
International Journal of Information Technology

Vol. 8, No. 1 August 2002

Automated Component Ensemble Evaluation

Somjai Boonsiri
Chulalongkorn University
Bangkok, Thailand 10330

+662 218 6991
Somjai.B@chula.ac.th

Robert C. Seacord
Software Engineering Institute
Pittsburgh, Pennsylvania 15213

+1 412/268-7608
rcs@sei.cmu.edu

Russ Bunting
Software Engineering Institute
Pittsburgh, Pennsylvania 15213

+1 412/268-9150
rbunting@sei.cmu.edu

Keywords: component repository, Enterprise JavaBeans, component specification, component
evaluation

Traditional, large-scale component repositories have failed for a variety of reasons.
One of these reasons is that they have focused on the identification and selection of
individual components, while system development often depends on the selection of
compatible component ensembles. In this paper, we discuss an alternative approach
to traditional component repositories that integrates knowledge-based techniques to
automate the selection of component ensembles. In particular, we focus on the
attributes of component specifications in the constrained problem space of Enterprise
JavaBeans, and the development of associated integration rules that evaluate these
attributes with respect to component integratability. We also discuss the role of
patterns in automated component ensemble evaluation.

1 Introduction
The benefits of developing an effective component library are readily apparent: by allowing
system integrators to fabricate software systems from pre-existing components rather than
laboriously develop each system from scratch, enormous time and energy can be saved in the
development of new software systems. The President’s Information Technology Advisory
Committee (PITAC) interim report [12] to the President states that:

The construction and availability of libraries of certifiably robust, specified, modelled
and tested software components would greatly aid the development of new software.

Int. J. of Information Technology Vol 8, No. 1

41

However beneficial a component library might be, a useful and effective repository has been an
elusive goal. Traditional software libraries have been conceived as large central databases
containing information about components and often the components themselves. Examples of such
systems include the Centre for Computer Systems Engineering’s Defence System Repository, the
JavaBeans Directory, and the Gamelan Java directory.

Challenges with this currently employed approach include design of the classification scheme for
organizing the contents of the repository and the suitability of search results during retrieval.
Given the dynamics of the commercial marketplace and technology in general, classification
schemes often exhibit fragility over time. That is, classification categories based upon product
features may over time evolve or be subsumed completely. Secondly, users of the repository must
be familiar and capable with the chosen scheme. The complexity of the scheme can be hindrance
to new users of the repository and to its adoption outside a group of advanced users, [13] limiting
the usefulness of the repository. In addition, software repositories face an inherent dilemma: for
the approach to be useful, the repository must contain enough components to support users, but
when many qualified components are available, finding and choosing an appropriate one becomes
troublesome [9]. Furthermore, most software retrieval systems retrieve a set of candidates ranked
by suitability to search criteria. Often, it is impractical for the user to analyse and evaluate the
entire list of candidate components. Instead, the user assumes that the components at the top of the
retrieved list (e.g. the first three) are the most appropriate. Then, to select a component from the
list, the user examines only those first components. If no components satisfy the requirements, the
system integrator may modify the retrieval search query, but in most cases the search will be
abandoned. For this reason, repository retrieval systems must exhibit more precision in their
answers, by discarding some obviously unwanted components from the set of candidates and by
retrieving only the best ones [7].

Ideally, an improved system should avoid a common deficiency of exclusively allowing searches
for individual components, as component-based systems are not built from individual components,
but component ensembles [18]. A component ensemble is a set technologies, products, and
components that interact to provide some useful behaviour. Since individual components rarely
satisfy the entirety of requirements in a component-based system, component ensembles replace
components as the fundamental architecture and design unit. For component repositories to be
successful, they must allow system integrators to search for highly compatible component
ensembles and not simply individual components.

2 Component-based Development
Component-based system development requires the simultaneous survey of the marketplace
(including commercially available components and applicable standards), the system context
(including requirements, cost, schedule, business processes) and the existing system architecture
[8]. The system context may also be constrained by corporate standards and policies and the
system architecture constrained by existing legacy systems.

