
International Journal of Information Technology

Vol. 8, No. 1 August 2002

A Dynamic Signature File Declustering Method based on the Signature
Difference

Jae Ryong Shin, Chung Beom Son, Jae Soo Yoo, *Byoung Mo Im

Dept. of Computer and Communication

Chungbuk National University

48 Gaesindong Cheongju, Chungbuk, Korea, 361-763

{jrshin, cbson}@netdb.chungbuk.ac.kr

yjs@cbucc.chungbuk.ac.kr

ibm@dbserver.kaist.ac.kr

Abstract

For processing a signature file in parallel, an effective signature file declustering method is needed. The

Linear Code Decomposition Method(LCDM) used for the Hamming Filter may give a good performance in

some cases, but due to its static property, it fails to evenly decluster a signature file when signatures are

skewed. In addition, it has other problems such as limited scalability and non-determinism. In this paper

we propose a new signature file declustering method, called the Inner-product method, which overcomes

those problems in the LCDM. The Inner-product method declusters a signature file dynamically based on

the signature difference which is computed by using signature inner product. We show through the various

experiments that the Inner-product method outperforms the LCDM under various data workloads.

Jae� Chung� Jae��Byoung� A Dynamic Signature File Declustering Method based on the Signature Difference

2

Keywords Declustering Method, Signature File, Parallel Database, Dynamic Index Structure,

Information Management

Int. J. of Information Technology Vol 8, No. 1

3

I. INTRODUCTION

Information retrieval and management systems that have been a major field of

computing for a long time typically deal with not only formatted data but also

unformatted data. A storage organization widely advocated for unformatted data as well

as formatted one is to use the signature file method[1]. In general, each document

signature that is an element of the signature file is constructed from word signatures by

using the superimposed coding method. When processing a query, the signature file is

scanned in advance and many non-qualifying documents are discarded. Figure 1

illustrates the construction of a document signature using superimposed coding method,

where a document consists of three words, "Database", "Parallel" and "Information".

Here, a signature length is twelve and the number of bits that are set to ‘1’ in a word

signature is two.

Document D = (Database, Parallel, Information)

Keywords Word Signature

Database 0110 0000 0000

Parallel 0000 1000 0001

Information 0001 0001 0000

Document Signature 0111 1001 0001

Fig. 1. Document signature construction using superimposed coding

Since the size of a signature file is much smaller than that of a data file, it has been shown that the

signature file can effectively work as a filter that immediately discards most non-qualifying documents for

a given query[2]. Although sequential organization of a signature file works well for a data file with a small

size, its performance becomes a problem when the size of a data file is large. Other organizations of a

signature file can improve their performance based on a tree or hashing techniques. The bit-sliced signature

file[3], and the frame-sliced signature file[4] have been proposed for static environment, while the S-

tree[5], the Quick filter[6, 7, 8] and the HS file[9] have been proposed for dynamic environment.

There have also been many attempts to make the schemes run for parallel environment. The Fragmented

Signature File(FSF)[10], Key-Based Partition Method[11] and the Hamming Filter[8, 12] partition a

Jae� Chung� Jae��Byoung� A Dynamic Signature File Declustering Method based on the Signature Difference

4

signature file to process a query in parallel. The Hamming Filter shows good declustering performance for

some partial match queries. It declusters a signature file by using the Linear Code Decomposition Method

(LCDM) that is used for detecting and correcting errors while transmitting data[13, 14]. The LCDM yields

good declustering performance in some cases, but due to its static property, it fails to evenly decluster a

signature file when signatures are skewed. In addition, it has other problems such as limited scalability and

non-determinism. The MIN-entropy is better than the LCDM because the MIN-entropy method statically

declusters signature file based on statistic information of previously allocated signatures. However, MIN-

entropy is not suitable to dynamic environment of large scale parallel database systems where insertions

happen frequently.

In this paper we propose a new signature file declustering method, called Inner-product that overcomes

the problems in the LCDM and the MIN-entropy. The Inner-product method declusters a signature file by

using signature inner-product. The signature inner-product of two signatures is a scalar value, where each

signature is considered as a bit string. In this method, we compare the degree of differences between a new

signature and representative signature of each node. The Inner-product method allocates a new signature to

processing node with minimum among the inner products of the new signature and the representative

signature of each node.

The LCDM is based on a static information that does not reflect the current status of signature allocation.

On the other hand the Inner-product method declusters signature files dynamically based on the current

status of signature allocation. Thus, Inner-product method can cope with a variety of workloads and

configurations. We show through performance evaluation based on the statistical modeling that the Inner-

product method gives better retrieval performance than the LCDM for data sets with various distributions

such as uniform distribution, normal distribution and exponential distribution. We also address the

signature insertion time by using asymptotic notation. It shows that Inner-product method works well in a

dynamic environment where insertions occur frequently.

The rest of the paper is organized as follows. In Section II, we review various parallel signature file

organizations. Section III presents our proposed Inner-product method and Section IV shows experimental

results. Finally, Section V gives concluding remarks.

