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Abstract

For processing a signature file in parallel, an effective signature file declustering method is needed. The 

Linear Code Decomposition Method(LCDM) used for the Hamming Filter may give a good performance in 

some cases, but due to its static property, it fails to evenly decluster a signature file when signatures are 

skewed. In addition, it has other problems such as limited scalability and non-determinism. In this paper 

we propose a new signature file declustering method, called the Inner-product method, which overcomes 

those problems in the LCDM. The Inner-product method declusters a signature file dynamically based on 

the signature difference which is computed by using signature inner product. We show through the various 

experiments that the Inner-product method outperforms the LCDM under various data workloads.
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I. INTRODUCTION

Information retrieval and management systems that have been a major field of 

computing for a long time typically deal with not only formatted data but also 

unformatted data. A storage organization widely advocated for unformatted data as well 

as formatted one is to use the signature file method[1]. In general, each document 

signature that is an element of the signature file is constructed from word signatures by 

using the superimposed coding method. When processing a query, the signature file is 

scanned in advance and many non-qualifying documents are discarded. Figure 1 

illustrates the construction of a document signature using superimposed coding method, 

where a document consists of three words, "Database", "Parallel" and "Information". 

Here, a signature length is twelve and the number of bits that are set to ‘1’ in a word 

signature is two.

Document D = (Database, Parallel, Information)

Keywords        Word Signature

Database 0110 0000 0000

Parallel 0000 1000 0001

Information 0001 0001 0000

Document Signature 0111 1001 0001

Fig. 1. Document signature construction using superimposed coding

Since the size of a signature file is much smaller than that of a data file, it has been shown that the 

signature file can effectively work as a filter that immediately discards most non-qualifying documents for 

a given query[2]. Although sequential organization of a signature file works well for a data file with a small 

size, its performance becomes a problem when the size of a data file is large. Other organizations of a 

signature file can improve their performance based on a tree or hashing techniques. The bit-sliced signature 

file[3], and the frame-sliced signature file[4] have been proposed for static environment, while the S-

tree[5], the Quick filter[6, 7, 8] and the HS file[9] have been proposed for dynamic environment.

There have also been many attempts to make the schemes run for parallel environment. The Fragmented 

Signature File(FSF)[10], Key-Based Partition Method[11] and the Hamming Filter[8, 12] partition a 
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signature file to process a query in parallel. The Hamming Filter shows good declustering performance for 

some partial match queries. It declusters a signature file by using the Linear Code Decomposition Method 

(LCDM) that is used for detecting and correcting errors while transmitting data[13, 14]. The LCDM yields 

good declustering performance in some cases, but due to its static property, it fails to evenly decluster a 

signature file when signatures are skewed. In addition, it has other problems such as limited scalability and 

non-determinism. The MIN-entropy is better than the LCDM because the MIN-entropy method statically 

declusters signature file based on statistic information of previously allocated signatures. However, MIN-

entropy is not suitable to dynamic environment of large scale parallel database systems where insertions 

happen frequently.

In this paper we propose a new signature file declustering method, called Inner-product that overcomes 

the problems in the LCDM and the MIN-entropy. The Inner-product method declusters a signature file by 

using signature inner-product. The signature inner-product of two signatures is a scalar value, where each 

signature is considered as a bit string. In this method, we compare the degree of differences between a new 

signature and representative signature of each node. The Inner-product method allocates a new signature to 

processing node with minimum among the inner products of the new signature and the representative 

signature of each node.

The LCDM is based on a static information that does not reflect the current status of signature allocation. 

On the other hand the Inner-product method declusters signature files dynamically based on the current 

status of signature allocation. Thus, Inner-product method can cope with a variety of workloads and 

configurations. We show through performance evaluation based on the statistical modeling that the Inner-

product method gives better retrieval performance than the LCDM for data sets with various distributions 

such as uniform distribution, normal distribution and exponential distribution. We also address the 

signature insertion time by using asymptotic notation. It shows that Inner-product method works well in a 

dynamic environment where insertions occur frequently.

The rest of the paper is organized as follows. In Section II, we review various parallel signature file 

organizations. Section III presents our proposed Inner-product method and Section IV shows experimental 

results. Finally, Section V gives concluding remarks.

