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Abstract

In this paper, we propose a method, called the nearest feature midpoint (NFM), forpattern classifica-
tion. Any pair of feature points of the same class is generalized by the featuremidpoint (FM) between
them. Hence the representational capacity of available prototypes can be expanded.The classification
is determined by the nearest distance from the query feature point to each FM. This paper compares the
NFM classifier against the nearest feature line (NFL) classifier, which has reported successes in various
applications. In the NFL, any pair of feature points of the same class is generalized by the feature line
(FL) passing through them, and the classification is evaluated on the nearestdistance from the query
feature point to each FL. The NFM can be considered to be the refinement of the NFL.

A theoretical proof is provided in this paper to show that for the n-dimensional Gaussian distribution,
the classification based on the NFM distance metric will achieve the least error probability as com-
pared to those based on any other points on the feature lines. Furthermore, a theoretical investigation
is provided that under certain assumption the NFL is approximately equivalent tothe NFM when the
dimension of the feature space is high. The experimental evaluations on both simulated and real-life
benchmark data concur with all the theoretical investigations, as well as indicate that the NFM is ef-
fective for the classification of the data with a Gaussian distribution orwith a distribution that can be
reasonably approximated by a Gaussian.
Keywords: pattern classification, nearest feature midpoint (NFM), nearest feature line (NFL), nearest
neighbor (NN) classification,k�nearest neighbor (k�NN) classification.�Corresponding author
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1 Introduction

In the context of pattern recognition, the performance of a classification approachrelies critically on
the distance metric employed over the input feature space. various distance metrics have been used for
pattern classification: Euclidean distance, Cosine distance, Hamming distance, and so on, as well as
their variations in locally adaptive fashion [10, 14, 6]. However, they allhave distinction between the
query and an individual prototype (feature point). In classification, a class is considered as a collection
of isolated points in the feature space, and there is no class membership concept for the prototypes.
This type of classification can be referred collectively as the nearest-neighbor (NN) classification [4,
3, 8, 13, 12, 14]. However, in many cases, multiple prototypes are availablewithin a class. Such a
characteristic can be utilized to improve the classification performance but has been ignored by the NN
type of methods [18].

1.1 Related Work

In [19, 17, 18], the method of the nearest feature line (NFL) is proposed for pattern classification to
circumvent the above mentioned limitations of the NN. The basic assumption madein the NFL is that at
least two prototype feature points are available for each class, which is usually satisfied. In the NFL, a
feature subspace is constructed for each class from straight lines (feature lines) passing through each pair
of the prototypes (feature points) belonging to that class. The prototypes are generalized by the feature
lines. A feature line (FL) covers more space than the two feature points alone and virtually provides
an infinite number of feature points of the class that the two prototypes belong to. The representational
capacity of available prototypes is thus expanded. A FL provides information about linear variants of
the two prototypes. The NFL distance metric is defined as the minimum Euclidean distance between
the query and the feature lines. The rationale of the NFL can be justified intuitively as follows [18]: An
image or sound, for example, corresponds to a point (vector) in a feature space. When oneprototype
image or sound changes continuously to another prototype in some way, it draws a trajectory linking
the corresponding feature points in the feature space. All such trajectories in the same class constitute a
subspace representing that class. A similar image or sound should be close to the subspace though may
not be so to the original prototypes. In the NN, such dynamic information is not represented.

1.2 Our Work

In this paper, we present a refined method of the NFL, called the nearest feature midpoint (NFM), for
pattern classification. We followed the same methodology of the NFL and will compare the performance
of the NFM against the NFL. The basic assumption made in the NFM is same as in the NFL, that is at
least two prototype feature points are available for each class. In the NFM, each feature subspace is con-
structed for each class from respective midpoints (feature midpoints) between each pair of the prototypes
belonging to that class. In addition, the NFM also makes use of the available information about classes
contained in the multiple prototypes of each class. The within-class prototypes are generalized by the
feature midpoints to represent variants of that class, and the generalized ability of the classifier is thus
improved. The NFM distance metric is defined as the minimum Euclidean distance between the query
and the feature midpoints. In this paper, we first provide the theoretical proof thatfor n�dimensional
Gaussian distribution and under some reasonable assumptions, the classification based on the NFM dis-
tance metric will achieve the least error probability relative to thosebased on any other points on the
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Figure 1. Generalizing two prototype feature points x1 and x2 by the feature line x1x2, and the feature
midpoint mx1x2 , respectively. The feature point x of a query is projected onto the line as point xp.

feature lines. Furthermore, we will prove that, under the assumption that the components of the query
and two prototypes are independent and identically distributed (i.i.d. for short), the projection point
of the query on the feature line passing through the two prototypes will converge in probability to the
feature midpoint of the two prototypes when the dimension of the feature space is high. TheNFL is
thus approximately equivalent to the NFM in the case. But it will be pointed out thatthe computational
complexity of the NFM is significantly less than the NFL. In the experiment section, we will show from
empirical evidences that all theoretical claims developed in this paper are demonstrated.