II. SIGNATURE FILES FOR PARALLEL PROCESSING

Parallel systems are increasingly being used for high performance applications that require efficient

access to large amounts of data, e.g., large-scale transaction processing, decision-support systems and

Int. J. of Information Technology Vol 8, No. 1

5

multimedia systems. Three system architectures for multiprocessor database computers have been

proposed: Shared Memory(SE), Shared Disk(SD), and Shared Nothing(SN)[15]. There have been

considerable debates on which architecture is the most suitable for a database management system

implementation. While the coherency control problem limits the number of processors in both SE and SD

systems, the modular design of SN architecture enables incremental growth and scalability to hundreds of

nodes. Thus most large-scale parallel processing systems for information processing are based on the SN

architecture. However, SN systems are very sensitive to the distribution of data on disks (i.e., data

declustering) that may lead to the data skew problem. To avoid the data skew problem, a good declustering

method is necessary.

There have been many attempts to make signature files run for parallel environments such as the

Fragmented Signature File(FSF), the Key-Based Partition Method(KBPM) and the Hamming Filter[10, 11,

12]. They speed up the search time on signature files by distributing signatures to disks that participate in

parallel processing.

Table 1. Classification of Parallel Signature Files

Categories Partitioning Methods Declustering Methods

Parallel

Signature Files

Key-Based Partition Method

Fragmented Signature File

Hamming Filter

We classify these parallel signature file organizations into two categories according to the way they

distribute a signature file to disks: partitioning methods, and declustering methods. Table 1 illustrates these

two categories[20]. Now we survey and analyze parallel signature files focussing on the data distribution

scheme.

1. Partitioning Methods

This section explains methods that partition a signature file into sets of signature subfiles or sets of

signature frames. The signature subfile is a partition of a signature file when the latter is partitioned

horizontally. On the other hand, the signature frame is a vertical partition of signature file. In general,

signatures in each signature subfile have a common key. Given M processors and a signature file is

partitioned to N partitions, if M is equal to N, then each partition is allocated to each processing node

directly. However, if M is greater than N, then additional partition allocation method is needed.

In [10] three key-based partition methods are presented. These Key-based partition methods partition a

signature file horizontally. They partition signatures with same signature key into the same partition and

Jae� Chung� Jae��Byoung� A Dynamic Signature File Declustering Method based on the Signature Difference

6

allocate them to the same processing node. But they are different in the way the key is selected. (1) Fixed

prefix method selects keys with a fixed length and fixed starting position. (2) Extended prefix method

selects the keys with variable length but fixed starting position. (3) Floating key method selects the keys

with fixed length but variable starting position. Although the above three key-based partition methods can

be used for intra-query parallelism, they are much more suitable to inter-query parallelism.

The FSF uses mixed partition scheme. By vertical partition, it decomposes a signature file into a disjoint

set of signature file frames. On the other hand, through horizontal fragmentation, a signature file is

decomposed into a disjoint set of signature subfiles, where all signatures in each subfile have a common

signature key. This kind of partition can be seen as a product derived from global signature file in two

consequent steps, involving vertical and horizontal partition.

Figure 2 shows the mixed partition scheme that produces disjoint data partitions vertically and

horizontally. These disjoint partitions are distributed to the given processing nodes. Although this method

allows intra-query parallelism, it is more suitable to inter-query parallelism because, for a signature query,

qualified partitions are only the subset of all partitions.

Fig. 2. The mixed partition scheme

2. Declustering Methods

The partition methods apply a simple horizontal and/or vertical signature file partitioning. Therefore,

some partitions that are not activated for a specific query is relived by introducing inter-query parallelism,

vertical partition

horizontal

partition

signature

frame

Int. J. of Information Technology Vol 8, No. 1

7

that is, without using the active partitions for executing other queries, if possible. The declustering methods

are aiming at maximizing intra-query parallelism, where elimination of the execution skew is the main

objective. The simplest declustering method is randomly distributing signatures to processing nodes. The

Hamming Filter decomposes a signature file horizontally through the Linear Code Decomposition

Method(LCDM) that declusters signature file by using linear code. Also, by using the dynamic partitioning

technique in fixed-size partitions, known as Quick Filter, clusters of signatures are allocated to local

processing node. Therefore, the Hamming Filter can be considered as an extension of the Quick Filter by

the application of the principle of linear code decomposition. The LCDM uses this syndrome property of

the linear code[16]. Figure 3 shows that the LCDM decomposes linear space {0,1}n into 2{n-k} C(n,k) that

have the same syndrome respectively. The codewords with the same syndrome are uniformly distributed by

the execution load for non-skewed data, because the Hamming distance is guaranteed between its

codewords. The Hamming Filter declusters a signature file by applying LCDM to the suffix of each

signature.