II. SIGNATURE FILES FOR PARALLEL PROCESSING

Parallel systems are increasingly being used for high performance applications that require efficient 

access to large amounts of data, e.g., large-scale transaction processing, decision-support systems and 
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multimedia systems. Three system architectures for multiprocessor database computers have been 

proposed: Shared Memory(SE), Shared Disk(SD), and Shared Nothing(SN)[15]. There have been 

considerable debates on which architecture is the most suitable for a database management system 

implementation. While the coherency control problem limits the number of processors in both SE and SD 

systems, the modular design of SN architecture enables incremental growth and scalability to hundreds of 

nodes. Thus most large-scale parallel processing systems for information processing are based on the SN 

architecture. However, SN systems are very sensitive to the distribution of data on disks (i.e., data 

declustering) that may lead to the data skew problem. To avoid the data skew problem, a good declustering 

method is necessary.

There have been many attempts to make signature files run for parallel environments such as the 

Fragmented Signature File(FSF), the Key-Based Partition Method(KBPM) and the Hamming Filter[10, 11, 

12]. They speed up the search time on signature files by distributing signatures to disks that participate in 

parallel processing.

Table 1. Classification of Parallel Signature Files

Categories Partitioning Methods Declustering Methods

Parallel

Signature Files

Key-Based Partition Method

Fragmented Signature File

Hamming Filter

We classify these parallel signature file organizations into two categories according to the way they 

distribute a signature file to disks: partitioning methods, and declustering methods. Table 1 illustrates these 

two categories[20]. Now we survey and analyze parallel signature files focussing on the data distribution 

scheme. 

1. Partitioning Methods

This section explains methods that partition a signature file into sets of signature subfiles or sets of 

signature frames. The signature subfile is a partition of a signature file when the latter is partitioned 

horizontally. On the other hand, the signature frame is a vertical partition of signature file. In general, 

signatures in each signature subfile have a common key. Given M processors and a signature file is 

partitioned to N partitions, if M is equal to N, then each partition is allocated to each processing node 

directly. However, if M is greater than N, then additional partition allocation method is needed.

In [10] three key-based partition methods are presented. These Key-based partition methods partition a 

signature file horizontally. They partition signatures with same signature key into the same partition and 



Jae� Chung� Jae��Byoung� A Dynamic Signature File Declustering Method based on the Signature Difference

6

allocate them to the same processing node. But they are different in the way the key is selected. (1) Fixed 

prefix method selects keys with a fixed length and fixed starting position. (2) Extended prefix method

selects the keys with variable length but fixed starting position. (3) Floating key method selects the keys 

with fixed length but variable starting position. Although the above three key-based partition methods can 

be used for intra-query parallelism, they are much more suitable to inter-query parallelism.

The FSF uses mixed partition scheme. By vertical partition, it decomposes a signature file into a disjoint 

set of signature file frames. On the other hand, through horizontal fragmentation, a signature file is 

decomposed into a disjoint set of signature subfiles, where all signatures in each subfile have a common 

signature key. This kind of partition can be seen as a product derived from global signature file in two 

consequent steps, involving vertical and horizontal partition. 

Figure 2 shows the mixed partition scheme that produces disjoint data partitions vertically and 

horizontally. These disjoint partitions are distributed to the given processing nodes. Although this method 

allows intra-query parallelism, it is more suitable to inter-query parallelism because, for a signature query, 

qualified partitions are only the subset of all partitions.

Fig. 2. The mixed partition scheme

2. Declustering Methods

The partition methods apply a simple horizontal and/or vertical signature file partitioning. Therefore, 

some partitions that are not activated for a specific query is relived by introducing inter-query parallelism, 

vertical partition

horizontal

partition

signature

frame
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that is, without using the active partitions for executing other queries, if possible. The declustering methods 

are aiming at maximizing intra-query parallelism, where elimination of the execution skew is the main 

objective. The simplest declustering method is randomly distributing signatures to processing nodes. The 

Hamming Filter decomposes a signature file horizontally through the Linear Code Decomposition 

Method(LCDM) that declusters signature file by using linear code. Also, by using the dynamic partitioning 

technique in fixed-size partitions, known as Quick Filter, clusters of signatures are allocated to local 

processing node. Therefore, the Hamming Filter can be considered as an extension of the Quick Filter by 

the application of the principle of linear code decomposition. The LCDM uses this syndrome property of 

the linear code[16]. Figure 3 shows that the LCDM decomposes linear space {0,1}n into 2{n-k} C(n,k) that 

have the same syndrome respectively. The codewords with the same syndrome are uniformly distributed by 

the execution load for non-skewed data, because the Hamming distance is guaranteed between its 

codewords. The Hamming Filter declusters a signature file by applying LCDM to the suffix of each 

signature.

