
International Journal of Information Technology     Vol. 22 No. 1 2016 
 

1 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract 

 

In order to meet the needs of increasing users and improve user-perceived latency, online services 

distribute and replicate data across geographically diverse data centers and direct user requests to the 

closest or least loaded server. Distributed Hash Table (DHT) is a structured overlay network that is 

widely utilized in geo-distributed storage systems, e.g., Dynamo. Some geo-distributed storage 

systems may need to locate an item with only keywords. In this paper, we present Jupiter, a DHT-

based middleware system for building geo-distributed storage systems. Jupiter provides robust and 

efficient routing mechanisms under geo-distributed environments. In addition, it also presents a 

secure routing policy to prevent dangerous routing messages. The key innovation in Jupiter is the 

integration of three concepts: robustness, efficiency and security. We have prototyped Jupiter, 

deployed it on a network of Linux machines, and used it to develop several distributed applications. 

We confirm the practicality, effectiveness and efficiency of Jupiter by conducting an extensive 

performance benchmark measured by efficiency, robustness, consistency and bandwidth. 

Keyword: Middleware, Geo-distributed Storage, Robustness, Efficiency, Security. 

 

I. Introduction 

 

Jupiter: A Robust, Efficient and Secure 
Middleware for Geo-distributed Storage Systems 

 
 

Quanqing Xu, Yonghong Wang, Khai Leong Yong, Khin Mi Mi Aung 

Data Storage Institute, A*STAR, Singapore 
{Xu_Quanqing, Wang_Yonghong, Yong_Khai_Leong, Mi_Mi_Aung}@dsi.a-star.edu.sg 

mailto:%7bXu_Quanqing,%20Wang_Yonghong,%20Yong_Khai_Leong,%20Mi_Mi_Aung%7d@dsi.a-star.edu.sg


Quanqing Xu, Yonghong Wang, Khai Leong Yong, and Khin Mi Mi Aung 
 

2 
 

 

In order to meet the needs of increasing users, scaling online services over the Internet is challenging 

to EB-scale storage [1]. To improve user-perceived latency that directly affects the quality of the 

user experience, online services distribute and replicate state across geographically diverse data 

centers and direct user requests to the closest or least loaded site. Ford et al. [2] proposed geo-

replication as an effective technique to prevent data loss under large scale concurrent node failures. 

Geo-replication across geographically dispersed sites is a fail-safe way to ensure data durability 

under a power outage. However, not all storage providers have the capability to support geo-

replication. In addition, even for data center operators that have geo-replication, e.g., Facebook’s 

TAO [3], losing data at a single site still incurs a high fixed cost due to the need to locate or re-

compute the data. 

Distributed hash table (DHT), e.g., Chord [4], is a structured overlay network that is widely utilized 

in geo-distributed storage systems, e.g., Dynamo [5] and Cassandra [6]. Some geo-distributed 

applications may need to locate an item (e.g., a file or document) with only keywords [7], e.g., 

Content Distribution Network (CDN) [8]. Existing techniques in DHT-based networks concern 

several problems: robustness in routing table maintenance mechanisms, efficient routing, and 

security on routing. Work on robustness in the context of overlay network maintenance has mostly 

focused on how to handle churn [9], transient routing failures and high CPU load. Moreover, routing 

efficiency is another important problem in DHT networks. Many studies focus on routing efficiency 

in a DHT [10]. In addition, how to keep consistence of replicas in DHT or geo-replication storage is 

also a difficult issue [11]. For example, in cloud backup [12], backup data is stored in geo-

distributed storage that maintains multiple replicas across several data centers. 

Our goal is to make a new generation of general DHT-based robust and efficient middleware for 

geo-distributed storage systems. To do this, we have designed and implemented Jupiter, a DHT 

middleware system where we use the Boolean model (i.e. exact match) to retrieve information. We 

design a series of policies to maintain a robust routing table. In addition, from the standpoints of 



Quanqing Xu, Yonghong Wang, Khai Leong Yong, and Khin Mi Mi Aung 
 

3 
 

 

routing efficiency, we present an iterative, concurrent UDP-based routing mechanism. The main 

contributions of this paper are fourfold: 

 Jupiter is robust in routing. We design a series of policies to maintain a robust routing table 

in Jupiter, based on a previous study: node lifetimes in P2P systems follow a heavy-tailed 

distribution; 

 Jupiter is efficient in routing. We design Jupiter DHT middleware system from the 

standpoints of routing mode, supporting concurrent routing or not, connection type between 

two machines, which make Jupiter efficient; 

 Jupiter is secure in routing. All the received messages must be checked via several steps to 

prevent serious attacks; 

 We confirm the effectiveness and efficiency of our methods by conducting an extensive 

performance measured by efficiency, robustness,  consistency and bandwidth; 

The remainder of this paper is organized as follows: Section II reviews the related work. We present 

the system architecture of Jupiter in Section III. Section IV describes how to maintain a routing table 

of Jupiter. Section V designs efficient routing protocols. Section VI discusses how to achieve high 

security on routing. Section VII reports the experimental results. Lastly, Section VIII leads to 

conclusion. 

II. Related Work 

1. Geo-distributed Storage Systems 

Previous geo-distributed storage systems face the unpleasant trade-off between strong semantics and 

low latency. Spanner [13] provides strong semantics with order-preserving serializable transactions, 

but these are expensive: like its predecessor Megastore [14]. In Spanner, transactions are updated, 

which take many cross data center round trips to execute and commit. MDCC [15] is faster, but it 

still incurs cross data center latency to execute and commit transactions. At the other end of the 



Quanqing Xu, Yonghong Wang, Khai Leong Yong, and Khin Mi Mi Aung 
 

4 
 

 

trade-off, Cassandra [6] and Dynamo [5] are key-value storage systems offering eventual 

consistency, while PNUTS [16] offers the slightly stronger per-record timeline consistency. Other 

systems provide stronger but relaxed semantics to achieve low-latency. Eiger [17] and COPS [18] 

offer causal+ consistency, in which write conflicts are resolved deterministically. Moreover Eiger 

and COPS require replication of all data across all data centers. Walter [19] provides parallel 

snapshot isolation and Gemini [20] provides Red/Blue consistency. Apart from weakened semantics, 

the latter two systems do not have a scalable design within a data center. 