Existing component-based development (CBD) processes are largely manual and labour-intensive.
The following steps are usually present in most CBD processes:

First, the system integrator creates an initial system manifest. The manifest defines:

• the system requirements, for example, that all components must be developed in Java or
run on the Linux platform;

Boonsiri, Seacord, Russ, Automated Component Ensemble Evaluation

42

• the system context, including any components that may already be fixed in an existing (or
legacy system); and

• the architecture for the new system, including any component patterns that are
implemented, and the number and functionality of missing components.

Once the manifest is defined, the system integrator identifies components that meet the
documented functional requirements and systems constraints. It is insufficient, however, to
evaluate each of the individual software components in isolation as this does not guarantee that
selected components are mutually compatible.

The system integrator must next discover an ensemble—a collection of compatible components—
that satisfies the functional requirements. When multiple components are found that match the
requirements the number of possible ensembles increases according to the factor of the cardinality
of each set of qualified components. This situation deteriorates further when you consider that
there may be multiple versions of each component.

Evaluating all possible component ensembles by hand is, of course, prohibitively expensive. In
practice, system integrators must rely on experience to select components with a high degree of
compatibility. The result is that the component space is largely unexplored, and the possibility that
an optimal component ensemble has been selected is low.

Our proposed solution to this problem is to automate at least part of the process by which
component ensembles consisting of compatible components are identified. It is anticipated that, by
automating part of this process, a savings in evaluation and development costs can be achieved and
that a greater percentage of the component space can be considered. We implemented a prototype
system to test our solution called K-BACEE (pronounced kay-base) for Knowledge-Based
Automated Component Ensemble Evaluation [16].

3 K-BACEE
K-BACEE is intended to be generally useful for a wide range of components, including EJB,
COM, JavaBeans and commercial-off-the-shelf (COTS) products that do not conform to a
standard component model. Unfortunately, the set of all possible components is an overly broad
problem space that would make it expensive to prove (or disprove) the usefulness of the approach.
Resultantly, we narrowed our area of interest to Enterprise JavaBeans to constrain the problem
space and make it easier to produce a realistic prototype with a reasonable amount of effort.

Enterprise JavaBeans (EJB) technology defines a model for the development and deployment of
reusable Java server components called enterprise beans. Enterprise beans are deployed in an EJB
server/container that provides support for transactions, security, and other system services.

While reduced in scope, the EJB domain is still non-trivial. There are currently 167 different
application servers listed on the JavaSoft Web site including products from BEA Systems,
Borland, Forte, Gemstone, IBM, IONA, iPlanet, Oracle, Silverstream, and Sybase.

Figure 1 illustrates the K-BACEE architecture, consisting of a searchable repository of component
specifications, integration rules, pattern database, query server, and component ensemble
evaluator. System integrators provide a manifest that defines the functional requirements of the
components as well as any overriding constraints on how the components are integrated.

Int. J. of Information Technology Vol 8, No. 1

43

3.1 Component Selection
As suggested in the introduction, K-BACEE is a component repository that is used at the system,
rather than the component level. The heart of the system, however, is still the component
repository, consisting of component specifications. This repository is searched using the manifest.

Component
Ensemble
Evaluation

Component
Specification

Internet
Browser

Query
Server

Integration
Rules

Manifest
Qualified
Components

Ranked
Ensembles System

Integrator

Patterns

Component
Repository

C1
C2

C3

Component
Ensemble
Evaluation

Component
Specification

Internet
Browser

Query
Server

Integration
Rules

Manifest
Qualified
Components

Ranked
Ensembles System

Integrator

Patterns

Component
Repository

C1
C2

C3

Component
Repository

C1
C2

C3

Figure 1: K-BACEE Architecture

XML (eXtensible Markup Language) is used to represent both the component and system
requirement specifications. XML is a World Wide Web Consortium (W3C) recommendation that
has become universally accepted as the standard for document interchange [1]. XML is well suited
for this application as it provides a formal language for mapping attributes to values and is fully
extensible [11], [3].

