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Abstract 

 

In this paper, the robust stability analysis of neural control vehicle steering systems with perturbed 
parameters is presented. Firstly, the neural controller can be linearized by utilizing the classical 
describing function. Because the perturbed parameters involving velocity and friction are existed in 
the vehicle steering system, the stability of the equivalent linearized system is then analyzed by 
using the parameter plane method. Afterward the amplitude of limit cycles caused by the neural 
controller can be easily pointed out in the parameter plane. Furthermore, the stability effect with 
time delay is also addressed in our work. Computer simulation shows the efficiency of this approach.  
 
Keyword: Neural, describing function, vehicle, parameter plane 
 

I. Introduction 

Limit cycle prediction of nonlinear control systems has been considered in many academic and 
industrial applications. The linearizd system based on describing function method has been widely 
employed in the analysis of nonlinear control system especially when the system has hard 
nonlinearities like saturation, backlash, hystersis, deadzone and so on [1-6]. For multivariable 
process control, a method for automatically tuning multivariable PID controllers from relay feedback 
was proposed in [7]. Chung et al [8] used the describing function method to linearise the nonlinear 
inductor and estimate the inductance in large current situations. Ackermann and Bunte [9] employed 
the describing function to predict the limit cycles in the parameter plane of velocity and road tire 
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friction coefficient. The pilot-induced oscillations (PIOs) caused by a complicated interaction 
between a pilot and vehicle have been considered in [10]. For the intelligent control theory, the 
describing function technique to design a fuzzy controller for switching DC-DC regulators was 
proposed in [11]. In addition, the describing functions of neurocontroller have been developed in 
[12]. In general, the robust analysis of uncertain parameters in linear control system can be dealt 
with parameter plane method and parameter space method [13, 14]. Due to the results in [12], the 
main purpose of this paper is to apply the parameter plane method to analyze the stability of a neural 
control vehicle steering system with perturbed parameters and a time delay for limit cycle prediction. 

II. Preliminaries 

In this section, the classical linearized single track vehicle model is given first. The describing 
function of static neural controller is also introduced. In order to analyze the stability of perturbed 
parameters, a systematic procedure is proposed to solve this problem by the use of parameter plane 
method. 
 

 

 

 

 

 

Fig. 1. Single track vehicle model 

 

Table 1. Vehicle System Quantities 
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A. Description of Vehicle Model [9] 

Fig. 1 shows the single track vehicle model and the related symbols are listed in Table 1. The 
equations of motion are  

( ) f r

f f r rf r

F Fmv r
F l F lml l r

β +⎡ ⎤+ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦⎣ ⎦

&

&
.                                                         (1) 

The tire force can be expressed as 

0 0( ) , ( )f f f f r r r rF c F cα µ α α µ α= =                                                    (2) 

with the tire cornering stiffnesses 0 0,f rc c , the road adhesion factor µ  and the tire side slip 
angles 

( ), ( )f r
f f r

l lr r
v v

α δ β α β= − + = − − .                                                 (3) 

The state equation of vehicle dynamics with β  and r  can be represented as 
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Hence, the transfer function from fδ   to r  is 

2 2
0 0 0

2 2 2 2 2 2
0 0 0 0 0 0( ) ( )f

f f f r
r

f r r r f f f r r r f f

c ml v s c c l v
G
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The numerical data are listed in Table 2. 

Table 2. Vehicle System Parameters 
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According to the above analysis of the single track vehicle model, the transfer function from 
the input of front deflection angle fδ  to the output of yaw rate r  can be obtained as 

8 2 10 2

6 2 2 9 7 2 10 2

(1.382 10 1.415 10 )( , , )
6.675 10 1.08 10 (1.034 10 4 10 )fr

v s vG s v
v s vs vδ

µ µµ
µ µ µ

× + ×
=

× + × + × + ×
                   (6) 

The operating range Q  of the uncertain parameters µ  and v  is depicted in Fig. 2. In addition, 
the steering actuator is modeled as 

2

2 2
( )

2
n

A
n n

G s
s s

ω
ω ω

=
+ +

                                                             (7) 

where 4nω π= . In our study, a neural control vehicle steering system with time delay is 
presented in Fig. 3. The open loop transfer function ( )G s  is defined as 

1( , , ) ( ) ( , , )
f

sT
A rG s v G s G s v e

s δµ µ −=                                                  (8) 
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Fig. 3. Block diagram of a neural control vehicle steering system 

 

 

 

 

 

Fig. 4. Static neural network 

B. Describing Functions of Neural Controller and Saturation 

 The Static Neural Network (SNN) shown in Fig. 4 can be used as a controller (neural 
controller) and the input signal is assumed ( ) sini ix t A tω= . The network structure is 1-n-1 and 
does not have bias weights [12]. The parameters ikg  and ikh  are the neural network weights 
and n  is the number of hidden neurons. Based on the stability analysis in [12], the describing 
function of neurocontroller with sigmoid function tanh may be represented as 

22

1
( ) 1

6

n
ik i

i i ik ik
k

g AN A g h
=

⎧ ⎫⋅⎪ ⎪= ⋅ −⎨ ⎬
⎪ ⎪⎩ ⎭

∑                                                                (9) 

where iA   is the amplitude of limit cycle. 