Fig. 3. Linear Code Decomposition Method

For intra-query parallelism, it is required that good declustering algorithm should avoid data skew and 

execution skew. The LCDM has no execution skew for non-skewed data. However, since the LCDM 

allocates signatures with the same suffix into the same processing node, it cannot avoid data skew if many 

signatures have the same suffix. In addition, it has the following problems that make the LCDM difficult 

for parallelism. First, it is not gracefully scalable to the number of processing nodes. The method is 

properly defined only when the number of processing nodes is a power of two. This is a serious restriction 

because most current parallel systems in practice may not have a power of two numbers of processing 

nodes. Second, it is not deterministic algorithm. For the suffix with the m-size, m! matrix positions can be 

checked for the LCDM to decluster a signature file. While the choice of the check matrix can affect the 

declustering performance of the LCDM, no appropriate guideline has been provided to choose an optimal 

linear space 

{0, 1}n

(2n words)

0-th C(n,k)

(2k words)

1-th C(n,k)

(2k words)

(2n-k-1)-th C(n,k)

(2k words)

. . .

H×word
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check matrix. Finally, the LCDM may lead to information loss because it only uses partial information, i.e., 

the suffix of the signature.

The MIN-entropy that uses signature-entropy as a signature declustering measure was proposed in [20]. 

This method assumes Shared Nothing (SN) parallel architecture as a base platform for large parallel 

signature file organizations. To minimize a signature query processing time in the SN parallel environment, 

data need to be declustered evenly and independently to all processing nodes. Note that intra-query 

parallelism is inevitable to minimize the signature query response time in the SN parallel environment. 

III. A NEW DECLUSTERING METHOD FOR PARALLEL 
SIGNATURE FILE

In this section, we propose a new signature file declustering method, called Inner-product. We assume a 

SN parallel architecture as a base platform for large parallel signature file organizations. To minimize a 

signature query processing time in the SN parallel environment, data need to be declustered evenly and 

independently to all processing nodes. Note that intra-query parallelism is inevitable to minimize the 

signature query response time in the SN parallel environment. In a SN Parallel system with p parallel 

processing units, the response time to a signature query is defined as max{C1,C2, ... ,Cp}, where Ci(1≤ i≤ p) 

is the response time (i.e., the cost measured as the number of physical page accesses) of the i-th processing 

unit. More specifically Ci is the signature search time plus the false drop time at the i-th processing node as 

shown in the Figure 4. Thus, the objective is to find a declustering scheme such that for any query, 

max{C1,C2, ... ,Cp} is the minimum among all possible signature file declusterings. Given that the above 

declustering problem is NP-complete[16, 17], our method heuristically declusters signature files based on 

the statistical information.

query signature 

retrieved documents

response tim
e

. . .Node #0 Node #1 Node 

#n
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Fig. 4. Response time of a signature query

As basic criteria, to minimize a signature query response time, the following two skews have to be 

avoided in a (1) data skew i.e., much more data is placed in one fragment than in the others, and (2) 

execution skew i.e., execution time in one fragment is much higher than in the others. Before describing 

our method, it is necessary to introduce some notations and definitions.

1. Definition and Terminology

Notation

� n,    the size of signature

� mi,    the number of signatures in the node i

� ∑
=

=
im

j
ijkik sc

1

,  the k-th vertical bit sum of all signatures(1≤ j≤ mi) in the node i

� sijk,    the k-th bit of the j-th signature in the node i

Definition 3.1 Two signatures are completely different if all elements of two signatures are different.