The manifest provides the initial context for evaluating components. Figure 2 shows a simplified
manifest for a hypothetical system. This manifest defines constraints, possibly driven by corporate
policy decisions, concerning the implementation language and GUI mechanism. The specification
also includes a functional description of components required by the system.

Constraints:
Language: Java
 GUI: Web Browser
Components:
 C1: XML DB
 C2: rules engine
C3: XML/Java converter

Figure 2: Manifest.

K-BACEE uses the manifest to identify an initial working set of qualified components. To identify
all the components in the component repository that satisfy the manifest, we extract the set of
constraints from the manifest and transform them into XML Query Language (XQL) [14] queries.
XQL is one of several XML query language proposals; however, it has the support of several
commercial products.

Boonsiri, Seacord, Russ, Automated Component Ensemble Evaluation

44

The manifest is converted into a series of queries on the component repository. Components that
match the requirements specified in the manifest are selected from the component repository and
placed into the working set. In Figure 3, we show candidate components that provide the
functionality required by our example system. Component x1, x2 and x3 satisfy the functional
requirements for the XML DB, component y1 satisfies the functional requirements for a rules
engine; z1, z2 and z3 satisfy the functional requirements for an XML/Java converter.

y1

Manifest

C1

C2

C3

x1

x3

x2XML DB

Rules Engine

z1

z2

z3

XML/Java
Converter

y1y1

Manifest

C1

C2

C3

x1x1

x3x3

x2x2XML DB

Rules Engine

z1z1

z2z2

z3z3

XML/Java
Converter

Figure 3: Component Selection
Once a working set of components has been identified, they must be grouped into possible
ensembles. Based on the above example, there are a total of 9 possible ensembles (3 XML DBs x
1 Rules Engine x 3 XML/Java converters). These ensembles must now be ranked based on
compatibility.

3.2 Ensemble Evaluation
Components in each ensemble are evaluated for compatibility based on their attributes (defined in
the component specification) and patterns of interactions. A repository of software engineering
integration rules is used to evaluate compatibility between components in an ensemble, and assign
a numerical ranking to each ensemble.

Component attributes define characteristics that impact compatibility with other components, for
example, the protocols supported by the component. Integration rules define how attributes affect
component integration. These rules identify both those attribute combinations that simplify—and
those that complicate—system integration.

The pattern database contains the reusable component interaction patterns that are used during
ensemble evaluation to constrain the manner in which components are evaluated for compatibility.

Integration
Rules

Patterns

Component
Specifications

Integration
Rules

Patterns

Component
Specifications

Figure 4: Database relationships.

Int. J. of Information Technology Vol 8, No. 1

45

Figure 4 illustrates the relationship between the three K-BACEE databases. Component
specifications may reference patterns stored in the pattern database, indicating which role(s) they
can implement in the pattern. Integration rules may refer to both component attributes stored in
the component specification and patterns stored in the pattern database. For example, an
integration rule may be defined which states that if a component conforming to a client role
invokes a component conforming to a server role, and if the client is written in Java and the server
is written in C++ (component attributes) then add 8 to the overall compatibility rating for the
ensemble.

3.3 Database Extensibility
The component specification, integration rules and pattern databases are each fully extensible by
system integrators, component vendors, and independent evaluators. This requires that K-BACEE
provide mechanisms to add new integration rules, and to modify and delete existing rules in these
databases.

The greatest problem in extending K-BACEE databases is conflict resolution. It is likely that
component vendors and system integrators have a different perspective of the integration rule
database, for example. A component vendor may easily take the view that a component is fully
compatible with another component until proven otherwise, while a system integrator may take the
more pragmatic “I’ll believe it when I see it” perspective. K-BACEE must support a resolution
process to eliminate conflicting integration rules.