1.3 Organization of Paper

The rest of this paper is organized as follows. In the next section we give a brief review of the NFL
classifier and formally define the NFM classification. The detailed theoretical analysis of the NFM is
given in section 3. Section 4 reports empirical results on both simulated and real-life benchmark data.
Conclusions and remarks about future directions are provided in the final section.

2 Pattern Classification Using NFL and NFM

In the NFL, the straight line passing throughx1 andx2 of the same class, denotedx1x2, is called a
feature line(FL) of that class. The feature pointx of a query (test) sample is projected onto an FL as
pointxp (Fig. 1). The FL distance betweenx andx1x2 is defined asd(x;x1x2) = kx� xpk; (1)

wherek � k is some norm.
The projection point can be computed asxp = x1 + �(x2 � x1), where� 2 R, called the position

parameter, can be calculated fromx;x1, andx2 as follows:� = (x� x1) � (x2 � x1)(x2 � x1) � (x2 � x1) ; (2)

where “�” stands for dot product. The parameter� describes the position ofxp relative tox1 andx2.
Assuming that there areNc, > 1, prototype feature points available for classc, a number ofKc =
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of M classes isNtotal = PMc=1Kc. The NFL classification is done by using the minimum distance
between the feature point of the query and theNtotal feature lines.

In the NFM proposed here, the midpoint betweenx1 andx2 of the same class is called afeature
midpoint(FM) of that class, and is denotedmx1x2. Any point on the feature linex1x2 can be expressed
asx1 + �(x2 � x1), where�1 < � < 1. When� = 12 , mx1x2 = 12(x1 + x2) is the FM. The FM
distance between the feature pointx of a query andmx1x2 is defined asd(x;mx1x2) = kx�mx1x2k; (3)

wherek � k is the same norm as in Eq. (1).
If there areNc, > 1, prototype feature points available for classc, a number ofKc = Nc(Nc�1)2 feature

midpoints can then be constructed to represent the class. The total number of feature midpoints for a
number ofM classes isNtotal = PMc=1Kc, which amounts to the same number of feature lines of theM
classes.

The NFM classification is done by evaluating the minimum distance between the feature point of the
query and theNtotal feature midpoints. Mathematically, letxci andxcj be two distinct prototype feature
points belonging to classc. The FM distance betweenx of the query and each pair of prototypesxci andxcj, i 6= j, is calculated for each classc. This yields a number ofNtotal distances. The distances are
sorted in ascending order, each being associated with a class identifier,and two prototypes. TheNFM
distanceis the first rank FM distance:d(x;mxc�i�xc�j� ) = min1�c�M min1�i<j�Nc d(x;mxcixcj ): (4)

The first rank gives the NFM classification of the best matched classc� and the two best matched proto-
typesi� andj� of the class.

3 Theoretical Analysis

In this section, we will investigate in theory the NFM method as well as the relationship between the
NFL and NFM. The comparison of computational complexities of the NFL and NFM willbe made as
well.

3.1 The Theoretical Justification of the NFM Method

Denote the mean vector of class` by x` and covariance matrix by�`. Let x1 andx2 be any two
prototypes of class̀. E(x1) = E(x2) = x`, Cov(x1) = Cov(x2) = �`. Assume that all the points in
each class are independent of each other, thenE(x1 + �(x2 � x1)) = x`; Cov(x1 + �(x2 � x1)) = ((1� �)2 + �2)�`; (5)min�1<�<1((1� �)2 + �2) = ((1� �)2 + �2)j�= 12 = 12 : (6)

The following lemma elucidates the assumptions under which the nearest-neighbor (NN) classifier is
equivalent toBayesclassifier.
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Lemma 3.1 Suppose there areL classes!1; : : : ; !L. The likelihood distribution isp(x j !`) = 1Z` expf�12d(x j !`)g; (7)

where d(x j !`) = (x� x`)T��1` (x� x`); (8)

is the distance betweenx andx` given�`, andZ` = (2�)n=2j�`j1=2; ` 2 f1; :::; Lg, n is the dimension
of x.