In Nomad [21], Tran et al. proposed storage overlay as an efficient migration mechanism to migrate 

e-mail data across multiple data centers. In Volley [22], Agarwal et al. utilized system logs of 

accesses to determine a data center for each data item based on access interdependencies, the identity 

and time stamp of data access, and the balance of storage capacity across multiple data centers. In 

Pileus [23], client applications are allowed to declare consistency and latency requirements in the 

form of SLAs, which include latency and staleness bounds but do not support the types of 

probabilistic guarantees. Internally, Pileus enforces the SLAs by choosing which replica to access in 

an SLA-aware manner, whereas Dynamo-style systems tend to always access the closest replicas. In 

Tuba [24], consistency SLAs are supported by automatically reconfiguring the locations of its 

replicas in response to the client’s location and request rates. Other related works also include 

placing social media files across clouds [25] and a substantial body of literatures studying data 

placements in Content Distribution Networks.  

2. DHT-based Storage Systems 

Castro et al. [26] present a version of Pastry, MSPastry, which self-tunes its stabilization period to 

adapt to churn and achieve low bandwidth. MSPastry also estimates the current failure rate of nodes, 

using historical failure observations. Deb et al. [27] proposed a technique for improving average 

lookup times in DHT systems by caching auxiliary neighbours based on the access frequencies of 

nodes. It is particularly useful for applications such as name services in mobile environments or 



Quanqing Xu, Yonghong Wang, Khai Leong Yong, and Khin Mi Mi Aung 
 

5 
 

 

location services, where there are low churn rate for nodes and relatively higher churn rate for items. 

Attacks [28] on the data management level may be used to create a high load imbalance, seriously 

degrading the correctness and scalability of DHT-based systems. 

Bamboo [9] has a careful routing table maintenance strategy that is sensitive to bandwidth-limited 

environments. The authors advocate a fixed-period recovery algorithm, as opposed to the more 

traditional method of recovering from neighbour failures reactively, to cope with high churn. 

Bamboo also uses a lookup algorithm that attempts to minimize the effect of timeouts, through 

careful timeout tuning. Li et al. [29] proposed a protocol called Accordion that adjusts the size of the 

routing table based on a user-specified bandwidth budget and churn for maintenance. Mercury [30] 

employs a small world distribution for choosing neighbour links, but optimizes its tables to handle 

scalable range queries rather than single key lookups. A number of file-sharing P2P applications 

allow the user to specify a maximum bandwidth. 

III. System Architecture 

1． Preliminaries 

A. The Keyword Search Problem in DHT Networks 

To provide keyword search service in DHT networks, we assume that each item (e.g., a file or 

document) 𝑥 ∈𝐼 is associated with a set 𝐾x of keywords. For any item x, a keyword set K can 

describe x if K⊆Kx. For each set K of keywords, we define a set IK of items, where IK = {x|x ∈ I, K 

⊆ Kx}. That is to say, IK is the set of items that can be described by K. The size |𝐼K| is called the 

keyword frequency of K.  

To provide keyword search service, a distributed index (DHT) scheme is designed so that an item 

can be located via a query including a few keywords. There are two kinds of searches in the service: 

1) Exact Search: Given keyword set K, the service should return the set {x|Kx = K} of items that are 

associated with exactly the keyword set K, e.g., P2P file-sharing systems. 2) Top-k Search: Given 



Quanqing Xu, Yonghong Wang, Khai Leong Yong, and Khin Mi Mi Aung 
 

6 
 

 

keyword set K and a given threshold t, the service should return a set of min(t, |𝐼K|) items that can be 

described by K. 

B. Jupiter Design Principle 

A general DHT provides the following semantic operations: 

 Put(Key, Value) Publishes a pair (Key, Value) into DHT networks; 

 Get(Key) Returns the Value of the Key; 

 Lookup(Key) Provides general access to the node maintaining the Key; 

 Routing(Key) Provides general access to the node responsible for the Key, and to each node 

along the routing path; 

where “Put/Get” interfaces are provided to upper layers. In fact, “Put/Get” interfaces should be 

provided by another component since routing and storage are both important infrastructures. The 

“Routing” interface may be replaced by “Lookup”. Therefore, Jupiter provides a “Lookup” interface 

to upper layers and can support many applications at the same time. We present the following 

scenario as read in Figure 1, where Content Delivery Network (CDN), Social Networking Service 

(SNS), and Online Backup run on Jupiter. 

 

Figure 1: A Jupiter-based Scenario 



Quanqing Xu, Yonghong Wang, Khai Leong Yong, and Khin Mi Mi Aung 
 

7 
 

 

2． Architecture Description 

We present Jupiter’s system architecture as shown in Figure 2. Typically, upper applications such as 

social network service, content delivery network and online backup, are placed on top of Jupiter, 

which in turn is built on a physical network. Here we have inserted a keyword search layer in 

between the application layer and the DHT overlay to facilitate item retrieval. An asynchronous 

distribution approach [31] can be employed in Jupiter.  

 

Figure 2: Jupiter’s System Architecture 

The keyword search layer is built on a DHT network to provide guaranteed search, in which it can 

be located with reasonable cost if an item is residing somewhere in the network. The DHT overlay of 

Jupiter in Figure 2 consists of the following components: 1) maintaining a routing table; 2) routing 

protocols; 3) security on routing. There are four components to maintain a robust routing table: 

 Receiving/processing new messages. This component receives and processes new messages. 