C. Parameter Plane Method 

Based on the analysis in the above subsections, the design procedure to analyze the stability of 
a neural control vehicle steering system with perturbed parameters is given here. From Fig. 3, 
the closed loop transfer function is 

1 2

1 2

( ) ( , , ) 0
1 ( ) ( , , )

N N s G s v
N N s G s v

µ
µ

+
=

+ +
                                                    (10) 

where 1N  and 2N  are the describing functions of neural controller, respectively. 
Remark 1. If the input signal of 1N  is assumed 1( ) sine t A tω=  where 1A  is the amplitude. Then, 
the amplitude of input signals of 2N  can be expressed as 2 1A Aω= . 
After some simple manipulations, the characteristic equation can be obtained as 

2 2 2 2
1 2 4 3 2 1 0( , , , , , ) 0f s v N N T C C v C v C v C vµ µ µ µ µ= + + + + =                     (11) 

where 
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9 2 2
2 1.5271 10 ( 17.7668 157.9137)C s s s= × + + , 

12
1 1 22.2345 10 ( ) sTC N N s e−= × + , 

8 2 10
0 1 21.4621 10 ( 17.7688 157.9137) 2.1818 10 ( ) sTC s s s N N s se−= × + + + × + . 

Let s jω= , (11) is divided into two stability equations with real part X  and imaginary part Y  
of characteristic equation, one has 

1 2( , , , , , ) 0f j v N N T X jYω µ = + =                                                 (12) 
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In order to obtain the solution of µ  and v , the following equation is solved 

0
0

X
Y
=⎧

⎨ =⎩
,                                                                         (13) 

when 1N , 2N , T  are fixed and ω  is changed from 0 to ∞ . As the amplitude iA  is also 
changed, the solutions of µ  and v  called limit cycle loci can be displayed in the parameter 
plane. In the following section, two examples are cited to demonstrate the design procedure. 
 

III. Numerical Results 

In our work, three hidden neurons ( 3n = ) of neural network in Fig. 4 are adopted. The weights 
ikg  and ikh  are assumed as follows.  

11 12 13 21 22 22 11 12 13 21 22 231, 0.5.g g g g g g h h h h h h= = = = = = = = = = = =  

Then, the describing functions 1N  and 2N  can be obtained by using (9). 
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Fig. 6. Input signal 

A. Perturbed Plant Analysis 

Let 0T =  first, (13) can be solved when A  is fixed and ω  is changed from 0  to ∞ . Fig. 5 
shows the stability boundary and limit cycle locus in µ - v  plane. Two stability regions 
including asymptotically stable and limit cycle are divided by the stability boundary. In order 
to test the accuracy of Fig. 5, two operating points Q1 ( 1µ =  and 70v = ) and Q2 ( 1µ =  and 
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5v = ) are illustrated. Fig. 6 shows the time responses of input signal ( )e t . It is obvious that the 
amplitude of limit cycle shown in Fig. 6 (a) consists with the predicted result ( 0.16A = ) in Fig. 
5. 
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Fig. 7. Parameter plane 
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Fig. 8. Input signal 

B. Time Delay Effect 

Let 0.01T = , (13) can be solved when A  is fixed and ω  is changed from 0  to ∞ . The 
weightings of neural controller are the same as before. Fig. 7 shows some limit cycle loci in  
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µ - v  plane. Due to considering the effect of time delay, two operating points Q1 and Q3 
( 1µ =  and 25v = ) are selected. The amplitude of predicted limit cycle Q1 is 0.36 from Fig. 7, 
which is larger than the result in Fig. 5. It means that if the time delay is existed in the system, 
the stability margin will be reduced. Fig. 8 shows the time responses of input signal, which 
matches the result with Fig. 7. 

IV. Conclusion 

Based on the approaches of describing function and parameter plane, the stability analysis of neural 
control vehicle steering systems is proposed in this paper for limit cycle prediction. A simple 
systematic procedure is presented to deal with this problem. The stability effects of perturbed plant 
and time delays are both considered. Simulation results show that more information about the 
characteristic of limit cycle can be obtained by this approach. 
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