Definition 3.2 (count vector) The count vector of node i that is denoted by cvi = <ci1, ci2, ... , cij, ... , cin> is 

the vertical bit sum vector of all signatures previously allocated to the node i. The count 

vector construction procedure is presented in Figure 5

1 0 0 1 0 1 0 1 1 1 0 0 0 0 0 1 =  si1

1 0 1 0 0 0 1 1 1 1 1 1 0 0 0 0 =  si2

+ 0 0 1 0 1 1 0 0 1 0 1 0 0 1 0 1 =  si3

< 2,0,2,1,1,2,1,2,3,2,2,1,0,1,0,2 > =  cvi

    Fig. 5. The Count Vector of i-th node

Definition 3.3 (unit signature) The unit signature of node i that is denoted by uvi = <ui1, ui2, ... , uij, ... , uin>         

represents the status of signature allocation of node i, which is normalized count vector by 

‘0’ or ‘1’. For example, ui1 is ‘1’ when ci1 is greater than the mean of cvi. Otherwise ui1 is ‘0’. 
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Definition 3.4 (inner product of two signatures) The inner product of two signatures, si, sj that is denoted 

by si•sj is the sum of products of pair elements in two signatures. For example, given si = (1 

0 0 1 0 1 0 1 1 1 0 0 0 0 0 1), sj = (1 0 1 0 0 0 1 1 1 1 1 1 0 0 0 0), si•sj = 1*1 + 0*0 + 0*1 + 

1*0 + 0*0 + 1*0 + 0*1 + 1*1 + 1*1 + 1*1 + 0*1 + 0*1 + 0*0 + 0*0 + 0*0 + 1*0 = 4.

Lemma 3.1 The inner product of two same signatures is the sum of element of the signature as follows:

si•si =∑
=

n

k
iks

1

Proof. If si = (si1, si2, …, sin), then si•si = si1* si1  + si2* si2  + . . . + sin* sin = si1 + si2 + . . . + sin = ∑ si.

Because sij*sij = sij for all j where 0 ≤ j≤ n. The reason is that sij is binary number.

Definition 3.5 (complementary signatures) The complementary signatures mean that the values of each bit 

of two signatures are different each other.

For example, we call the following signatures si and sj the complementary signatures.

si = (1,0,0,1,1,1,1,0), sj = (0,1,1,0,0,0,0,1)

Lemma 3.2 The inner product of two complementary signatures is 0 as follows:

si•sj = 0

Proof. Given si = (si1, si2, …, sin) and sj = (sj1, sj2, …, sjn), then si•sj = si1* sj1 + si2* sj2 + . . . + sin* sjn  = 0 + 

0 + . . . + 0 = 0, because sik*sjk = 0 for all k where 0≤ k≤ n. The reason is that either sik or sjk is 0, 

because each bit of si and sj is complementary.

Theorem 3.1 Given two signatures, si and sj, 

0 ≤ si•sj ≤ min{∑ si ,∑ sj}

Proof. We prove the theorem by showing that the following three mutually exclusive cases are satisfying 

the above expression. 

case 1) si = sj

then by Lemma 3.1 si•sj =∑
=

in

k
iks

1

. Therefore it satisfies the theorem.

case 2) si, sj are complementary.

then by Lemma 3.2  si•sj = 0. Therefore it satisfies the theorem.

case 3) si, sj are different.

i) 0 ≤ si•sj : It is trivial because si•sj is sum of products that is equal to or greater than 0.
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ii) si•sj ≤ min{∑ si ,∑ sj}: let si = (si1, si2, …, sin), sj = (sj1, sj2, …, sjn) then si•sj = si1* sj1  + 

si2* sj2  + . . . + sin* sjn. If the number of elements set to 1 of si is less than that of sj then 

si•sj does not exceed the number of elements set to 1 in si. On the contrary, if the 

number of elements set to 1 of sj is less than that of si, then si•sj does not exceed the 

number of elements set to 1 in sj. Thus it satisfies the theorem also.

Theorem 3.2 If 1’s positions within a signature si are more different from those of signature sj than those of 

signature sk, then si•sj < si•sk.

Proof. The inner product of two signatures increases only when two signatures have element with 1 in the 

same position. Since si and sj have less same 1’s positions than si and sk, then si•sj < si•sk.

