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Abstract 
 

     Increasing computing and wireless communication capabilities will expand the role of the sensors from mere 
information dissemination to more demanding tasks as sensor fusion, classification, collaborative target tracking. 
Fault tolerance and reliability performs exclusively vital role for embedded systems, such as obscured wireless 
sensors, which are deployed in some applications where it is difficult to access them physically. This paper is a 
contributing effort to explore the reliability issues in multifusion sensor networks. We present Markov models of 
the reliability using different types of sensors and spares that replace sensors when failed. We compare these 
models in terms of reliability, cost and MTTF (Minimum-Time-To-Fail). 
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I. Introduction 
         Sensor networks [1],[2].are being used in increasingly diverse applications areas, largely because of their 
diversity, such as visual, thermal, seismic, acoustic, and magnetic, that can sense (monitor) temperature, noise, 
physical movement of objects, radioactivity, pressure (air or fluid), and speed. Increasing computing and wireless 
communication capabilities will expand the role of the sensors from mere information dissemination to more 
demanding tasks as sensor fusion, classification, collaborative target tracking. Sensor networks do not rely on any 
hard-wired communication links; therefore, they can be deployed in places without any existing infrastructure, and 
they can be used in medical assistance, surveillance, reconnaissance, disaster relief operations [3],[4].  
           The primary idea in this paper is to address and analyze the reliability issues and to device a fault tolerance 
model in a sensor network system. We emphasize the importance of heterogeneous fault tolerance, where a single 
type of sensor backs up different types of sensors. We study the redundancy for only one type of sensors to replace 
only that type, spares to replace any type, and the tradeoff between reliability versus cost. We compare these 
models in terms of reliability, cost and MTTF (Minimum-Time-To-Fail). Finally we emphasize the similarity 
between dimension redundancy and error correcting codes. In our models no repair is considered. 
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II. Fault Tolerance and Multisensor Fusion 
 Wireless Sensor Network (WSN) is transforming into a multi-service medium leading to the convergence of 

voice, video and data communications. Each type of service has a particular constraint and it has to be satisfied for 
the communication to be effective. For example a voice or video data is delay sensitive and has to be transmitted 
with in a certain delay. So the service for each and every type of data needs to be met. Traditionally the current 
infrastructure only provided the best effort service, where the traffic is processed as quickly as possible, but there is 
no guarantee to the timeliness and assurance of actual delivery. This type of single service can no longer meet the 
need of the present day constraints. In [5], an interesting research regarding the fault tolerance aspects of a sensor 
network assumes that the nodes are either active or inactive with Bernoulli model.  In case that one or more sensors 
fail, other sensors of a different type can substitute their work, such that the fault goes undetectable. This is called 
multimodal sensor fusion, and an interesting research of multimodal sensor fusion was done in [6]. The multimodal 
sensor fusion intrigues scientists in other disciplines, for example a still incompletely solved question is how we 
identify and deal with three dimensional objects while the eye retina works with only two dimensional patterns of 
light. Given a network of multitype sensors, we study the aspects of fault tolerance of a multimodal sensor network. 
We consider different models on achieving fault tolerance. One assumption made of one failure at a time is not a 
strong assumption; two failures that happen on the same moment can be consider consecutive, because we assume 
independent events. Another assumption is made is that the failure of the components are independent one another. 
There are cases of fault dependent events: the temperature raises suddenly, power fluctuations, etc, but we assume 
that any two faults are independent. As a result, any two events are disjoint in term of probabilities. 

 
Definition The reliability function of a component at time t, R(t) is a conditional probability that the component is 
operational at time t given that it was operational at time t0.  The unreliability of a system is Q(t) = 1 – R(t). For any 
system, these conditions are generally true: 
                         - Initially the system is functional at t=0: R(0)=1, Q(0) =0. 
                         - Eventually the system will fail at t=T, R(T)=0, Q(T) =1. 

 
         The reliability block diagram (RBD) shows the dependence of the system reliability versus the reliability of 
each component. The Markov model for reliability of a system is based on two concepts: the possible states of the 
system, and the transitions between states. The failed state is annotated as F. The reliability of the system is defined 
to be as the probability of the system to be in any of those states except F; it is the probability of being in any state 
other than F (which is the sum of the probabilities of each state), or 1 – probability of the system to be in the F state. 
To measure the average time that each system operates before failing we consider the Minimum-Time-To-Fail 
(MTTF). 
 