Fig. 3. Linear Code Decomposition Method

For intra-query parallelism, it is required that good declustering algorithm should avoid data skew and

execution skew. The LCDM has no execution skew for non-skewed data. However, since the LCDM

allocates signatures with the same suffix into the same processing node, it cannot avoid data skew if many

signatures have the same suffix. In addition, it has the following problems that make the LCDM difficult

for parallelism. First, it is not gracefully scalable to the number of processing nodes. The method is

properly defined only when the number of processing nodes is a power of two. This is a serious restriction

because most current parallel systems in practice may not have a power of two numbers of processing

nodes. Second, it is not deterministic algorithm. For the suffix with the m-size, m! matrix positions can be

checked for the LCDM to decluster a signature file. While the choice of the check matrix can affect the

declustering performance of the LCDM, no appropriate guideline has been provided to choose an optimal

linear space

{0, 1}n

(2n words)

0-th C(n,k)

(2k words)

1-th C(n,k)

(2k words)

(2n-k-1)-th C(n,k)

(2k words)

. . .

H×word

Jae� Chung� Jae��Byoung� A Dynamic Signature File Declustering Method based on the Signature Difference

8

check matrix. Finally, the LCDM may lead to information loss because it only uses partial information, i.e.,

the suffix of the signature.

The MIN-entropy that uses signature-entropy as a signature declustering measure was proposed in [20].

This method assumes Shared Nothing (SN) parallel architecture as a base platform for large parallel

signature file organizations. To minimize a signature query processing time in the SN parallel environment,

data need to be declustered evenly and independently to all processing nodes. Note that intra-query

parallelism is inevitable to minimize the signature query response time in the SN parallel environment.

III. A NEW DECLUSTERING METHOD FOR PARALLEL
SIGNATURE FILE

In this section, we propose a new signature file declustering method, called Inner-product. We assume a

SN parallel architecture as a base platform for large parallel signature file organizations. To minimize a

signature query processing time in the SN parallel environment, data need to be declustered evenly and

independently to all processing nodes. Note that intra-query parallelism is inevitable to minimize the

signature query response time in the SN parallel environment. In a SN Parallel system with p parallel

processing units, the response time to a signature query is defined as max{C1,C2, ... ,Cp}, where Ci(1≤ i≤ p)

is the response time (i.e., the cost measured as the number of physical page accesses) of the i-th processing

unit. More specifically Ci is the signature search time plus the false drop time at the i-th processing node as

shown in the Figure 4. Thus, the objective is to find a declustering scheme such that for any query,

max{C1,C2, ... ,Cp} is the minimum among all possible signature file declusterings. Given that the above

declustering problem is NP-complete[16, 17], our method heuristically declusters signature files based on

the statistical information.

query signature

retrieved documents

response tim
e

. . .Node #0 Node #1 Node

#n

Int. J. of Information Technology Vol 8, No. 1

9

Fig. 4. Response time of a signature query

As basic criteria, to minimize a signature query response time, the following two skews have to be

avoided in a (1) data skew i.e., much more data is placed in one fragment than in the others, and (2)

execution skew i.e., execution time in one fragment is much higher than in the others. Before describing

our method, it is necessary to introduce some notations and definitions.

1. Definition and Terminology

Notation

� n, the size of signature

� mi, the number of signatures in the node i

� ∑
=

=
im

j
ijkik sc

1

, the k-th vertical bit sum of all signatures(1≤ j≤ mi) in the node i

� sijk, the k-th bit of the j-th signature in the node i

Definition 3.1 Two signatures are completely different if all elements of two signatures are different.

Definition 3.2 (count vector) The count vector of node i that is denoted by cvi = <ci1, ci2, ... , cij, ... , cin> is

the vertical bit sum vector of all signatures previously allocated to the node i. The count

vector construction procedure is presented in Figure 5

1 0 0 1 0 1 0 1 1 1 0 0 0 0 0 1 = si1

1 0 1 0 0 0 1 1 1 1 1 1 0 0 0 0 = si2

+ 0 0 1 0 1 1 0 0 1 0 1 0 0 1 0 1 = si3

< 2,0,2,1,1,2,1,2,3,2,2,1,0,1,0,2 > = cvi

 Fig. 5. The Count Vector of i-th node

Definition 3.3 (unit signature) The unit signature of node i that is denoted by uvi = <ui1, ui2, ... , uij, ... , uin>

represents the status of signature allocation of node i, which is normalized count vector by

‘0’ or ‘1’. For example, ui1 is ‘1’ when ci1 is greater than the mean of cvi. Otherwise ui1 is ‘0’.

Jae� Chung� Jae��Byoung� A Dynamic Signature File Declustering Method based on the Signature Difference

10

Definition 3.4 (inner product of two signatures) The inner product of two signatures, si, sj that is denoted

by si•sj is the sum of products of pair elements in two signatures. For example, given si = (1

0 0 1 0 1 0 1 1 1 0 0 0 0 0 1), sj = (1 0 1 0 0 0 1 1 1 1 1 1 0 0 0 0), si•sj = 1*1 + 0*0 + 0*1 +

1*0 + 0*0 + 1*0 + 0*1 + 1*1 + 1*1 + 1*1 + 0*1 + 0*1 + 0*0 + 0*0 + 0*0 + 1*0 = 4.

Lemma 3.1 The inner product of two same signatures is the sum of element of the signature as follows:

si•si =∑
=

n

k
iks

1

Proof. If si = (si1, si2, …, sin), then si•si = si1* si1 + si2* si2 + . . . + sin* sin = si1 + si2 + . . . + sin = ∑ si.