TheNN classifier is equivalent to Bayes classifier, if the following assumptions hold:

(i) All classes are equally probable,P` = P (!`) = 1L ,

(ii)
�expf� 12d(x j !`)g�d(x j !`) � �Z`��` for all ` 2 f1; :::; Lg, especially,�1 = �2 = ::: = �L.

Proof: The posterior distribution isp(!` j x) = P` p(x j !`)p(x) ; (9)

wherep(x) = PL̀=1 P`p(x j !`). In terms of Bayes classification rule,x is classified as!i if p(!i j x) =max1�`�L p(!` j x), which is equivalent top(x j !i) = max1�`�L p(x j !`) in terms of Eq. (9) and
assumption (i). According to assumption (ii), the change ofd(x j !`) relatively dominates that ofp(x j !`) from the change ofZ`, i.e., from the change of�`. Thereby,Z` in Eq. (7) assumes to be
almost unchanged for all̀ 2 f1; :::; Lg. As such,p(x j !i) = max1�`�L p(x j !`) if and only ifd(x j !i) = min1�`�L d(x j !`), which is just theNN classification rule. Thus, theNN classifier is
equivalent to the Bayes classifier under the assumptions.

The assumption (ii) of lemma 3.1 is especially true in many real cases where the prototypes from
different classes are subjected to the same noise processes, hence we canset�1 = �2 = ::: = �L [5].

Since the approximate expression of the error probability of Bayes classifier is available in [11],
derivation of lemma 3.1 will have the same result for the NN.

To illustrate further, the error probability of Bayes classifier and hence that of the NN is examined
in the two-class case for simplicity, where the two classes are equally possible,P1 = P2 = P , i.e., no
priors are available. Under the assumptions of lemma 3.1, the error probability of Bayes classifier [11],
thus that of the NN, is " = P1"1 + P2"2 (10)= P Z 10 ph(hj!1)dh+ P Z 0�1 ph(hj!2)dh; (11)

where h(x) = � ln p(x j !1) + ln p(x j !2) (12)= 12(x� x1)T��11 (x� x1)� 12(x� x2)T��12 (x� x2) + 12 ln j�1jj�2j ; (13)
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is called the discriminant function."1 and"2 can be calculated as follows.
When�1 = �2 = �, h(x) = (x2 � x1)T��1x+ 12(xT1��1x1 � xT2��1x2). In this case,h(x) is also

a Gaussian random variable. The mean ofh(x) can be calculated as:Efh(x)j!`g = (x2 � x1)T��1Efxj!`g+ 12(xT1��1x1 � xT2��1x2) (14)

whereEfxj!`g = x`, ` = 1; 2.
Letting, � = 12(x2 � x1)T��1(x2 � x1), we haveEfh(x)j!1g = ��, andEfh(x)j!2g = +�. The

variance ofh(x) isV arfh(x)j!`g = Ef[h(x)� Efh(x)j!`g]2j!`g = (x2 � x1)T��1(x2 � x1) = 2�: (15)

Now, "1 = Z 10 ph(hj!1)dh = Z 1�=� 1p2�e��2=2d� = 1� �(�� ); (16)"2 = Z 0�1 ph(hj!2)dh = Z ��=��1 1p2�e��2=2d� = �(��� ); (17)

where�(�) = R ��1 1p2�e��2=2d� is the normal error function, and�2 = V arfh(x)j!1g = V arfh(x)j!2g =2�.
Therefore, " = P (1� �(�� )) + P�(��� ): (18)

Derivation of Eq. (18) is needed for the proof of the theorem below. The following theorem will
theoretically justify the correctness of the NFM method. In the theorem below, the classification based
on an arbitrary pointx� on feature lines means that the position parameter� is fixed for all the feature
lines. The classification is done using the nearest distance from the query to eachx�.

Theorem 3.1 For the n-dimensional Gaussian distribution in Eq. (7), if the two assumptions in lemma 3.1
are satisfied and�1 = �2 = �, then the classification based on the nearest feature midpoint will achieve
the least error probability as compared to those based on any other pointx�; � 6= 12 , on the feature lines.