We decided to implement a two-phase process to support conflict resolution. When a rule is
submitted, it is evaluated to determine if it conflicts with an existing rule. If the rule does not
conflict, it is assumed to be valid and added to the integration rules database. If the rule does
conflict, email is sent to the person who submitted the new rule and the person submitting the
original (conflicted) rule, asking them to resolve the conflict.1 Either user is capable of removing
their rule and resolving the conflict, or both users could remove the rule and replace it with an
agreed upon rule. If the two parties cannot agree on a resolution, or if the conflict remains
unresolved for an extended period of time, the K-BACEE system administrator resolves the
conflict.

We examine each of the three K-BACEE databases in more detail in the following sections.

4 Component Repository
The component repository contains the descriptions of components that can be selected by K-
BACEE to satisfy a requirement in a manifest and evaluated as part of an ensemble of components
that satisfies (some portion of) the overall manifest. Component specifications consist of
attributes, which are name/value pairs specified in XML. These attributes serve a variety of
purposes. In particular they include information about functionality and behaviour useful in
determining semantic compatibility, as well as attributes used to determine syntactic compatibility
with other components, for example sharing the same deployment platform, and general
information used to locate and purchase the component.

Defining a flat space of component attributes is somewhat unwieldy since there are many
attributes that are specific to EJB, COM, or other component models. There are also attributes that
are common to all components, including the general information. This combination of shared and
specialled attributes is best represented in a class hierarchy. This hierarchy might consist, for
example, of a component root node that can be specialized into JavaComponent that in turn
1 This requires, of course, that email address and other contact information be collected from users updating
information in any of the K-BACEE databases.

Boonsiri, Seacord, Russ, Automated Component Ensemble Evaluation

46

can be specialized to JavaBeanComponent and EJBComponent. The class hierarchy can
be implemented using types derived by extension in the XML Schema definition language [17].

Table 1 identifies a number of attribute names that are used to describe Enterprise JavaBean
components along with sample values. This list is (necessarily) incomplete but representative.
These attribute names are established to provide a common vocabulary for both component
developers and system integrators. In addition to these EJB specific attributes, the functionality of
the component is also described by attributes as well as common interactions, yielding a
behavioural profile of the component. Component interactions are further elaborated in the
following section.

The first attribute listed is the component ID. This is a string that uniquely identifies the
component, and could be for example, a COM GUID. Component identifiers can be referenced
from other component specifications—allowing a component’s interface to be defined in terms of
another component. For example, a component specification may claim that a component uses
CORBA (Common Object Request Broker Architecture) as an integration mechanism and that it
supports version 2.0 of IIOP (Internet Inter-ORB Protocol). However, differences in
implementation, such as incompatibilities in the naming service may make it more difficult to
integrate a component implemented using Inprise VisiBroker with one developed using IONA
Orbix [15].

Attribute Description Sample value(s)
ID Component identifier 01, 02
Name Component name General Ledger
Function Component function

described by keywords
accounts, double entry
bookkeeping, journal
entries, budgeting

Pattern (name,
role)

Name of pattern and
component role in pattern.

SessionFaçade, Business
Entity

JDK (vendor,
version)

Vendor and version of JDK Sun, 1.2.1
IBM, 1.1.8

Platform Tested environment. Solaris, NT, Linux
Protocol (name,
version)

Communication protocol IIOP, 2.0
RMI, 1.1

Transaction
attribute

Specifies how the container
manages transaction
boundaries when delegating a
method invocation to an
enterprise bean’s business
method.

NotSupported, Supports,
Required, RequiresNew,
Mandatory,
Never

Persistence-type Specifies an entity bean’s
persistence management type.

Bean, Container

EJB Server
Container
(vendor, product,
version)

Container for which this
component has been tested

IBM, WebSphere, 3.5.3

Table 1: EJB component attributes.

Int. J. of Information Technology Vol 8, No. 1

47

The name and function attributes listed in Table 1 are part of the general information used to
identify and locate the product. General information also includes the product version and vendor
information.