In addition, it verifies the integrity of messages and gives the corresponding operations;  

 Detecting new nodes. This component is regularly run. When the number of nodes in a 

routing table is not enough, this component tries to detect new nodes. It will be discussed in 

detail in IV-B;  



Quanqing Xu, Yonghong Wang, Khai Leong Yong, and Khin Mi Mi Aung 
 

8 
 

 

 Checking nodes’ statuses in a routing table. This component is also regularly run to clean the 

off-line nodes, and the nodes that have not been contacted for a long time. We will discuss in 

detail in IV-B;  

 Processing time-out messages. For a requesting message, a response message is necessary for 

answering the requesting one. This component maintains a message queue for waiting 

responses. For a responding timeout message, this component records a timeout for the 

corresponding field of the destination node in a local routing table. When many timeouts 

happen, the corresponding node is considered to be off-line and removed from the local 

routing table via a specific component.  

IV. Design a Robust Routing Table 

Routing table is a core component in a DHT. Each node maintains its routing table and utilizes it to 

connect other nodes. In DHT networks, there is a rule: each node records as many valid nodes as 

possible and finds target nodes with the cost of O(logN). Therefore, a series of ingenious data 

structures are designed to reach the best performance in theory with the smallest memory cost. 

1． Routing Table Structure 

From the view of a routing table’s size, a big routing table can provide more routing choices, which 

can bring a shorter number of hops and provide many different delay choices for each hop. However, 

a big routing table incurs too much cost: the corresponding communication cost is spent for keeping 

statuses of nodes in the routing table new enough. For finding target nodes with the cost of O(logN), 

all the entries in a routing table of Jupiter are organized to a tree, which includes two kinds of entries: 

intermediary entry and leaf entry. Leaf entry is called bucket. A routing table at least includes a 

bucket, which includes a series of nodes’ information: IP address, port and some relevant 

information for maintaining the routing table. 



Quanqing Xu, Yonghong Wang, Khai Leong Yong, and Khin Mi Mi Aung 
 

9 
 

 

2． Maintaining Routing Table 

Churn is inevitable in today’s data centers [32] and must be considered in designing geo-distributed 

storage systems. For maintaining routing performance (efficiency and fault-tolerance), a node needs 

to pay the price of bandwidth to maintain its routing table. On the one hand, a node needs to assure 

that nodes’ information in its routing table is new enough. In other words, nodes in its routing table 

can be confirmed to be accessed and connected for decreasing invalid nodes as many as possible. 

Invalid nodes in a routing table result in larger delays because of waiting time-outs of network 

packets in routing. On the other hand, a node needs to retrieve new nodes’ information in geo-

distributed storage systems within the limit of bandwidth and CPU resource.  

If node lifetimes follow a memoryless exponential distribution, the probability p of a neighbour 

being alive is determined only by the time interval since the neighbour was last known to be alive. 

However, in real systems, the distribution of node lifetimes is often heavy-tailed: nodes that have 

been alive for a long time are more likely to stay alive for an even longer time. In subsequent design 

and maintenance of routing table, we suppose that node lifetimes follow a heavy-tailed distribution. 

2.1 Adding New Nodes 

A node needs to consolidate its routing table with trying various methods when its routing table does 

not have enough nodes. At the same time, the node also needs to be added into other nodes’ routing 

tables. There are two means to find new nodes in Jupiter:  

 Passive monitoring. When a node p receives a message from an unknown node, this 

unknown node is validated and added into the local routing table.  

 Active detecting. This component checks each bucket regularly. If there are less than θp (θp 

=60 in the current setting) percent of the nodes in a bucket, this component randomly detects 

a node to consolidate this bucket. We present a policy to generate this node’s ID. For a given 

bucket Bkt, a certain amount of front bits are the same. Therefore, a node’s ID may be 

generated: a certain amount of front bits lies in the bucket Bkt pluses back bits that are 



Quanqing Xu, Yonghong Wang, Khai Leong Yong, and Khin Mi Mi Aung 
 

10 
 

 

generated randomly. And then a Lookup operation is exploited to find this node. After this 

Lookup, some other nodes are added into the local routing table with high probability.  

Algorithm 6.1: Adding a New Node 

Input: a bucket Bkt 

1 Calculating the active node ratio θp in Bkt; 

2 if θp < θth then 

3     NodeID = concatenating a certain amount of front bits in Bkt and randomly generated back bits; 

4     Nodes = Lookup(NodeID); 

5     Adding Nodes into the local routing table; 

 

2.2 Deleting Old Nodes 

A node must be new enough in a routing table. That is to say, the node must be connected with high 

probability in that moment. However, a dead node is probably not connected and is also called an 

invalid one. Invalid nodes in a routing table can degrade routing performance. Two nodes in the 

network across data centers can communicate with each other by sending messages. During this 

procedure, a node can check another node’s status by timer and time-out mechanisms. However, 

casual network error and congestion can result in misunderstanding the counterpart’s status. 

Therefore, casual message time-out cannot cause that the node is deleted from a routing table. If a 

node has several continuous message time-outs, it is removed from a routing table. This component 

keeps nodes in a routing table new enough and decreases the number of invalid nodes by detecting 

and recording online nodes’ information. 

Thus, a node’s information in a routing table includes the entry time, the last contact time and the 

number of continuous time-outs. This component is regularly run (2 minutes each time in the current 

setting) to maintain each bucket. For each node p in a bucket, this component calculates the 

difference dp of the last check and the current time. If dp < Tth (Tth=10 minutes in the current setting), 

the node p is new enough, which is not checked. Otherwise, if p has Nth (4 times in Jupiter) timeouts, 



Quanqing Xu, Yonghong Wang, Khai Leong Yong, and Khin Mi Mi Aung 
 

11 
 

 

the node p is invalid and may be removed from the local routing table. If not, the initiator sends a 

PING message to p. If p returns a PONG message to the initiator, the number of p’s timeout is 

initialized to be zero and its last check time is modified. For saving bandwidth, only a node in each 

bucket is detected. If there are several nodes to be checked for each bucket, the last node that is 

added into the local routing table is checked because of the heavy-tailed distribution of node 

lifetimes. 