For example, let’s consider the following three signatures. As shown in this example, we easily find that 

1’s positions of si are more different from those of signature si than signature sk. We can compute that si•sj is 

0 and si•sk is 2. As a result, we find si•sj < si•sk.

si = (1,1,1,1,0,0,0,0), sj = (0,0,0,0,1,1,1,1), sk = (0,0,1,1,1,1,0,0)

2. Basic Concepts

The following observations are the bases on which our proposed signature file declustering method is 

developed. In parallel environment, the response time of a signature query can be minimized when the 

execution loads are uniformly distributed to all processing nodes. Here, the execution load is closely 

related with the number of bits that are set to '1' in signatures because we do not need to compare the bits 

set to '0' when processing a signature query. Therefore, signature file should be declustered based on the 

bits set to '1'. With these considerations , we maintain p count vectors, where p is the number of all 

processing nodes. The count vector of i-th node, cvi, is the vertical sum of signatures previously allocated 

to the i-th node as defined in Definition 3.2. The cvi roughly denotes a distribution of the potential 

execution load for node i.  The basic idea of our method is to minimize the variance of elements in count 

vectors of each processing node. By doing this, qualified signatures for any query can be evenly 

declustered to all the processing nodes. We propose a new heuristic method to minimize the variance of 

count vectors, called the Inner-product. The Inner-product method uses the unit signature that is a 

normalized count vector.
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3. The Inner-product Method

In this section, we describe our proposed signature file declustering method, called Inner-product 

method. The Inner-product method is a kind of greedy method, which finds a feasible solution of minimum 

inner product in each allocation step. It declusters a signature file by using signature inner-product between 

unit signatures and the new signature to be allocated. The signature inner-product of two signatures is a 

scalar value as defined in Definition 3.4, where each signature is considered as a bit string. To minimize 

the variance of the count vector, we cluster different signatures in 1’s position into the same processing 

node. Theorem 3.2 allows us to compare the degree of difference between signatures by using signature 

inner products. Thus, in this method, we compare the degree of differences between a new signature and 

representative signature of each node, that is, the unit signature of each node. The unit signature represents 

the status of signature allocation in each processing node as defined in Definition 3.3. The Inner-product 

method allocates a new signature to the processing node with minimum inner product among the inner 

products of the new signature and the unit signatures of each node. 

The Inner-product method uses three kinds of data for each processing node. These are count-vector, 

signature-count, and unit-signature. The signature-count is the number of signatures allocated to each node. 

The detailed procedure of our proposed Inner-product method consists of four phases.

� Initialization Phase 

The initial states are as follows given that the number of processing nodes is p. Here, sci, cvi, and uvi

denote the signature-count, count-vector, unit-signature of node i, respectively.

sci = 0, (1≤ i≤ p)

cvi = 0, (1≤ i≤ p)

uvi = 0, (1≤ i≤ p)

� Pre-calculation Phase 

In this phase, inner-products of all processing nodes are computed before allocating the signature sj as 

follows.

uvi++  = uvi • sj,  where 1≤ i ≤ p and sj is a signature to be allocated

� Node Selection Phase

After all the inner-products of p nodes are computed, we select one processing node with the 
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minimum uvi++. That is, the node pk where a new signature is allocated is defined by pk = 

min{uvi++}, (1≤ i≤ p) . If more than two nodes have the same uvi++, then we select one with the 

lower signature-count. In addition, if the signature-counts of more than two nodes are same, then we 

randomly select one processing node but it rarely happens.

� Node-allocation Phase

Let pk be node k selected during the node selection phase. Then, we allocate the signature sj into the 

node pk. After allocating sj, the signature-count of pk is increased by 1 and the count-vector of pk is 

changed and unit signature uvk is recalculated as follows.

sck = sck + 1

cvk = cvk + sj

if cvki > mean(cvk)  uvki = 1,  otherwise uvki = 0.

In Figure 6, we can see that new signature is allocated to 1-th node by selecting minimum inner-product

among the n nodes.

Fig. 6. The processing map of the Inner-product method
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The detailed algorithm of the Inner-product method is as follows:

Algorithm: Inner-product

Input:

- s_j[n] : a new signature to allocate, one dimensional bit string, where n is the size of signature

Output:

- p : processing node number where a new signature is to be allocated

Variable:

- PN :     the total number of processing nodes.