Definition MTTF is the expected value of the failure time:  

                                                                          ∫∫
∞∞

==
00

)()( dttRdt
dt

tdQtMTTF . 

 
Definition The failure rate is defined as the number of failures per time unit: 

                                                                          
)(

 
 )(

tR
dt

tdR

=λ .      

The spares can replace faulty components. We consider in our models hot or stand-by spares, which means that 
they replace immediately the failed sensor (there is no gap in time between the moment the sensor has failed and 
the moment the spare replaces it.) When a spare substitutes a module, then it has the same failure rate as the 
module. We study different models. We start with a model in which a spare can replace only one type of sensor, so 
there are different types of spares for different type of sensors, and we consider the case of two types. We continue 
with spares that can replace any type, and here we consider two-type and three-type pooled spares. To order to 
achieve a better reliability of the system, one solution is to improve the quality of the spares; another one is to 
increase the number of spares. 
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III.  Modeling Single-type Spares 
 
Let A and B be two different types of sensors and two spares SA and SB that can replace only own type sensors 
(SA can replace only A, SB only B) (Figure 1). 
 

 
 
 
 

Figure 1. RBD diagram for two-single type spares 
 
Given the failure rate for each component (λA,λB, λSA, and λSB), the Markov model for this example is drawn in 
Figure 2. If we consider only one spare or no spare, we obtain only portions of the Markov model drawn in Figure 
2. If all components have the same failure rate λ (λA = λB = λSA = λSB = λ) then the reliability function is                     

            ttttt eeeeetR  6 5 4 3 2 615189)( λλλλλ −−−−− +−+−=  And   217.1
60
73

sin ==−− λtypegletwoMTTF . 

If we consider only one single-type spare, then the reliability function of the system becomes     

           tttt eeeetR  5 4 3 2 596)( λλλλ −−−− −+−= And 05.1
20
21

sin ==−− λtypegleoneMTTF . 

If we have no spare, then the reliability function becomes ttt eeetR  4 3 2 44)( λλλ −−− +−= and 917.0
12
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==− λsparenoMTTF . 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

Figure 2. Markov model for two-single type spares 
 

IV. Modeling Pooled Spares 
Consider the case in which we have pooled spares that can replace any type of sensors.  
Two-type 

Let A and B be two different types of sensors, and two spares of type AB that can replace any of the failed 
sensors, including themselves (see Figure 1 for the same RBD). Given the failure rate for each component (λA, λB, 
λAB) the Markov model is drawn in Figure 3, where S means AB. 
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                                       Figure 3. Markov model for two-pooled type spares 
 

 
Assuming identical failure rates, λA = λB = λAB = λ, the reliability function of the system is  

                                 tttt eeeetR  5 4 3 2 4152010)( λλλλ −−−− −+−=  And 283.1
60
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==−− λtypepooledtwoMTTF . 

If we consider only one pooled-type spare, then the reliability function becomes 

                                 tttt eeeetR  5 4 3 2

3
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==−− λtypepooledtwoMTTF . 

If we consider no spare, then 

                                 ttt eeetR  4 3 2 44)( λλλ −−− +−= And 917.0
12
11

==− λsparenoMTTF . 

 
 
Three-type 
          Let A, B, and C be three different types of sensors, with the following RBD, and the spare of type ABC can 
replace any of the failed sensors, including themselves (Figure 4). 
 
 
 
 
 

 
Figure 4. RBD diagram for three-pooled type spares 

 
Given the failure rate for each component, λA, λB, λC, and λABC, the Markov model for this example is drawn in 
Figure 5, where S means ABC. 
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Figure 5. Markov model for three-pooled type spares 

 
If we consider that all units including the spares have the same failure rate λ (λA = λB = λC = λABC = λ) then   
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If we consider only two-pooled spares, then the reliability function becomes  
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V. Reliability versus Cost 
Consider the three models: two-single-type spares, two-pooled-type spares and three-pooled-type spares. In Figure 
6 are presented different reliability values, taking particular values for λ: 0.02, 0.03, 0.05 and 0.10 as the number of 
failures per 10000 seconds. Comparing these models in terms of MTTF, the third model has the lowest value, 
followed by the first model and the second model is the best, independent of the value of λ: 