The pattern attribute is used to identify one or more design patterns in which the component may
provide a role. The name subattribute identifies the pattern while the role subattribute identifies
the role the component may provide in the pattern. The use of component patterns in K-BACEE is
described in more detail in the following section.

The pattern attribute is an example of an attribute that can be repeated multiple times, in this case,
for each different pattern supported. The role subattribute can also be repeated for each role a
component may support in each pattern. This allows for components that are polymorphic or
support multiple attributes.

The JDK attribute is specific to components written in the Java programming language. These
might include JavaBeans and Enterprise JavaBeans. The JDK attribute is important in evaluating
the compatibility of an ensemble. A system integrator has to decide in which environment a bean
or bean client will run. An EJB server can support different types and/or versions of the runtime
environment on both the client and server side. However, if the system consists of multiple
enterprise beans (which is likely), and these enterprise beans were all required to run on the same
server (also likely), then these beans must all run in the same environment, and this environment
must be supported by the EJB server.

While not specific to Java applications, the platform attribute must often be considered along with
the JDK attribute as EJB servers may support different versions of the JDK on different platforms.

The protocol attribute identifies protocols supported by the component that are critical for
integration. For example, does the component communicate using RMI or IIOP? Which version
of the protocol is used? This is a relatively general attribute, and may apply to components other
than enterprise beans. It is also possible to include a reference to the component ID that
implements the protocol as part of the attribute definition, as described earlier in this section. The
protocol attribute should be repeated for each supported protocol.

The transaction attribute is specific to EJB components and an example of an attribute derived
directly from the deployment descriptor. Not all fields in the deployment descriptor are
necessarily included in the component specification for an EJB, but many of these fields provide
information about the internal structure of the enterprise bean that is critical in determining
integratability. For example, there are two cases when invoking an enterprise bean with the wrong
transaction environment will generate an exception (when the transaction attribute is mandatory
and the client does not specify a transaction and when the transaction attribute is never and the
client does specify a transaction). In addition to these error conditions, it is easy to get
unexpected or incorrect behaviour from mismatched assumptions concerning transactional
behaviour. Providing information about the transactional nature of the enterprise beans in the
component specification allows K-BACEE to reason about these properties while determining
compatibility.

Persistence-type is another example of an attribute derived from the deployment descriptor. The
persistence type can be either container managed or bean managed. In bean-managed persistence,
the enterprise bean contains the logic to persist the bean state to permanent storage. In container-
managed persistence, this logic is generated from the deployment descriptor. Bean-managed

Boonsiri, Seacord, Russ, Automated Component Ensemble Evaluation

48

persistence typically makes the bean more dependent on a particular data store while container-
managed persistence makes the enterprise bean more dependent on a particular EJB container. Of
course, attributes must be defined for both the data store and EJB container for K-BACEE to
evaluate compatibility based on the persistence type.

Finally, the container identifies the vendor, product name and product version of the EJB
container.2 This field is used to indicate the EJB server platforms on which the enterprise bean has
been tested. A separate “record” should be provided for each platform in which the enterprise
bean has been tested.

There is also an alternative (and preferred form) for specifying the EJB container. This involves
creating a component specification for the EJB container, and specifying the ID of this
specification for this attribute.

Specifying the ID for an EJB container implies that EJB containers are handled in a similar
manner to any other component. Although the EJB server could be assumed by K-BACEE when
processing a specification that includes Enterprise JavaBeans, we decided that using the existing
mechanism for specifying components would be preferable for the following reasons:

1. New Enterprise JavaBean containers and new versions of existing containers are
continuing to be developed. Using the existing component specification mechanism allows
these new products to be easily introduced to the system

2. EJB containers can be partially or fully specified in the manifest, allowing the system
integrator to constrain this aspect of the system.

3. Existing EJB container specifications can be easily extended with new attributes, as new
integration rules are discovered.

K-BACEE component is designed to be extensible and support the continual evolution of the
system. Component properties may be initially assigned by the component developer, but may
also be updated by system integrators and third party evaluators. There must, however, be a core
set of ubiquitous attributes that supports comparison and evaluation by existing integration rules.
We have begun in this paper and the K-BACEE prototype to define these attributes, but the final
specification should be created by a group effort and ratified by an established standards body.