- cv[PN][n] :  count vector, two dimensional array of integer.

- uv[PN][n] :  unit signature, two dimensional array of binary positions.

- uv_plus[PN] : temporal unit signature, two dimensional array of binary positions.

- sc[PN] :     signature count, one dimensional array of integer.

Process:

/* initialize */

/* static means the same thing in the C language syntax */

static sc[i]  = 0, ( 0 ≤ i < PN )

static cv[i][j] = 0, ( 0 ≤ i < PN ,  0 ≤ j < n)

static uv[i][j] = 0, (  0 ≤ i < PN ,  0 ≤ j < n)

for( i = 0; i < PN; i++ ) {

/* construct uv++ */

uv_plus[i] = uv[i] • s_j;

}

/* MIN function returns index of unit signature plus with minimum value. If two or more unit 

signature pluses are the same, then it returns the index node with minimum signature count. If the 

signature count are also same, then it returns a randomly selected index */

p = MIN(uv_plus[i]); 

for( i = 0; i < n; i++) {            /* allocate the signature s_j to p-th processing node. */

cv[p][i] = cv[p][i] + s_j[i];

}

sc[p] = sc[p] + 1;               /* increase the signature count of p-th processing node */
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/* reconstruct unit signature of p-th processing node; the mean function returns the mean of 

count vector*/

for( i = 0; i < n; i++ ) {

if ( cv[p][i] > mean(cvp) ) 

uv[p][i] = 1;

else

uv[p][i] = 0;

}

return(p); /* return output */

Example) Let cvi and cvj be the count vectors of node i and node j, respectively such that cvi = <4, 5, 4, 7, 

4, 6, 4, 6, 3, 5, 5, 7> and cvj = <5, 4, 7, 4, 6, 4, 6, 4, 5, 3, 7, 5>, where n = 12. Then, unit signature 

uvi and uvj are <0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1> and <0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0>, respectively. 

Suppose we have a new signature, sk to be allocated such as sk = <1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0>. 

Then sk•uvi is 0 and sk•uvj is 4. Thus, the Inner-product method allocates sk to node i because 

node i has lower inner product.

IV. PERFORMANCE EVALUATION

1. Experiments

This section evaluates the performance of the Inner-product method with respect to retrieval time and 

insertion time. The experiments were performed on a Sparc-20 workstation with 128Mbytes of main 

memory. In the experiments, 10,000 and 100,000 documents are used. Each document consists of 20 fields 

such as author, title and eighteen keywords. The databases were constructed based on the result from 

analysis of 10,000 technical reports and journals in the Chungbuk National University. Figure 7 illustrates 

the type of sample document in the database. The input and design parameters are shown in Table 2. In 

addition, the experiments were based on the same synthetic data that was used in [20]. Three types of 

synthetic data are generated such as uniform, normal, and exponential distribution data sets. Three basic 

distributions were used over the range of [-231, 231-1]: 1) a uniform distribution, 2) a normal distribution 
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Attribute # for Document

Accession number 1

Author 1~6

Title 1~10

Subject 1~10

Category 1~7

Date 1

Publisher 1

Vol-Num 1

Page 1

Total Attribute Values per Document 9~38

Average Attribute Values per Record 20

N(0,σ), where σ = 312
3
1  and 3) an exponential distribution θ

θ

)2( 31

1 +x

e , where θ = .322
4
1  The data 

skewness increases as it goes from uniform to exponential.

Fig. 7. The type of sample document in database

Table 2. Parameters

Parameters Description Value

N the number of documents 10K, 100K

P the number of processing nodes 8, 16

D the number of words per document 20

n the signature size in bits 512

m the number of bits set to '1' per word 16

In these first experiments, the response times of signature retrieval of the four methods (Inner-product, 

Min-entropy, LCDM, and random method) are compared. The response time of signature retrieval is the 

signature search time plus the false drop time in the processing node. Since the response time of intra-

query parallelism depends on the processing node with the maximum number of retrieved signatures, we 
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use the maximum number of the retrieved signatures as the measure of the response time of each query. 