Algorithm 6.2: Deleting an Old Node 

Input: p 

1. Calculating the difference dp of the last check and the current time; 

2. if dp < Tth then 

3.     p is not checked; 

4. else 

5.     if p has Nth timeouts then 

6.         p is invalid and may be removed from the local routing table; 

7.     else 

8.         the initiator sends a PING message to p; 

9.         if p returns a PONG message to the initiator then 

10.         the number of p's timeout is initialized to be zero; 

11.         p's last check time is modified 

 

2.3 Cost Analysis 

We analyze bandwidth consumption in brief, which is mainly relevant with the several factors: the 

size of a routing table, the fresh degree of nodes in a routing table, the active degree of nodes in geo-

distributed storage systems, and the active degree of nodes in upper applications. In general, 

bandwidth consumption consists of the following four components: 

 Requesting messages driven by upper applications. This cost is inevitable. It can be as low 

as possible through organizing the routing table reasonably.  



Quanqing Xu, Yonghong Wang, Khai Leong Yong, and Khin Mi Mi Aung 
 

12 
 

 

 Replying other nodes’ requests. This cost is also inevitable. If the system can function 

properly, received messages by each node are relatively normal. If not, quite a lot of 

messages can be received by some nodes in that malicious users utilize system vulnerabilities 

to destroy the whole system.  

 Bandwidth in the component of deleting old nodes. This cost depends on the size of a 

routing table, the updating frequency of nodes in the routing table.  

 Bandwidth in the component of adding new nodes. When a node starts to enter Jupiter 

DHT network, some bandwidth is necessary to find new nodes. When Jupiter DHT network 

is stable, nodes do not waste too much bandwidth in this component. 

V. Designing Efficient Routing Protocols 

As designing routing protocols, we need to make some choices: routing mode, supporting concurrent 

routing or not, connection type between two nodes. These choices interact with one another, and any 

choice is not absolutely right. Thus, we need to present an optimal plan based on these choices. 

1．Recursive or Iterative Routing?  

There are two basic routings: recursive routing and iterative routing. In recursive routing as shown in 

Figure 3(a), the initiator sends a routing request to its neighbour, and when the request reaches its 

destination node, the destination node sends its routing information directly back to the initiator. In 

iterative routing as shown in Figure 3(b), the initiator acts as a coordinator in the whole routing 

procedure and sends each routing request. Other nodes receive the routing request and return the 

nearest node lists to the initiator in their routing tables. The initiator adds the node lists into its local 

routing results. According to its local routing results, the initiator makes the next decision: routing 

has been finished and the destination node has been found, or the further routing is necessary and 

which nodes should be selected to send the next routing request. We present the comparisons of 

recursive and iterative routing in Table I.  



Quanqing Xu, Yonghong Wang, Khai Leong Yong, and Khin Mi Mi Aung
 

13 
 

 

  

όŀύ wŜŎǳǊǎƛǾŜ wƻǳǘƛƴƎ όōύ LǘŜǊŀǘƛǾŜ wƻǳǘƛƴƎ 

CƛƎΦ оΦ wƻǳǘƛƴƎ aƻŘŜ 

In recursive routing, each node in the lookup path directly forwards a lookup to the next node, and 

when the lookup reaches the key’s predecessor, the predecessor sends its successor list directly back 

to the initiator, while in iterative routing the initiator sends a lookup message to each successive 

node in the lookup path, and waits for the response before proceeding. Iterative routing is easier for 

the initiator to manage, and the initiator can decide which node is the next one of a current iterative 

lookup, which is important to support concurrent lookup and security. The initiator can control the 

granularity of concurrent lookup, i.e., send routing requests to many nodes, which can decrease the 

influence of invalid nodes in a routing table and reduce routing latency. Therefore, from the 

standpoint of time-consuming, iterative routing has lower latency than recursive one. However, it is 

hard for recursive routing to support concurrent lookup. The initiator may send routing requests to 

many successive nodes, these nodes may further send routing requests to their successive nodes, and 

so on, which makes lookup messages be increased exponentially. However, this routing converges a 

small identifier space in the end and incurs that the rear nodes in this routing path receive many 

repetitive routing requests.  

Table 1 Comparisons of recursive and iterative routing 
                Concurrency Controllability Latency UDP Security 

recursive routing bad bad slow unfriendly a bit bad 

iterative routing good good quick friendly a bit good 

 

Routing 
Comparison 



Quanqing Xu, Yonghong Wang, Khai Leong Yong, and Khin Mi Mi Aung

14 
 

 

Moreover, to some extent, iterative routing can prevent malicious nodes to pollute routing tables. 

The initiator in iterative routing makes a decision for each hop according to local information. The 

initiator can make a right judgement from the routing information returned by many neighbours 

unless its routing table is polluted as bootstrapping. However, the initiator in recursive routing loses 

routing control after sending a routing request so that any malicious node in this routing procedure 

can implement routing cheating. 

2．Concurrent Routing  

We call concurrent routing: a node concurrently sends routing requests to many nodes. Concurrent 

routing can reduce routing latency that are caused by invalid nodes in that it can send routing 

requests to many nodes. Each routing has only a path in Chord. Chord cannot support concurrent 

routing. In each routing selection, Chord utilizes the greediest policy: choosing the nearest node in 

logic space to route. There are two problems about this policy.  

The optimization in logic space cannot guarantee the optimization in routing. Routing time is the 

most important metric to evaluate routing performance, i.e., how long is it for routing to the 

destination node. Gummadi et al. [10] discussed the efficiency of routing and came to a conclusion 

that a routing can be completed within almost equal hops even if any node (not an optimum one) in 

the same area is chosen in the routing. Therefore, for saving routing time, a node in Jupiter selects 

several nodes in the same area to be as the next routing nodes according to not logical distance but 

network distance. This node concurrently sends routing requests to those nodes, which can decrease 

the probability of choosing nodes that are close in logic space but far in network distance.  