Because sij*sij = sij for all j where 0 ≤ j≤ n. The reason is that sij is binary number.

Definition 3.5 (complementary signatures) The complementary signatures mean that the values of each bit

of two signatures are different each other.

For example, we call the following signatures si and sj the complementary signatures.

si = (1,0,0,1,1,1,1,0), sj = (0,1,1,0,0,0,0,1)

Lemma 3.2 The inner product of two complementary signatures is 0 as follows:

si•sj = 0

Proof. Given si = (si1, si2, …, sin) and sj = (sj1, sj2, …, sjn), then si•sj = si1* sj1 + si2* sj2 + . . . + sin* sjn = 0 +

0 + . . . + 0 = 0, because sik*sjk = 0 for all k where 0≤ k≤ n. The reason is that either sik or sjk is 0,

because each bit of si and sj is complementary.

Theorem 3.1 Given two signatures, si and sj,

0 ≤ si•sj ≤ min{∑ si ,∑ sj}

Proof. We prove the theorem by showing that the following three mutually exclusive cases are satisfying

the above expression.

case 1) si = sj

then by Lemma 3.1 si•sj =∑
=

in

k
iks

1

. Therefore it satisfies the theorem.

case 2) si, sj are complementary.

then by Lemma 3.2 si•sj = 0. Therefore it satisfies the theorem.

case 3) si, sj are different.

i) 0 ≤ si•sj : It is trivial because si•sj is sum of products that is equal to or greater than 0.

Int. J. of Information Technology Vol 8, No. 1

11

ii) si•sj ≤ min{∑ si ,∑ sj}: let si = (si1, si2, …, sin), sj = (sj1, sj2, …, sjn) then si•sj = si1* sj1 +

si2* sj2 + . . . + sin* sjn. If the number of elements set to 1 of si is less than that of sj then

si•sj does not exceed the number of elements set to 1 in si. On the contrary, if the

number of elements set to 1 of sj is less than that of si, then si•sj does not exceed the

number of elements set to 1 in sj. Thus it satisfies the theorem also.

Theorem 3.2 If 1’s positions within a signature si are more different from those of signature sj than those of

signature sk, then si•sj < si•sk.

Proof. The inner product of two signatures increases only when two signatures have element with 1 in the

same position. Since si and sj have less same 1’s positions than si and sk, then si•sj < si•sk.

For example, let’s consider the following three signatures. As shown in this example, we easily find that

1’s positions of si are more different from those of signature si than signature sk. We can compute that si•sj is

0 and si•sk is 2. As a result, we find si•sj < si•sk.

si = (1,1,1,1,0,0,0,0), sj = (0,0,0,0,1,1,1,1), sk = (0,0,1,1,1,1,0,0)

2. Basic Concepts

The following observations are the bases on which our proposed signature file declustering method is

developed. In parallel environment, the response time of a signature query can be minimized when the

execution loads are uniformly distributed to all processing nodes. Here, the execution load is closely

related with the number of bits that are set to '1' in signatures because we do not need to compare the bits

set to '0' when processing a signature query. Therefore, signature file should be declustered based on the

bits set to '1'. With these considerations , we maintain p count vectors, where p is the number of all

processing nodes. The count vector of i-th node, cvi, is the vertical sum of signatures previously allocated

to the i-th node as defined in Definition 3.2. The cvi roughly denotes a distribution of the potential

execution load for node i. The basic idea of our method is to minimize the variance of elements in count

vectors of each processing node. By doing this, qualified signatures for any query can be evenly

declustered to all the processing nodes. We propose a new heuristic method to minimize the variance of

count vectors, called the Inner-product. The Inner-product method uses the unit signature that is a

normalized count vector.

Jae� Chung� Jae��Byoung� A Dynamic Signature File Declustering Method based on the Signature Difference

12

3. The Inner-product Method

In this section, we describe our proposed signature file declustering method, called Inner-product

method. The Inner-product method is a kind of greedy method, which finds a feasible solution of minimum

inner product in each allocation step. It declusters a signature file by using signature inner-product between

unit signatures and the new signature to be allocated. The signature inner-product of two signatures is a

scalar value as defined in Definition 3.4, where each signature is considered as a bit string. To minimize

the variance of the count vector, we cluster different signatures in 1’s position into the same processing

node. Theorem 3.2 allows us to compare the degree of difference between signatures by using signature

inner products. Thus, in this method, we compare the degree of differences between a new signature and

representative signature of each node, that is, the unit signature of each node. The unit signature represents

the status of signature allocation in each processing node as defined in Definition 3.3. The Inner-product

method allocates a new signature to the processing node with minimum inner product among the inner

products of the new signature and the unit signatures of each node.

The Inner-product method uses three kinds of data for each processing node. These are count-vector,

signature-count, and unit-signature. The signature-count is the number of signatures allocated to each node.

The detailed procedure of our proposed Inner-product method consists of four phases.