One retrieved signature causes at least one disk access because its false drop time is based on the real 

document match processing. The maximum number of the retrieved signatures for i-query is max{Ri1, 

Ri2, ... , Rip}, where Rij(1 ≤ j ≤ p) is the number of retrieved signatures of the j-th processing node for i-

query.

Our experiments are classified into two environments such as real documents and synthetic documents. 

Because of the limited experimental environment, we use real 10,000 documents from the library of 

Chungbuk National University. Therefore we first decluster a data file with real 10,000 documents into 8 

processing nodes. And then we decluster a data file with synthetic 10,000 documents into 8 processing 

nodes and a data file with synthetic 100,000 documents into 16 processing nodes. Many information 

retrieval systems in practice may have millions of documents, which is much larger than our test data sets. 

Though we are using relatively small sets of test data due to limited environment for experiments, the 

behavioral characteristics for the proposed method may not be different for various sizes of test data. 100 

sample queries are randomly selected for test. We use single-term queries to make the response sizes large 

enough to show the effect of parallel processing more clearly. In all figures, the declustering effects of the 

four methods are compared. In addition, one more graph is presented for easy understanding of our 

method’s characteristics. The additional graph shows the optimal case, i.e., the theoretical minimum of the 

maximum number of the retrieved signatures for each query, which is the lower bound of declustering. For 

example, given a query, q, the theoretical minimum of the maximum number of the retrieved signature is 

the n/m, where n is the total number of retrieved signatures and m is the number of processing nodes.
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Fig. 8. Real data set with 10,000 documents in 8 PNs
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Fig. 9. Uniform distribution data set with 10,000 documents in 8 PNs
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Fig. 10. Uniform distribution data set with 100,000 documents in 16 PNs

Figure 8 shows the retrieval performance of our proposed method for real data set. The retrieval 

performance of our proposed method is similar to that of the MIN-entropy for static environments and 

outperforms those of the LCDM and the random method. Figure 9 and Figure 10 shows the retrieval 

performance of our proposed signature file declustering method for uniform distribution data set. The 
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Inner-product, Min-entropy and LCDM show better performance than the random method. The Inner-

product is better than the LCDM and almost equal to the MIN-entropy in most cases. Figure 10 shows 

similar results to Figure 9. Thus, we can say that our proposed method is scaled up without losing 

generality.
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Fig. 11. Normal distribution data set with 10,000 documents in 8 PNs
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Fig. 12. Normal distribution data set with 100,000 documents in 16 PNs

Figure 11 and Figure 12 shows the retrieval performance of our proposed signature file declustering 



Jae� Chung� Jae��Byoung� A Dynamic Signature File Declustering Method based on the Signature Difference

20

method on normal distribution set. We can see through the two figures that the same performance behaviors 

occur on normal distribution data set.
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Fig. 13. Exponential distribution data set with 10,000 documents in 8 PNs
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Fig. 14. Exponential distribution data set with 100,000 documents in 16 PNs

Finally, the performances on data files with exponential distribution data set are shown in Figure 13 and 

Figure 14. In this two graphs also, we can see the same behavior. However, for large data set, the 

performance of the random and the LCDM methods are much less than Inner -product. The reason is that as 

the matched signatures grow rapidly, the Inner-product gets stable by using accumulated information 
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dynamically. Although the LCDM is better than the random method in the most of the queries, it is worse 

than or similar to random method in some queries. This is because the large amount of matched signatures 

has the same suffix and those signatures were allocated to the same processing node. But, the Inner-product 

and the MIN-entropy method do not have such problem because it dynamically declusters signature file 

based on statistic information of the previously allocated signatures. As a result, we conclude that the 

Inner-product and MIN-entropy give better retrieve performance than the LCDM and the random method 

over the various probability distributions of workloads. In addition, the Inner-product and MIN-entropy 

method are highly scalable and has deterministic behavior, which is not the LCDM case.