The cost waiting time-out messages makes routing slower if the node is invalid, which makes 

concurrent routing necessary.  

Concurrent routing cannot be utilized by Bamboo [9] because Bamboo uses recursive routing. 

Accordion [29] is another typical DHT, which employs recursive routing. Each Accordion node 

maintains a “parallelism window” variable that determines the number of copies it forwards of each 



Quanqing Xu, Yonghong Wang, Khai Leong Yong, and Khin Mi Mi Aung

15 
 

 

received or initiated lookup. When a node initializes a routing request, it marks one of the parallel 

copies with a “primary” flag which gives that copy high priority. This policy prevents the routing 

request to be cancelled. However, the mechanisms make the Accordion DHT complicated. Thus, 

iterative routing is a better choice than recursive routing to support concurrent routing. 

3．Connections between Nodes  

There are no direct physical links between a node and its neighbours in a DHT. Nodes send UDP 

messages to confirm if their neighbours are available. Nodes in Chord DHT employ TCP to link one 

another, while TCP is not suitable to a large scale dynamic network. There are the following reasons: 

1) nodes are dynamic and their neighbours are also dynamic. For keeping TCP links between a node 

and its neighbours, new TCP links have to be constructed and old TCP links have to be destroyed. 

Too many TCP links result in too much communication cost. 2) TCP is used as a transferring 

protocol to bring start delay, congestion control and too much time for evaluating overtime. 

Therefore, TCP links between a node and its neighbours are kept to a minimum, and then routing is 

finished by these neighbours, e.g., pond [33]. Thus, TCP is impossible to be used in iterative routing 

and nodes may only use recursive routing. 3) TCP-based congestion control constricts choices of 

error-handling during designing protocols.  

Meanwhile, resources in geo-distributed storage systems are difficultly controlled in the routing 

layer. DHash [34] used a transfer ring protocol named STP (Striped Transport Protocol) based on 

UDP. In addition, some TCP-like features are added into STP. A re-implemented TCP in the user 

layer is utilized in Tapestry [35]. In conclusion, as a transmission mode, TCP has some 

disadvantages, while UDP-based transmission protocol with constraints is a better choice in geo-

distributed storage systems. 



Quanqing Xu, Yonghong Wang, Khai Leong Yong, and Khin Mi Mi Aung

16 
 

 

VI. Achieving High Security on Routing 

1． Importance of Security in Geo-distributed Systems 

A distributed system deployed in the Internet must be aware of security. A bad design or security 

hole can lead geo-distributed systems to go into dangers and even threaten other applications in the 

Internet in that geo-distributed systems are decentralized so that the systems are difficult to be 

controlled. We give some basic considerations about security in our system. Our main principle is 

that the consistency principle must be guaranteed during processing received messages. On the one 

hand, it can prevent system exceptions, which are brought by incorrect manipulations or network 

errors. On the other hand, it can also prevent the malicious users that analyze messages to destroy 

the whole geo-distributed system. 

2． Encapsulating Transferred Messages 

We use XML to stand for communications among nodes in our system. There are good reasons for 

using text streams as carriers of network protocols [22]: 1) text streams are very easy for human 

beings to read, write and edit without specialized tools, which is helpful to catch and debug possible 

bugs; 2) as carriers of protocols, text streams are useful to upgrade and extend with the maximum 

degree of freedom. Furthermore, we use XML text streams as carriers of Jupiter protocol, which 

adequately utilizes the serialization of XML. Each message of Jupiter is an in-memory object, which 

is serialized and sent. 

3． Preventing Dangerous Messages 

Zhou et al. [9] found that vulnerability in eMule network, combined with the character of the DNS 

service, a more serious DDos attack can be launched. This vulnerability is that a node receives PING 

messages from unknown nodes, and then returns PONG messages to those nodes. In brief, for a 

request/respond message system: if a node that does not send a request message receives a respond 

message, this response message is suspicious; if a received message has some invalid bits, this 



Quanqing Xu, Yonghong Wang, Khai Leong Yong, and Khin Mi Mi Aung

17 
 

 

message must not be processed. Therefore, all the received messages in our Jupiter are checked via 

Algorithm 3.  

Algorithm 3: Preventing a Dangerous Message 

Input: Message 

1 The received message need to be deserialized; 

2 Each bit of the received message is checked; 

3 if there is an invalid bit in this message then 

4     return; 

5 p checks the sender and receiver of the message to confirm the receiver; 

6 if p is not the receiver then 

7     return; 

8 if (This message is a request one) && (p has sent a request message to the sender) then 

9     p responses this message; 

10    return; 

All the received messages need to be deserialized so that any error message is discarded (line 1). 

Each bit of a received message is checked if it is valid such that any message with invalid bits is also 

discarded (lines 2-4). A node checks the sender and receiver of the received message to confirm if it 

is the receiver, if yes, it response this message, in addition, it needs to check if it has sent a request 

message to the sender (lines 5-10). Finally, all the messages through the checking procedures can be 

processed. 

VII. Experiments 

1． Data Sets  

Since there is no public data set for geo-distributed storage system, we choose the data sets coming 

from shared resources of two weeks in a real P2P system: Maze, which is one of the largest P2P 

systems over CERNET (China Education and Research Network), with an average of 20K 

simultaneously online users, and it has been renamed as AmazingStore. There are 7,565 active users 



Quanqing Xu, Yonghong Wang, Khai Leong Yong, and Khin Mi Mi Aung

18 
 

 

and 30,001,293 files totally. We pre-process the shared resources, e.g., removing shared resources in 

a system disk (e.g., C:\), WINDOWS installation directory (e.g., C:\WINDOWS) and programs 

installation directory (e.g., C:\Program Files), which are shared by free riders. 