Proof: Assume thatx1;x2 are two prototypes selected arbitrarily from same class`. Letx� be any point
on the feature linex1x2, x� = x1 + �(x2 � x1), �1 < � < 1. From Eq. (5),x� follows a Gaussian
distributionN(x`; ((1� �)2 + �2)�`). In addition, from Eq. (5) and Eq. (14),Efh(x�)j!1g = ��; (19)Efh(x�)j!2g = �; (20)V arfh(x�)j!`g = E[fh(x�)� Efh(x�)j!`gg2j!`]= (x2 � x1)T��1Dfx�j!`g��1(x2 � x1)= ((1� �)2 + �2)�2; ` = 1; 2: (21)
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From Eq. (18), the error probability of the classification based on thex� will be"(�) = P (1� �(�Efh(x�)j!1g=V arfh(x�)j!1g)) + P�(�Efh(x�)j!2g=V arfh(x�)j!2g)= P (1� �( �(q(1� �)2 + �2)� )) + P�(� �(q(1� �)2 + �2)� ): (22)

Thus, from Eq. (6),minx�2x1x2f"(�)g = (P (1� �( �(q(1� �)2 + �2)� )) + P�(� �(q(1� �)2 + �2)� ))j�= 12= P (1� �(p2�� )) + P�(�p2�� ): (23)

In the case�1 6= �2, no optimal solution, in theory, is available since�1;�2 are class-dependent and
the discriminant functionh(x) in Eq. (13) is quadratic. The common practice is to convert this case
into the class-independent case, i.e., to approximate�, by letting�1 = �2 = �, � = P1�1 + P2�2 =12�1 + 12�2. That is to obtain the suboptimal solution [7, 21]. This is so called theshrinkagetechnique.
In many real-life problems, it’s often assumed that the prototypes from different classes are subjected to
the same noise processes, hence we can assume�1 = �2 [5]. The empirical results on both simulated
and real-life benchmark data in next section will demonstrate the finding in theorem 3.1.

3.2 The Gaussian Approximation

If the likelihood distributionp(x j !`) in Eq. (7) for some class!` is not Gaussian, it can often be
approximated as a Gaussian distribution based on the central limit theorem.As the number of samples
in the class!` increases, this Gaussian approximation is expected to become increasingly accurate.
Furthermore, it is common to use gradient-based methods to find the maximum ofln p(x j !`), which
defines the most probable valuexMP (`) for the variablex. Using a second degree Taylor polynomial ofln p(x j !`) aboutxMP (`) to approximateln p(x j !`) , we obtainln p(x j !`) � ln p(xMP (`) j !`) +�12(x� xMP (`))TA(x� xMP (`)); (24)

whereA = �r2 ln p(x j !`)jx=xMP (`), the negative Hessian ofln p(x j !`) evaluated atxMP (`). Expo-
nentiating both sides in the above equation, we obtainp(x j !`) � p(xMP (`) j !`) expf�12(x� xMP (`))TA(x� xMP (`))g: (25)

On the accuracy of Gaussian approximation, in general it provides adequate approximation for the
problems in which the likelihood distributions of modest dimensionality are not grossly non-Gaussian.
It is hard to be specific, roughly the sample size of one class should be not less than 5d, with d being
the dimension of parameters of the likelihood distribution of the class. Those data with sample size
greater than 20d are large enough for Gaussian approximation to work well in most cases, provided
that a reasonably good parameterization is used [15]. For more general statistical models with multiple
maxima in their likelihood distributions, we can still expect the likelihooddistributions to be dominated
by locally Gaussian peaks in terms of the central limit theorem.
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3.3 The comparison of the NFM against the NFL

In the NFM, the midpoint position of each pair of prototypes in each class is fixed. Likewise in theo-
rem 3.1, the position parameter� in the classification based on an arbitrary pointx� is fixed for all the
feature lines. In the NFL, the parameter� in Eq. (2) describing the position of the projection pointxp
varies for different feature lines. Consequently, theorem 3.1 can not ensure thatthe error probability
of the NFM is less than the NFL. The theorem below addresses the relationship between the NFL and
NFM.

Theorem 3.2 Let x = (x(1); :::;x(n))T , x1 = (x(1)1 ; :::;x(n)1 )T , x2 = (x(1)2 ; :::;x(n)2 )T be n-dimensional
random vectors, andx1, x2 belong to the same class and have a common distribution,xp = x1 + (x� x1) � (x2 � x1)(x2 � x1) � (x2 � x1)(x2 � x1); (26)

where “�” stands for dot product. If the components ofx, x1 andx2 are i.i.d., thenxp P�! 12(x1 + x2)
whenn!1. It means thatxp converges, in probability sense, to12(x1 + x2) when n goes to infinity.

