

