2． Experimental Setup  

We have prototyped Jupiter consisting of around 6K lines of C++ code, deployed it on a small 

network of 20 Linux machines withRedhatELAS4 across sites, where10 machines are configured 

with Intel(R) Xeon(TM) 2.80GHz CPU×4 and 4GB memory, 5 machines are configured with 

Intel(R) Xeon(R) E5310 @ 1.60GHz CPU×8 and 8GB memory, and 5 machines are configured with 

Intel(R) Xeon(TM) 2.80GHz CPU×4 and 8GB memory. In our experiments, there are many 

simulated nodes in each computer. We equip each node with real shared files from a user in Maze. 

Each node is an independent process to monitor its port and records its trace. All the experimental 

results are based on analyzing nodes’ traces. The running time of each experiment is forty minutes. 

3． Experimental Results  

This section presents experimental results to evaluate the efficiency, robustness and consistency of 

Jupiter.  

A. Efficiency 

Efficiency is an important metric in the routing layer, which affects upper applications. We evaluate 

the efficiency of lookup when Jupiter is almost stable. There are two metrics: 1) average lookup time 

which measures the real running efficiency of lookup and 2) average lookup hops which measures if 

routing results can be returned in O(logN) steps. We measure routing efficiency when any node 

performs a search for a node, a file or a keyword. Here the minimum and maximum values are the 

mean of values of the lower and upper ten percent of metrics respectively.  

Figure 4(a) shows the results of average, minimum and maximum lookup time. As seen from Figure 

4(a), the time of average lookup increases slightly with the increment of network size. The minimum 

time of lookup is almost the same in different network sizes. For the maximum time of lookup, there 



Quanqing Xu, Yonghong Wang, Khai Leong Yong, and Khin Mi Mi Aung

19 
 

 

are two situations: 1) the routing table of a node does not have enough nodes when the node is just 

online; 2) a node is offline, which incurs there is a routing timeout. Figure 4(b) shows the results of 

the average, minimum and maximum number of lookup hops. As can be seen from Figure 4(b), the 

average number of lookup hops also increases slightly with the increment of network size. The hops 

of average lookup are almost two in that the network size is not huge. The hops of minimum lookup 

are almost the same: one. That is to say that a node can find the destination within one hop under the 

best conditions. For the maximum number of lookup hops, there are similar reasons to the maximum 

time of lookup. 

  

(a) Lookup Time (b) Lookup Hops 

Fig. 4. Efficiency Performance with Different Network Size in Jupiter 

B. Robustness 

Robustness is also an important metric of routing. High churn is inevitable for nodes in geo-

distributed storage systems. Therefore, we need to know if Jupiter can be still on work in this 

situation. In this experiment, five percent of online nodes are stopped at the moment of the tenth 

minute. Jupiter comes into a stable status at that moment. Five minutes later, another five percent of 

online nodes are stopped and existing offline nodes join the Jupiter system again. This procedure is 

repeated for five times.  

Compared with Figure 4(a) and Figure 4(b), Figure 5(a) and Figure 5(b)illustrate that Jupiter 

achieves a little bit worse results under churn conditions than those under almost stable conditions, 

but their differences are not obvious. Routing messages are delayed because of nodes’ departures, 



Quanqing Xu, Yonghong Wang, Khai Leong Yong, and Khin Mi Mi Aung

20 
 

 

which degrade lookup performance. Subsequently, lookup performance rises gradually as there are 

increasingly valid nodes in the routing tables of the remaining nodes in Jupiter due to its routing 

table maintenance mechanisms.  

  

(a) Lookup Time (b) Lookup Hops 

Fig. 5. Robustness Performance with Different Network Size in Jupiter 

C. Consistency 

In this experiment, we evaluate the consistency of routing. We call consistency: when there are high 

churn hates in a distributed system, whether any two nodes can return the same routing results for 

the same routing destination. We use how many nodes are overlapped among K returned nodes to 

measure the consistency as shown in the following formula, for any two queries for the same file or 

keyword from two different nodes. 

𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦=
𝑆A∩𝑆B

𝑆A∪𝑆B
 

where 𝑆A and 𝑆B are the returned sets of nodes for node A and B respectively. 

 

Fig. 6. Consistency with Different Network Size in Jupiter 



Quanqing Xu, Yonghong Wang, Khai Leong Yong, and Khin Mi Mi Aung

21 
 

 

As shown in Figure 6, the minimum and maximum value of consistency are 85.86% and 96.54% 

respectively when performing searches for keywords and the numbers of nodes are 400 and 800 

respectively. They are 88.11% and 98.56% respectively when performing searches for files and the 

number of nodes are 900 and 700 respectively. When any two nodes in Jupiter lookup the same file 

or keyword, there are only one or two different nodes in returned results at the beginnings and the 

other nodes are the same, which reflects the excellent convergence of Jupiter. 

D. Bandwidth  

In this experiment, we are aware of bandwidth in routing. We can measure bandwidth cost with a 

metric: sent bytes per second. An active node initializes a random lookup every half a minute, and an 

inactive node only maintains its routing table and responds the requests from other nodes. Here the 

minimum and maximum bandwidth consumptions are the mean of values of the lower and upper ten 

percent of bandwidth consumptions respectively. As shown in Figure 7(a), for an inactive node, its 

bandwidth consumption responding other requests is low, even the maximum bandwidth 

consumption only reaches 1.2KB/s as performing searches for files (the number of nodes is 800). 

Maintaining a routing table consumes some bandwidth, but this bandwidth consumption does not 

vary much with the increment of network size. For an active node, its maintenance cost rises in that 

it continuously sends routing requests, which incur that its routing table is larger than that of an 

inactive node. Therefore, for its routing table, the maintenance cost rises. In a word, bandwidth 

consumption of a node, even an active node in Jupiter, is acceptable: average bandwidth 

consumption of about 1.5KB/s is no problem for a node in the current Internet. 