� Initialization Phase

The initial states are as follows given that the number of processing nodes is p. Here, sci, cvi, and uvi

denote the signature-count, count-vector, unit-signature of node i, respectively.

sci = 0, (1≤ i≤ p)

cvi = 0, (1≤ i≤ p)

uvi = 0, (1≤ i≤ p)

� Pre-calculation Phase

In this phase, inner-products of all processing nodes are computed before allocating the signature sj as

follows.

uvi++ = uvi • sj, where 1≤ i ≤ p and sj is a signature to be allocated

� Node Selection Phase

After all the inner-products of p nodes are computed, we select one processing node with the

Int. J. of Information Technology Vol 8, No. 1

13

minimum uvi++. That is, the node pk where a new signature is allocated is defined by pk =

min{uvi++}, (1≤ i≤ p) . If more than two nodes have the same uvi++, then we select one with the

lower signature-count. In addition, if the signature-counts of more than two nodes are same, then we

randomly select one processing node but it rarely happens.

� Node-allocation Phase

Let pk be node k selected during the node selection phase. Then, we allocate the signature sj into the

node pk. After allocating sj, the signature-count of pk is increased by 1 and the count-vector of pk is

changed and unit signature uvk is recalculated as follows.

sck = sck + 1

cvk = cvk + sj

if cvki > mean(cvk) uvki = 1, otherwise uvki = 0.

In Figure 6, we can see that new signature is allocated to 1-th node by selecting minimum inner-product

among the n nodes.

Fig. 6. The processing map of the Inner-product method

Jae� Chung� Jae��Byoung� A Dynamic Signature File Declustering Method based on the Signature Difference

14

The detailed algorithm of the Inner-product method is as follows:

Algorithm: Inner-product

Input:

- s_j[n] : a new signature to allocate, one dimensional bit string, where n is the size of signature

Output:

- p : processing node number where a new signature is to be allocated

Variable:

- PN : the total number of processing nodes.

- cv[PN][n] : count vector, two dimensional array of integer.

- uv[PN][n] : unit signature, two dimensional array of binary positions.

- uv_plus[PN] : temporal unit signature, two dimensional array of binary positions.

- sc[PN] : signature count, one dimensional array of integer.

Process:

/* initialize */

/* static means the same thing in the C language syntax */

static sc[i] = 0, (0 ≤ i < PN)

static cv[i][j] = 0, (0 ≤ i < PN , 0 ≤ j < n)

static uv[i][j] = 0, (0 ≤ i < PN , 0 ≤ j < n)

for(i = 0; i < PN; i++) {

/* construct uv++ */

uv_plus[i] = uv[i] • s_j;

}

/* MIN function returns index of unit signature plus with minimum value. If two or more unit

signature pluses are the same, then it returns the index node with minimum signature count. If the

signature count are also same, then it returns a randomly selected index */

p = MIN(uv_plus[i]);

for(i = 0; i < n; i++) { /* allocate the signature s_j to p-th processing node. */

cv[p][i] = cv[p][i] + s_j[i];

}

sc[p] = sc[p] + 1; /* increase the signature count of p-th processing node */

Int. J. of Information Technology Vol 8, No. 1

15

/* reconstruct unit signature of p-th processing node; the mean function returns the mean of

count vector*/

for(i = 0; i < n; i++) {

if (cv[p][i] > mean(cvp))

uv[p][i] = 1;

else

uv[p][i] = 0;

}

return(p); /* return output */

Example) Let cvi and cvj be the count vectors of node i and node j, respectively such that cvi = <4, 5, 4, 7,

4, 6, 4, 6, 3, 5, 5, 7> and cvj = <5, 4, 7, 4, 6, 4, 6, 4, 5, 3, 7, 5>, where n = 12. Then, unit signature

uvi and uvj are <0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1> and <0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0>, respectively.

Suppose we have a new signature, sk to be allocated such as sk = <1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0>.

Then sk•uvi is 0 and sk•uvj is 4. Thus, the Inner-product method allocates sk to node i because

node i has lower inner product.

IV. PERFORMANCE EVALUATION

1. Experiments

This section evaluates the performance of the Inner-product method with respect to retrieval time and

insertion time. The experiments were performed on a Sparc-20 workstation with 128Mbytes of main

memory. In the experiments, 10,000 and 100,000 documents are used. Each document consists of 20 fields

such as author, title and eighteen keywords. The databases were constructed based on the result from

analysis of 10,000 technical reports and journals in the Chungbuk National University. Figure 7 illustrates

the type of sample document in the database. The input and design parameters are shown in Table 2. In

addition, the experiments were based on the same synthetic data that was used in [20]. Three types of

synthetic data are generated such as uniform, normal, and exponential distribution data sets. Three basic

distributions were used over the range of [-231, 231-1]: 1) a uniform distribution, 2) a normal distribution

Jae� Chung� Jae��Byoung� A Dynamic Signature File Declustering Method based on the Signature Difference

16

Attribute # for Document

Accession number 1

Author 1~6

Title 1~10

Subject 1~10

Category 1~7

Date 1

Publisher 1

Vol-Num 1

Page 1

Total Attribute Values per Document 9~38

Average Attribute Values per Record 20

N(0,σ), where σ = 312
3
1 and 3) an exponential distribution θ

θ

)2(31

1 +x

e , where θ = .322
4
1 The data

skewness increases as it goes from uniform to exponential.