5 Component Patterns
We recognize that components are not always organized in a unique fashion but often follow
common patterns of interaction. Thanks to work done by the Gang of Four [6] and others [2], [5]
these patterns are more universally recognized and applied. As the use of design patterns becomes
more pervasive, we should see more and more components designed to satisfy a defined role in an
existing pattern.

5.1 Rationale
Design patterns are of interest to us as a means of improving our ensemble evaluation capability as
they enable a description of component interaction, or more precisely, behavioural interaction
between components. For example, if a given component assumes the role of “client” in a design
pattern we can evaluate specific compatibility issues related to client/server communications. The
assumption of a given role in a design pattern is also used as a criterion in the initial selection of

2 Theoretically both an EJB-container and EJB-server attribute should be defined, but since most commercial
implementations currently include both a server and container this is not really necessary in practice.

Int. J. of Information Technology Vol 8, No. 1

49

components, allowing K-BACEE to select a smaller number of better-qualified components for
evaluation.

5.2 EJB Patterns
Sun Microsystems has defined (multiple) collections of design patterns for creating software
systems using Enterprise JavaBeans and other J2EE technologies. One collection is Java 2
Platform Enterprise Edition Blueprints described in Designing Enterprise Applications with the
Java 2 Platform, Enterprise Edition by Kassem [10] and also on-line at the Sun Web site. The
Sun Java Centre has also defined a series of design patterns also available on-line at the Sun Java
Connection.

Figure 5 is a sequence diagram for the Session Façade design pattern defined by the Sun Java
Centre. This design pattern uses a session bean as a façade to encapsulate the complexity of
interactions between the business objects participating in a workflow. The session façade manages
the business objects, and provides a uniform, coarse-grained service access layer to clients. The
Session Façade design pattern defines relationships between five different components, several of
which are implemented as either session or entity beans.

Patterns are maintained in K-BACEE in XML Metadata Interchange (XMI) format [19]. XMI
enables easy interchange of metadata between modelling tools based on the Object Management
Group (OMG) Unified Modelling Language (UML) and metadata repositories based on the OMG
Meta Object Facility (MOF) in distributed heterogeneous environments.

The selection of XMI has immediate advantages. Design patterns can be entered using a Rational
Rose and XMI generated using the XMI add-in. The XML representation of design patterns can
then be managed within K-BACEE using the same tools and processes employed to manage the
(XML-based) component-specifications.

Figure 5: Session Façade design pattern.

New patterns of interaction are added to K-BACEE by the system integrator, as these patterns are
primarily used to build their systems. In fact, by introducing a pattern into the pattern database a

Boonsiri, Seacord, Russ, Automated Component Ensemble Evaluation

50

system architect can foster reuse of the interaction as well as the components that implement roles
in the pattern.

6 Integration Rules
Components in each ensemble are evaluated for compatibility based on a repository of software
engineering integration rules. The component specification includes attributes that define
characteristics of the component that impacts compatibility with other components, for example,
the protocols supported. Integration rules define how attributes affect component integration.
These rules identify both those attribute combinations that simplify—and those that complicate—
system integration. It is important to note that it is the cumulative ensemble score

The EJB comparison project [4] evaluated four EJB application servers for compliance to the EJB
1.0 specification, benchmarking and interoperability: IBM WebSphere 3.0, GemStone/J 3.0 from
GemStone Systems, Inc., Sun MicroSystem’s NetDynamics 5.0.22 SP2, and BEA WebLogic
4.5.1. 3 Their findings, particularly from the interoperability tests, are useful for identifying
attributes that affect the integratability of EJB components.

One issue, for example, is the version of the JDK supported by the EJB server. An EJB server can
support different versions and/or types of the runtime environment on both the client and the
server side. IBM WebSphere 3.0, for example, supports JDK 1.1.7B, JDK 1.2.2, and MS SDK for
Java 3.2 on WinNT platforms as the client and server-side JDKs.