 



Quanqing Xu, Yonghong Wang, Khai Leong Yong, and Khin Mi Mi Aung

22 
 

 

  

(a) Inactive Nodes (b) Active Nodes 

Fig. 7. Bandwidth Cost with Different Network Size in Jupiter 

VIII. Conclusion  

In this paper, we present Jupiter, a DHT middleware system for building geo-distributed storage 

systems. Jupiter provides robust and efficient routing mechanisms under geo-distributed 

environments. The key innovation is the integration of two concepts: robustness and efficiency. We 

have prototyped it and deployed it on a network of Linux machines. We confirm the effectiveness 

and efficiency of Jupiter by conducting an extensive performance benchmark measured by efficiency, 

robustness and consistency. In future, to deploy Concurrent Regeneration codes with Local 

reconstruction (CRL) [36] in Jupiter is a possible work to reduce storage space consumption. 

References 

[1] Q. Xu, R. V. Arumugam, K. L. Yong, and S. Mahadevan, “DROP: Facilitating distributed 

metadata management in EB-scale storage systems,” in IEEE 29th Symposium on Mass 

Storage Systems and Technologies, MSST 2013, May 6-10, 2013, Long Beach, CA, USA. 

IEEE, 2013, pp. 1–10.  

[2] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V. Truong, L. Barroso, C. Grimes, andS. 

Quinlan, “Availability in globally distributed storage systems,” in 9th USENIX Symposium 

on Operating Systems Design and Implementation, OSDI 2010, October 4-6, 2010, 

Vancouver, BC, Canada, Proceedings, 2010, pp. 61–74.  



Quanqing Xu, Yonghong Wang, Khai Leong Yong, and Khin Mi Mi Aung

23 
 

 

[3] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding, J. Ferris, A. Giardullo, 

S. Kulkarni, H. C. Li, M. Marchukov, D. Petrov, L. Puzar, Y. J. Song, and V. 

Venkataramani, “TAO: facebook’s distributed data store for the social graph,” in 2013 

USENIX Annual Technical Conference, San Jose, CA, USA, June 26-28, 2013, 2013, pp. 

49–60.  

[4] I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: A 

scalable peer-to-peer lookup service for internet applications,” in SIGCOMM, 2001, pp. 

149–160.  

[5] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. 

Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo: amazon’s highly available key-

value store,” in Proceedings of the 21st ACM Symposium on Operating Systems Principles 

2007, SOSP 2007, Stevenson, Washington, USA, October 14-17, 2007, 2007, pp. 205–220.  

[6] A. Lakshman and P. Malik, “Cassandra: a decentralized structured storage system,” 

Operating Systems Review, vol. 44, no. 2, pp. 35–40, 2010.  

[7] Q. Xu, H. T. Shen, Y. Dai, B. Cui, and X. Zhou, “Achieving effective multi-term queries for 

fast DHT information retrieval,” in Proceedings of the 9th International Conference on Web 

Information Systems Engineering (WISE) (2008), Springer-Verlag, pp. 20–35. 

[8] M. J. Freedman, “Experiences with coral CDN: A five-year operational view,” in 

Proceedings of the 7th USENIX Symposium on Networked Systems Design and 

Implementation, NSDI 2010, April 28-30, 2010, San Jose, CA, USA, 2010, pp. 95–110.  

[9] S. C. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling churn in a DHT,” in 

Proceedings of the General Track: 2004 USENIX Annual Technical Conference, June 27 -

July 2, 2004, Boston Marriott Copley Place, Boston, MA, USA, 2004, pp. 127–140.  

[10] P. K. Gummadi, R. Gummadi, S. D. Gribble, S. Ratnasamy, S. Shenker, and I. Stoica, “The 

impact of DHT routing geometry on resilience and proximity,” in SIGCOMM, 2003, pp. 

381–394.  



Quanqing Xu, Yonghong Wang, Khai Leong Yong, and Khin Mi Mi Aung

24 
 

 

[11] Q. Xu, R. V. Arumugam, K. L. Yong, and S. Mahadevan,“Efficient and scalable metadata 

management in eb-scale file systems,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 11, 

pp. 2840–2850, 2014.  

[12] Q. Xu, L. Zhao, M. Xiao, A. Liu, and Y. Dai, “YuruBackup: A space-efficient and highly 

scalable incremental backup system in the cloud,” International Journal of Parallel 

Programming, vol.43, no.3, pp.316– 338, 2015.  

[13] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat, A. 

Gubarev, C. Heiser, P. Hochschild, W. C. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. 

Melnik, D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. 

Taylor, R. Wang, and D. Woodford, “Spanner: Google’s globally-distributed database,” in 

10th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2012, 

Hollywood, CA, USA, October 8-10, 2012, 2012, pp. 261–264.  

[14] J. Baker, C. Bond, J. C. Corbett, J. J. Furman, A. Khorlin, J. Larson, J. Leon, Y. Li, A. 

Lloyd, and V. Yushprakh, “Megastore: Providing scalable, highly available storage for 

interactive services,” in CIDR 2011, Fifth Biennial Conference on Innovative Data Systems 

Research, Asilomar, CA, USA, January 9-12, 2011, 2011, pp. 223–234.  

[15] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and A. Fekete,“MDCC: multi-data center 

consistency,” in Eighth Eurosys Conference 2013, Prague, Czech Republic, April 14-17, 

2013, Z. Hanz´alek, H. H¨artig, M. Castro, and M. F. Kaashoek, Eds. ACM, 2013, pp. 113–

126.  

[16] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H. Jacobsen, N. 

Puz, D. Weaver, and R. Yerneni, “PNUTS: yahoo!’s hosted data serving platform,” 

PVLDB, vol.1,no.2,pp.1277– 1288, 2008.  