Fig. 7. The type of sample document in database

Table 2. Parameters

Parameters Description Value

N the number of documents 10K, 100K

P the number of processing nodes 8, 16

D the number of words per document 20

n the signature size in bits 512

m the number of bits set to '1' per word 16

In these first experiments, the response times of signature retrieval of the four methods (Inner-product,

Min-entropy, LCDM, and random method) are compared. The response time of signature retrieval is the

signature search time plus the false drop time in the processing node. Since the response time of intra-

query parallelism depends on the processing node with the maximum number of retrieved signatures, we

Int. J. of Information Technology Vol 8, No. 1

17

use the maximum number of the retrieved signatures as the measure of the response time of each query.

One retrieved signature causes at least one disk access because its false drop time is based on the real

document match processing. The maximum number of the retrieved signatures for i-query is max{Ri1,

Ri2, ... , Rip}, where Rij(1 ≤ j ≤ p) is the number of retrieved signatures of the j-th processing node for i-

query.

Our experiments are classified into two environments such as real documents and synthetic documents.

Because of the limited experimental environment, we use real 10,000 documents from the library of

Chungbuk National University. Therefore we first decluster a data file with real 10,000 documents into 8

processing nodes. And then we decluster a data file with synthetic 10,000 documents into 8 processing

nodes and a data file with synthetic 100,000 documents into 16 processing nodes. Many information

retrieval systems in practice may have millions of documents, which is much larger than our test data sets.

Though we are using relatively small sets of test data due to limited environment for experiments, the

behavioral characteristics for the proposed method may not be different for various sizes of test data. 100

sample queries are randomly selected for test. We use single-term queries to make the response sizes large

enough to show the effect of parallel processing more clearly. In all figures, the declustering effects of the

four methods are compared. In addition, one more graph is presented for easy understanding of our

method’s characteristics. The additional graph shows the optimal case, i.e., the theoretical minimum of the

maximum number of the retrieved signatures for each query, which is the lower bound of declustering. For

example, given a query, q, the theoretical minimum of the maximum number of the retrieved signature is

the n/m, where n is the total number of retrieved signatures and m is the number of processing nodes.

0

200

400

600

800

1000

1200

1400

1600

1800

943 1815 2687 3559 4431 5303 6175 7047 7919 8791

of matched signatures

m
ax

 #
 o

f r
et

rie
ve

d
si

gn
at

ur
es

Inner
Entropy
LCDM
Random
Optimal

Jae� Chung� Jae��Byoung� A Dynamic Signature File Declustering Method based on the Signature Difference

18

Fig. 8. Real data set with 10,000 documents in 8 PNs

0

20

40

60

80

100

120

454 473 477 478 481 485 486 515 531 537

of matched signatures

m
ax

 #
 o

f r
et

rie
ve

d
si

gn
at

ur
es

Inner

Entropy

LCDM

Random

Optimal

Fig. 9. Uniform distribution data set with 10,000 documents in 8 PNs

0

10

20

30

40

50

60

70

470 481 485 491 497 507 509 516 531 544

of matched signatures

m
ax

 #
 o

f r
et

rie
ve

d
si

gn
at

ur
es

Inner

Entropy

LCDM

Random

Optimal

Fig. 10. Uniform distribution data set with 100,000 documents in 16 PNs

Figure 8 shows the retrieval performance of our proposed method for real data set. The retrieval

performance of our proposed method is similar to that of the MIN-entropy for static environments and

outperforms those of the LCDM and the random method. Figure 9 and Figure 10 shows the retrieval

performance of our proposed signature file declustering method for uniform distribution data set. The

Int. J. of Information Technology Vol 8, No. 1

19

Inner-product, Min-entropy and LCDM show better performance than the random method. The Inner-

product is better than the LCDM and almost equal to the MIN-entropy in most cases. Figure 10 shows

similar results to Figure 9. Thus, we can say that our proposed method is scaled up without losing

generality.

0

20

40

60

80

100

120

140

160

171 219 534 564 593 667 680 692 715 745

of matched signatures

m
ax

 #
 o

f r
et

rie
ve

d
si

gn
at

ur
es

Inner

Entropy

LCDM

Random

Optimal

Fig. 11. Normal distribution data set with 10,000 documents in 8 PNs

0

20

40

60

80

100

120

264 327 433 525 549 734 768 770 785 804

of matched signatures

m
ax

 #
 o

f r
et

rie
ve

d
si

gn
at

ur
es

Inner

Entropy

LCDM

Random

Optimal

Fig. 12. Normal distribution data set with 100,000 documents in 16 PNs

Figure 11 and Figure 12 shows the retrieval performance of our proposed signature file declustering

Jae� Chung� Jae��Byoung� A Dynamic Signature File Declustering Method based on the Signature Difference

20

method on normal distribution set. We can see through the two figures that the same performance behaviors

occur on normal distribution data set.