        
λ

=<
λ

=<
λ

= −−−−−− 2520
3234MTTF      

2520
3066MTTF     

2520
2719MTTF typepooledtwotypeglesintwotypepooledthree  

The cost of a non-redundant system is C; the added cost of a simple spare is c1 and the added cost of a pooled 
spare is c2. If a spare physically replaces a failed sensor then the cost of the system increases from C to C+c1. If a 
spare virtually replaces a failed sensor, then the cost of the system increases from C to C+c2. 
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 Reliability Values for the Failure Rate of 0.03
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 Reliability Values for the Failure Rate of 0.10

0

0.2

0.4

0.6

0.8

1

1.2

1 5 10 20 25 30 35 40 45 50 55

Time units in 10000 seconds

R
el

ia
bi

lit
y 

va
lu

e

Two-single-type spare mod
Two-pooled-type spare mo
Three-pooled-type spare m

 
Figure 6. Reliability values for λ = 0.02, 0.03, 0.05 and 0.10 failures per 10000 seconds 

 
In Figure 7 an example is shown, where C=4 for a two-type sensor system with no redundancy (no spares) with 

the cost of each component of 0.5. The single-type spare costs the same as one component, c1 = 0.5. The pooled-
type spare costs more than one component but less than two components, c2 = 0.75. 
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VI. Multifusion Sensor Networks 
Consider a set N of n objects ( |N| = n ), a set M of m sensors ( | M | = m ) of k types: mi sensors of type i, 

m mi
i

k

=
∑ =

1
. The output of each sensor is binary: output j i M j Ni ( ) { , }, ,∈ ∀ ∈ ∈0 1 . Shortly, consider i(j) to be  

output i(j).  
 
Definition Given two objects a and b, if i(a) ≠ i(b) then we can say that from the point of view of sensor i, the 
objects a and b are distinguishable. The assumption of the problem is that no two objects have the same properties, 
which means that for any two objects, there will be always a sensor which will differentiate them (the outputs of the 
sensor for those objects will be binary bit-wise). 

 
 Figure 7. MTTF versus Cost for C=4, c1=0.5 and c2=0.75 

 
Definition If M = { s1, s2, .. sm} is a set of sensors, then the binary coding of an object a is the ordered set of bits 
representing the output of  each sensor si with regard to a : coding M(a) = s1(a) s2(a)…sm(a).  
 
Observation 1 By definition, two objects a and b is individualized by the set of sensors M is their binary encodings 
are different: coding M (a) ≠ coding M (b). 
 
Observation 2 The maximum number of sensors required to individualize n objects is n-1. 
 
Observation 3 The minimum number of sensors required to individualize n objects is log n.. 
Proof  Given L = log n , we can have 2 log n different binary coding of length L. Based on observation 1, this 
means that we can have 2 log n individualized objects. Because 2 log n  ≥ 2 log n  = n, L is a correct value. We prove by 
contradiction that taking less than L sensors, we cannot individualize all the n objects. Take L1 = log n  – 1 and M1 
the set of L1 sensors. The set of all binary coding of length L1 has 12L  elements and  
                         log n + 1 > log n ≥ log n ⇒  log n > log n -1 ≥ log n -1⇒ 2 log n > 2 log n - 1 ⇒  n> 12L . 
              So there is only 12L different binary coding but n objects, which mean that at least two binary coding of the 
objects in N are the same. This implies that with L1 sensors we cannot individualize each object. As we see from the 
above observations, there is a parallel between dimension redundancy and error correcting codes. Given n bits of 
data, k bits of information and (n-k) redundant bits, out of 2n total number of binary strings, 2k code words can be 
generated. Without redundant information, you are closing the room for error detection and error correction. So more 
redundant bits you have, better the chances of getting error correction. 
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VII. Conclusions 
This paper is a contributing effort to explore the reliability issues in multimodal fusion sensor networks. We 
presented the system reliability for the case of two types of sensors and three types of sensors. The system reliability 
is calculated and suggestive values for different λ are given in both cases. We compare these models in terms of 
reliability, cost and MTTF (Minimum-Time-To-Fail). Finally we emphasize the similarity between dimension 
redundancy and error correcting codes.  
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