[17] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen, “Stronger semantics for 

low-latency geo-distributed storage,” in Proceedings of the 10th USENIX Symposium on 



Quanqing Xu, Yonghong Wang, Khai Leong Yong, and Khin Mi Mi Aung

25 
 

 

Networked Systems Design and Implementation, NSDI 2013, Lombard, IL, USA, April 2-5, 

2013, 2013, pp. 313–328.  

[18] ——, “Don’t settle for eventual: scalable causal consistency for wide-area storage with 

COPS,” in Proceedings of the 23rd ACM Symposium on Operating Systems Principles 

2011, SOSP 2011, Cascais, Portugal, October 23-26, 2011, 2011, pp. 401–416.  

[19] Y. Sovran, R. Power, M. K. Aguilera, and J. Li, “Transactional storage for geo-distributed 

systems,” in Proceedings of the 23rd ACM Symposium on Operating Systems Principles 

2011, SOSP 2011, Cascais, Portugal, October 23-26, 2011, 2011, pp. 385–400.  

[20] C. Li, D. Porto, A. Clement, J. Gehrke, N. M. Preguic¸a, and R. Rodrigues, “Making geo-

distributed systems fast as possible, consistent when necessary,” in 10th USENIX 

Symposium on Operating Systems Design and Implementation, OSDI 2012, Hollywood, 

CA, USA, October 8-10, 2012, 2012, pp. 265–278.  

[21] N. Tran, M. Aguilera, and M. Balakrishnan, “Online migration for geo-distributed storage 

systems,” in USENIX ATC, 2011. 

[22] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H. Bhogan, “Volley: 

Automated data placement for geo-distributed cloud services,” in NSDI, 2010. 

[23] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan, M. K. Aguilera, and H. Abu-

Libdeh, “Consistency-based service level agreements for cloud storage,” in Proceedings of 

the Twenty-Fourth ACM Symposium on Operating Systems Principles, ACM, 2013, pp. 

309–324. 

[24] M. S. Ardekani and D. B. Terry, “A self-configurable geo-replicated cloud storage system,” 

in the 11th USENIX Symposium on Operating Systems Design and Implementation 

(OSDI), 2014, pp. 367–381, 

[25] Y. Wu, C. Wu, B. Li, L. Zhang, Z. Li, and F. Lau, “Scaling social media applications into 

geo-distributed clouds,” in INFOCOM, 2012. 



Quanqing Xu, Yonghong Wang, Khai Leong Yong, and Khin Mi Mi Aung

26 
 

 

[26] M. Castro, M. Costa, and A. I. T. Rowstron, “Performance and dependability of structured 

peer-to-peer overlays,” in 2004 International Conference on Dependable Systems and 

Networks (DSN2004),28June -1 July 2004, Florence, Italy, Proceedings, 2004, pp. 9–18.  

[27] S. Deb, P. Linga, R. Rastogi, and A. Srinivasan, “Accelerating lookups in P2P systems 

using peer caching,” in Proceedings of the 24th International Conference on Data 

Engineering, ICDE 2008, April 712, 2008, Canc´exico, G. Alonso, J. A. Blakeley, and A. L. 

P. un, M´Chen, Eds. IEEE, 2008, pp. 1003–1012.  

[28] B. Awerbuchand C. Scheideler, “Towards a scalable and robust DHT,” in SPAA2006: 

Proceedings of the18th Annual ACM Symposium on Parallelism in Algorithms and 

Architectures, Cambridge, Massachusetts, USA, July 30 -August 2, 2006, P. B. Gibbons 

and U. Vishkin, Eds. ACM, 2006, pp. 318–327.  

[29] J. Li, J. Stribling, R. Morris, and M. F. Kaashoek, “Bandwidth-efficient management of 

DHT routing tables,” in 2nd Symposium on Networked Systems Design and 

Implementation (NSDI 2005), May 2-4, 2005, Boston, Massachusetts, USA, Proceedings., 

2005.  

[30] A. R. Bharambe, M. Agrawal, and S. Seshan, “Mercury: supporting scalable multi-attribute 

range queries,” in Proceedings of the ACM SIGCOMM 2004 Conference on Applications, 

Technologies, Architectures, and Protocols for Computer Communication, August 30 -

September 3, 2004, Portland, Oregon, USA, 2004, pp. 353–366.  

[31] Q. Xu, H. T. Shen, B. Cui, X. Hou, and Y. Dai, “A novel content distribution mechanism in 

DHT networks,” in Networking,2009, pp.742– 755.  

[32] A. Shieh, S. Kandula, A. G. Greenberg, C. Kim, and B. Saha, “Sharing the data center 

network,” in Proceedings of the 8th USENIX Symposium on Networked Systems Design 

and Implementation, NSDI, Boston, MA, USA, March 30 - April 1, 2011.  



Quanqing Xu, Yonghong Wang, Khai Leong Yong, and Khin Mi Mi Aung

27 
 

 

[33] S. C. Rhea, P. R. Eaton, D. Geels, H. Weatherspoon, B. Y. Zhao, and J. Kubiatowicz, 

“Pond: The ocean store prototype,” in Proceedings of the FAST Conference on File and 

Storage Technologies, March 31 - April 2, 2003, San Francisco, California, USA, pp. 1-14.  

[34] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and R. Morris, “Designing a DHT for 

low latency and high throughput,” in NSDI, 2004, pp. 85–98.  

[35] B. Zhao, J. Kubiatowicz, and A. Joseph, “Tapestry: An infrastructure for fault-tolerant 

wide-area location and routing,” University of California at Berkeley, Computer Science 

Department, Tech. Rep., 2001, UCB/CSD011141.  

[36] Q. Xu, W. Xi, K. L. Yong, and C. Jin, “Concurrent regeneration code with local 

reconstruction in distributed storage systems,” in The 9th International Conference on 

Multimedia and Ubiquitous Engineering, 2015, pp. 415–422. 

 
 

 