0

200

400

600

800

1000

1200

1400

1600

1800

2136 3531 4718 5418 5834 6230 6969 7675 8025 8629

of matched signatures

m
ax

 #
 o

f r
et

rie
ve

d
si

gn
at

ur
es

Inner

Entropy

LCDM

Random

Optimal

Fig. 13. Exponential distribution data set with 10,000 documents in 8 PNs

0

500

1000

1500

2000

2500

1400 4859 5572 7088 8894 10576 13164 14470 17294 17753

of matched signatures

m
ax

 #
 o

f r
et

rie
ve

d
si

gn
at

ur
es

Inner

Entropy

LCDM

Random

Optimal

Fig. 14. Exponential distribution data set with 100,000 documents in 16 PNs

Finally, the performances on data files with exponential distribution data set are shown in Figure 13 and

Figure 14. In this two graphs also, we can see the same behavior. However, for large data set, the

performance of the random and the LCDM methods are much less than Inner -product. The reason is that as

the matched signatures grow rapidly, the Inner-product gets stable by using accumulated information

Int. J. of Information Technology Vol 8, No. 1

21

dynamically. Although the LCDM is better than the random method in the most of the queries, it is worse

than or similar to random method in some queries. This is because the large amount of matched signatures

has the same suffix and those signatures were allocated to the same processing node. But, the Inner-product

and the MIN-entropy method do not have such problem because it dynamically declusters signature file

based on statistic information of the previously allocated signatures. As a result, we conclude that the

Inner-product and MIN-entropy give better retrieve performance than the LCDM and the random method

over the various probability distributions of workloads. In addition, the Inner-product and MIN-entropy

method are highly scalable and has deterministic behavior, which is not the LCDM case.

In the second experiment, we compared the insertion time of signature declustering methods by using

Big”Oh”(O()), a kind of asymptotic notation. The insertion time consists of two terms as follows:

Itime = Dtime + Otime

where, Itime : Insertion Time

 Dtime : Declustering Time

 Otime : Local Organization Time

However, we only concern about Dtime because Otime is the same for all signature file declustering

methods. Also, we compare only one signature insertion time. The computation time of the four

declustering methods is described by using O() notations with variable n and p as follows :

� Random : independent on p and n, thus O(1)

� LCDM = matrix multiple computation time = O(p2)

� MIN-entropy = cv++ construction time + signature entropy construction time +

minimum signautre entropy finding time + cv increment time

= O(pn) + O(pn) + O(p) + O(n) = O(pn)

� Inner-product = uv++ construction time + minimum uv++ calculation time + cv increment time

 = O(pn) + O(p) + O(n) = O(pn)

where, n = the size of signature, p = the number of processing nodes

Therefore, when p << n, the LCDM outperforms the Inner-product and the MIN-entropy. However,

when p >> n, the Inner-product outperforms the LCDM and the MIN-entropy. This is because the LCDM is

not gracefully scalable to the number of processing nodes and the MIN-entropy takes construction time of

signature entropy additionally in all processing nodes.

Jae� Chung� Jae��Byoung� A Dynamic Signature File Declustering Method based on the Signature Difference

22

As a result, the MIN-entropy is suitable to static environment where retrieval is a main operation and

insertion seldom occurs. Meanwhile, the Inner-product method is suitable to dynamic environment of large

scale parallel database systems where insertions happen frequently.

2. Discussions

Until now, we have investigated and analyzed the performance and characteristics of signature file

declustering methods. Based on these researches, we address comparisons to choose the most appropriate

signature for a variety of environments. In Table 3, signature file declustering methods in four points such

as scalability, simplicity, insertion time and retrieval time are compared.

Table 3. Comparisons of signature file declustering methods

Inner-product MIN-entropy LCDM Random

Scalability Good Good Bad Excellent

Simplicity Good Bad Bad Excellent

Insertion Good Bad Good Excellent

Retrieval Excellent Excellent Good Bad

We recommend the MIN-entropy for the environment where retrieval is main operation and insertion

seldom occurs and scalability is important such as mesh, ring parallel systems. The Inner-product are

highly recommended for the environment where insertion frequently happens and scalability is important

like the MIN-entropy. The LCDM can be used for hypercube parallel systems because hypercube systems

have a power of two numbers of processing nodes. The random method can be used when the retrieval time

is not important.

V. CONCLUSION

We have described various problems of the LCDM method that is used as a declustering method for the

Hamming Filter. The LCDM cannot avoid data skew if many signatures have the same suffix. In addition,

it has the following problems that make the LCDM difficult for parallelism. First, it is not gracefully

scalable to the number of processing nodes. The method is properly defined only when the number of

Int. J. of Information Technology Vol 8, No. 1

23

processing nodes is a power of two. This is a serious restriction because most current parallel systems in

practice may not have a power of two number of processing nodes. Second, it is not deterministic

algorithm. For the suffix with the m-size, m! check matrixes can be issued for the LCDM to decluster a

signature file. While the choice of the check matrix can affect the declustering performance of the LCDM,

no appropriate guideline has been provided to choose an optimal check matrix. Finally, the LCDM may

lead to information loss because it only uses partial information, i.e., the suffix of the signature.