We can now derive a series of integration rules based on this information. If two components did
not share the same JDK we would consider them less compatible with respect to this attribute that
two components which did share the same JDK. Figure 6 shows two sample integration rules for
scoring ensembles based upon the JDK version compatibility of components within the ensemble.
If the system integrator sets an constraint in the manifest stating that the EJB server must be IBM
WebSphere 3.0 we would have an additional factor to consider while evaluating compatibility: We
would now need to determine if the components were compatible with IBM WebSphere 3.0 and if
the components were compatible with each other.

Figure 6: Integration rule for JDK version compatibility.

In some ways, these rules are overly pessimistic (that is, they would result in a lower overall
ranking than is warranted in some cases). If the manifest were again extended to include a
constraint that the solution implement the Session Façade design pattern described in Section 5.2
and that one of the identified components implements the SessionFaçade role in the pattern
while the other component implements the Client role. As a result, we know that the existing

3 While most (if not all) of these product versions have been superseded by newer releases, data collected about them
is not at all irrelevant for our purposes. Instances of these product versions will stay deployed for many years, as
well as the components that have been developed and tested for these products. To be effective, K-BACEE
repositories must span multiple versions of products over multiple years to accurately describe the marketplace and
encompass legacy system modernization efforts.

when (comp1->JDK version = “1.3” and comp2->JDK version = “1.3”) then
Ensemble_score += 10;

when (comp1->JDK version = “1.3” and comp2->JDK version = “1.2”) then
Ensemble_score += 7;

Int. J. of Information Technology Vol 8, No. 1

51

integration rule is unnecessarily pessimistic because the architecture of the EJB server allows us to
use different versions of the JDK on the client and server side.

Apparent in this discussion is that different rules can apply depending on how much information is
provided. Depending on the rule-based system used, this problem can be resolved in two ways.
The first is by establishing precedence of rules. In general, more specific rules would hold
precedence over more general rules. Therefore, in the last case, when the EJB server and the
design pattern are both defined, the most specific rule (the one that assumes all these variables are
set) would be applied. When only the component JDKs are specified the more general rule is
applied.

There are also cases when two components that are known to be compatible may score lower than
expected because of apparent architectural mismatch (or incompatible components score higher
than expected because of hidden problems). This can be corrected, using existing K-BACEE
mechanisms, by specifying integration rules that reference the component ID attributes of the
components and directly add (or remove) points based on the combination of the specific
components involved. It is important to note that the ranking of an ensemble is the result of the
aggregate, cumulative score of all rules executed.

Integration rules typically reflect known compatibilities and incompatibilities between attributes.
The discovery and refinement of these rules is a normal part of the system integration process.
System integrators extend the integration rule database from lessons learned, overtime improving
the reliability of the knowledge base.

7 Summary and Conclusions
Prototyping efforts for K-BACEE have demonstrated that the automated evaluation of component
ensembles is feasible and successful for small test cases. The initial prototype also proved helpful
by highlighting the impact of standards on component compatibility. In particular, two
components used in the construction of K-BACEE, each supporting the XML Schema Structures
standard, did so to different levels of compliance, necessitating additional development effort to
resolve the mismatch. From this experience, we are generalizing the impact of standards on
compatibility as interactions based upon communication protocol and data standards play an
increasingly import role in systems integration activities.

Future goals include scaling the application of K-BACEE technology to provide a generalized,
Web-based system that can be used, for example, by component brokers to market components,
component providers to provide a distribution channel and system integrators to identify
compatible component ensembles.

8 Acknowledgements
The authors would like to acknowledge the help of David Mundie in some of the early prototyping
efforts, and the support of John Foreman and Yunyong Teng-amnuay. Thanks also to Santiago
Comella-Dorda and Dan Plakosh for their valuable and useful comments.