In the second experiment, we compared the insertion time of signature declustering methods by using 

Big”Oh”(O()), a kind of asymptotic notation. The insertion time consists of two terms as follows:

Itime = Dtime + Otime

where,  Itime : Insertion Time

    Dtime : Declustering Time

    Otime : Local Organization Time

However, we only concern about Dtime because Otime is the same for all signature file declustering 

methods. Also, we compare only one signature insertion time. The computation time of the four 

declustering methods is described by using O() notations with variable n and p as follows : 

� Random : independent on p and n, thus O(1)

� LCDM = matrix multiple computation time = O(p2)

� MIN-entropy = cv++ construction time + signature entropy construction time +

minimum signautre entropy finding time + cv increment time

= O(pn) + O(pn) + O(p) + O(n) = O(pn)

� Inner-product = uv++ construction time + minimum uv++ calculation time + cv increment time    

  = O(pn) + O(p) + O(n) = O(pn)

where, n = the size of signature, p = the number of processing nodes

Therefore, when p << n, the LCDM outperforms the Inner-product and the MIN-entropy. However, 

when p >> n, the Inner-product outperforms the LCDM and the MIN-entropy. This is because the LCDM is 

not gracefully scalable to the number of processing nodes and the MIN-entropy takes construction time of 

signature entropy additionally in all processing nodes.
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As a result, the MIN-entropy is suitable to static environment where retrieval is a main operation and 

insertion seldom occurs. Meanwhile, the Inner-product method is suitable to dynamic environment of large 

scale parallel database systems where insertions happen frequently.

2. Discussions

Until now, we have investigated and analyzed the performance and characteristics of signature file 

declustering methods. Based on these researches, we address comparisons to choose the most appropriate 

signature for a variety of environments. In Table 3, signature file declustering methods in four points such 

as scalability, simplicity, insertion time and retrieval time are compared.

Table 3. Comparisons of signature file declustering methods

Inner-product MIN-entropy LCDM Random

Scalability Good Good Bad Excellent

Simplicity Good Bad Bad Excellent

Insertion Good Bad Good Excellent

Retrieval Excellent Excellent Good Bad

We recommend the MIN-entropy for the environment where retrieval is main operation and insertion 

seldom occurs and scalability is important such as mesh, ring parallel systems. The Inner-product are 

highly recommended for the environment where insertion frequently happens and scalability is important 

like the MIN-entropy. The LCDM can be used for hypercube parallel systems because hypercube systems 

have a power of two numbers of processing nodes. The random method can be used when the retrieval time 

is not important.

V. CONCLUSION

We have described various problems of the LCDM method that is used as a declustering method for the 

Hamming Filter. The LCDM cannot avoid data skew if many signatures have the same suffix. In addition, 

it has the following problems that make the LCDM difficult for parallelism. First, it is not gracefully 

scalable to the number of processing nodes. The method is properly defined only when the number of 
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processing nodes is a power of two. This is a serious restriction because most current parallel systems in 

practice may not have a power of two number of processing nodes. Second, it is not deterministic 

algorithm. For the suffix with the m-size, m! check matrixes can be issued for the LCDM to decluster a 

signature file. While the choice of the check matrix can affect the declustering performance of the LCDM, 

no appropriate guideline has been provided to choose an optimal check matrix. Finally, the LCDM may 

lead to information loss because it only uses partial information, i.e., the suffix of the signature. 

In this paper we have proposed a new signature file declustering method, called Inner-product that 

overcomes the problems in the LCDM. It declusters signature file dynamically based on the current status 

of signature allocation. Thus, the Inner-product can cope with a variety of workloads and configurations. 

We have showed through the performance evaluation based on the statistical modeling that the Inner-

product and MIN-entropy give better retrieval performance than the LCDM for data sets with various 

distributions such as uniform distribution, normal distribution, and exponential distribution. We also have 

addressed the performance of signature insertion time by using asymptotic notation. When p >> n, the 

Inner-product outperforms the LCDM and the MIN-entropy. It is show that the Inner-product method 

works well in a dynamic environment where insertions occur frequently. 

As a result, the proposed Inner-product method is highly recommended for the environment where 

insertion frequently happens and scalability is important like the MIN-entropy. And the MIN-entropy is 

recommended for the environment where retrieval is main operation and insertion seldom occurs and 

scalability is important such as mesh, ring parallel systems.

In the near future, we are investigating a formal framework that may give better understanding of the 

behavioral characteristics of the Inner-product method over various probability distributions of workloads.
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