In this paper we have proposed a new signature file declustering method, called Inner-product that

overcomes the problems in the LCDM. It declusters signature file dynamically based on the current status

of signature allocation. Thus, the Inner-product can cope with a variety of workloads and configurations.

We have showed through the performance evaluation based on the statistical modeling that the Inner-

product and MIN-entropy give better retrieval performance than the LCDM for data sets with various

distributions such as uniform distribution, normal distribution, and exponential distribution. We also have

addressed the performance of signature insertion time by using asymptotic notation. When p >> n, the

Inner-product outperforms the LCDM and the MIN-entropy. It is show that the Inner-product method

works well in a dynamic environment where insertions occur frequently.

As a result, the proposed Inner-product method is highly recommended for the environment where

insertion frequently happens and scalability is important like the MIN-entropy. And the MIN-entropy is

recommended for the environment where retrieval is main operation and insertion seldom occurs and

scalability is important such as mesh, ring parallel systems.

In the near future, we are investigating a formal framework that may give better understanding of the

behavioral characteristics of the Inner-product method over various probability distributions of workloads.

Acknowledgments
This work was supported by grant No.(R01-1999-00244) from the Korea Science & Engineering

Foundation.

REFERENCES

[1] C. Faloutsos. Signature-based text retrieval methods. A Survey. IEEE Computer Society

TechnicalCommittee on Data Engineering, 13(1), pages 25-32, 1990.

[2] C. Faloutsos and S. Christodoulakis. Design of a signature file method that accounts for non-uniform

Jae� Chung� Jae��Byoung� A Dynamic Signature File Declustering Method based on the Signature Difference

24

occurrence and query frequencies. In Proc. of the 11th VLDB Conf., pages 165-170, Stockholm,

Sweden, August 1985.

[3] C. S. Roberts. Partial match retrieval via the method of the superimposed codes. In Proc. of IEEE 67,

pages 1624-1642, Dec. 1979.

[4] Z. Lin and C. Faloutsos. Frame-sliced signature files. IEEE Transaction on Knowledege and Data

Engineering, 4(3), pages 281-289, June 1992.

[5] U. Deppisch. S-tree: A dynamic balanced signature index for office retrieval. In ACM SIGIR, pages

77-87, 1986.

[6] F. Rabitti and P. Zezula. A dynamic signature technique for multimedia database. In Proc. of the 13th

ACM SIGIR, pages 193-210, Brussels, Belgium, September 1990.

[7] P. Zezula, F. Rabitti, P. Tiberio. Dynamic Partitioning of Signature Files. ACM transaction on

information system, 9(4), pages 336-369, 1991.

[8] P. Ciaccia, P. Zezula, and P. Tiberio. Hamming filter: A dynamic signature file organization for

parallel stores. In Proc. of the 19th VLDB Conf., pages 314-327, Dublin, Ireland, 1993.

[9] B. M. Im, M. H. Kim and J. S. Yoo. Dynamic Construction based on frame sliced approach, Data &

Knowledge Engineering 30, pages 101-120, 1999.

[10] P. Tiberio, F. Grandi, and P. Zezula. Frame-sliced partitioned parallel signature files. In Proc. of 15th

Ann. Int'l SIGIR, pages 286-297, Denmark, June 1992.

[11] D.L. Lee and C. Leng. A partitioned signature file structure for multiattribute and text retrieval. In

Proc. of the 6th Int'l Conf. On Data Engineering, pages 389-397, Los Angeles, California, Feb. 1990.

[12] P. Ciaccia, P. Zezula, and P. Tiberio. Declustering of key-based partitioned signature files. ACM TODS,

21(3), 1996.

[13] C. Faloutsos and D.Metaxas. Declustering using error correcting codes. In Proc. of 18th ACM

SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages 253-258,

Philadelphia, Pennsylvania, March 1989.

[14] F.M. Reza. An Introduction to Information Theory McGraw- Hill, 1961.

[15] M. Mehta and D. J. DeWitt. Managing intra-operator parallelism in parallel database systems. In Proc.

of the 21th VLDB Conf., pages 382-394, Zurich, Swizerland, 1995.

[16] M. H. Kim and S. Pramanik. Optimizing database accesses for parallel processing of multikey range

searches. The Computer Juornal, 35(1):45-51, 1992.

[17] Y. Y. Sung. Performance analysis of disk modulo allocation method for cartesian product files. IEEE

Transactions on Software Engineering SE-13(9), pages 1018-1026, 1987.

[18] K.A. Abdel-Ghaffar and A. El. Abbadi. Optimal disk allocation for partial match queries. ACM TODS,

Int. J. of Information Technology Vol 8, No. 1

25

18(1):132-156, March 1993.

[19] K.A. Hua and C.Lee. Handling data skew in multiprocessor database computers using partition tuning.

In Proc. of 17th VLDB, pages 523-535, Barcelona, Spain, September 1991.

[20] B. M. Im, M. H. Kim and J. S. Yoo. Declustering signature files based on a dynamic measure.

Information Processing Letters, 74, pages 235-241, 2000.