9 References

[1] Bray, Tim; Paoli, Jean; & Sperberg-McQueen, C.M. Extensible Markup Language (XML) 1.0.
W3C Recommendation, February 10, 1998.

Boonsiri, Seacord, Russ, Automated Component Ensemble Evaluation

52

[2] Buschmann, Frank; Meunier, Regine; Rohnert, Hans; Sommerlad, Peter and Stal, Michael.
“Pattern-Oriented Software Architecture-A System of patterns.”, Wiley Press, 1996-2000

[3] Cover, Robin. “Literate Programming with SGML and XML.” The XML Cover Pages.
http://www.oasis-open.org/cover/xmlLitProg.html.

[4] EJB Comparison Project, MLC System GmbH, Distributed Systems Research Group, Charles
University, January 12, 2000.

[5] Fowler, Martin. “Analysis Patterns: Reusable Object Models.” Addison Wesley, 1997.

[6] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. “Design Patterns, Elements of Object-
Oriented Software.”, Addison-Wesley, 1995.

[7] M. R. Girardi and B. Ibrahim, "New Approaches for Reuse Systems," Position Paper
Collection of the 2nd. International Workshop on Software Reuse, E. Guerrieri ed., March 24-
26, 1993.

[8] Hansen, W.J.; Foreman, J.T.; Carney, D.J.; Forrester, E.C.; Graettinger, C.P.; Peterson, W.C.;
& Place, P.R. Spiral Development–Building the Culture: A Report on the CSE-SEI Workshop
(CMU/SEI-2000-SR-006, ADA382585). Pittsburgh, Pa.: Software Engineering Institute,
Carnegie Mellon University, 2000. http://www.sei.cmu.edu
/pub/documents/00.reports/pdf/00sr006.pdf

[9] Henninger, S., "Supporting the construction and evolution of component repositories,"
Proceedings of the 18th International Conference on Software Engineering, 1996.

[10] Kassem, Nicholas “Designing Enterprise Applications with the Java 2 Platform.”
Enterprise Edition, Addison-Wesley, ISBN 0-20-1702770.

[11] Mundie, David. “Standardized Data Representations for Software Testing.” Pacific
Northwest Conference on Software Quality, Portland, Maine, October 1997.

[12] President’s Information Technology Advisory Committee Interim Report to the
President, National Coordination Centre for Computing, Information, and Communications,
Arlington, VA, August 1998.

[13] Poulin, J.S., "Populating Software Repositories: Incentives and Domain-Specific
Software", The Journal of Systems and Software 30(3), Elsevier Science, New York, NY,
September 1995.

[14] Robie, Jonathan. “XQL (XML Query Language),” August 1999.
http://www.ibiblio.org/xql/xql-proposal.html.

[15] Seacord, Robert C.; Wallnau, Kurt; John, Robert; Comella-Dorda, Santiago; & Hissam,
Scott A. “Custom vs. Off-the-Shelf Architecture.” Proceedings of the 3rd International
Enterprise Distributed Object Computing Conference. Mannheim, Germany, September 27-
30, 1999.

[16] Seacord, Robert C.; Mundie, David; Boonsiri, Somjai. "K-BACEE: Knowledge-Based
Automated Component Ensemble Evaluation", published in proceedings of the 2001

Int. J. of Information Technology Vol 8, No. 1

53

Workshop on Component-Based Software Engineering held in conjunction with the 27th
Euromicro Conference, Warsaw, Poland, September 4th – 6th, IEEE Computer Society.

[17] Thompson, Henry S.; Beech, David; Murray; Mendelsohn, Noah. XML Schema Part 1:
Structures W3C Recommendation 2 May 2001, http://www.w3.org/TR/2001/REC-
xmlschema-1-20010502/

[18] Wallnau, Kurt; Hissam, Scott; Seacord, Robert. Building Systems from Commercial
Components, Addison-Wesley, June 2001, ISBN: 0201700646.

[19] XML Metadata Interchange (XMI) Version 1.1, OMG Document ad/99-10-02, October
25, 1999.