Proof: From Eq. (26), we have, for8m = 1; :::; n,x(m)p = x(m)1 + (x� x1) � (x2 � x1)(x2 � x1) � (x2 � x1)�(x(m)2 � x(m)1 ); (27)

therefore, x(m)p = x(m)1 + Pnk=1(x(k) � x(k)1 )(x(k)2 � x(k)1 )Pnk=1(x(k)2 � x(k)1 )(x(k)2 � x(k)1 )�(x(m)2 � x(m)1 ): (28)

According to the assumption made in the theorem,(x(1)�x(1)1 )(x(1)2 �x(1)1 ); :::; (x(n)�x(n)1 )(x(n)2 �x(n)1 )
are i.i.d., and(x(1)2 � x(1)1 )(x(1)2 � x(1)1 ); :::; (x(n)2 � x(n)1 )(x(n)2 � x(n)1 ) are i.i.d. as well.8k; k = 0; :::; n, supposeV ar(x(k)1 ) = V ar(x(k)2 ) = �21, then,E[(x(k) � x(k)1 )(x(k)2 � x(k)1 )] = �21 ;E[(x(k)2 � x(k)1 )(x(k)2 � x(k)1 )] = 2�21:
In the law of large numbers, we have,1n nXk=1(x(k) � x(k)1 )(x(k)2 � x(k)1 ) P�! �21; n!1;1n nXk=1(x(k)2 � x(k)1 )(x(k)2 � x(k)1 ) P�! 2�21; n!1:
From Eq. (28), x(m)p P�! x(m)1 + 12(x(m)2 � x(m)1 ); n!1;
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that is, x(m)p P�! 12(x(m)1 + x(m)2 ); n!1;
equivalently, xp P�! 12(x1 + x2); n!1:

In theorem 3.2,x1 andx2 belong to the same class, so they should follow a common distribution. The
assumption that the components ofx, x1 andx2 are i.i.d. seems too demanding in practice. It is only
expected to hold approximately for many real life applications. Whenn is much larger than the number
of all the prototype feature points available, however, the classification rules assuming that the feature
dimensions are independent often perform better than the rules assuming dependent feature dimensions
[1]. This phenomenon has been reported recently for texture classification [16],and for microarray
data [9]. In this paper, derivation of the theoretical relationship between the NFM and the NFL in the
above theorem is based on thei.i.d. assumption. The dimension of the feature spaces of many real life
applications is high. Thus, the performance of the NFL classifier is approximatelyequivalent to the
NFM in such cases according to theorem 3.2.

Complexity wise, since the position parameter� in Eq. (2) for the NFL depends on the query and each
pair of prototypes in each class, it needs to be calculated for each query and each pair of prototypes. In
the NFM, however, the midpoint position of each pair of prototypes in each class isfixed, and there is no
need to perform the computation of the position parameter. Thus, the computational complexity of the
NFM is significantly less than the NFL. In view of this and theorem 3.2, the NFM isa good alternative to
the NFL in high dimensional feature spaces. In fact, the NFM consistently outperforms the NFL in the
following experiments on both simulated and real-life benchmark data and various applications tested.

4 Numerical Experiments

In this section we report the experimental examination of the NFM method in comparison with some
state of the art classification methods such as NN,k�NN, and the NFL. The experiments are conducted
on a simulated data set and 15 real-life benchmark data sets from the UCI machine learning repository
[2]. They are all evaluated by using theleave-one-outtest: when a sample is used as the query, it is not
used as a prototype, i.e., it is removed from the prototype set. The experiments provide an illustration of
the findings given in theorem 3.1 and theorem 3.2.

4.1 Simulated Data

In the simulated data set, sixteen classes are assumed, of which the samples are randomly generated
from Gaussian distributions. Let� and� denote two uniform random variables at[0; 1]. They determine,
respectively, the means and variances of the Gaussian distributions as follows: � varies with the change
of both the component of a random sample and the membership of the class that the sample belongs to,
but does not vary for the same component of different random samples in the same class. The change
of � only depends on the change of the membership of the class. Consequently the covariance matrix of
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each random sample of each class is a diagonal matrix. All the diagonal components of every covariance
matrix are randomly generated by�. The components of each random sample of each class are mutually
independent. The random samples of different classes have a different covariance matrix each. Cases
with different dimensions of data (dim) and different numbers of prototypes per class(Nc) are examined
in Table 1 and Table 2. It is noted that the same random data set is applied to allclassifiers. It produces
very similar results that multiple runs of randomization and each same setapplies to all the classifiers.

Table 1. Accuracy(%) of the NFM in comparison to those based o n other points on the feature lines
for the simulated data

Dim Nc � = �1 � = �0:5 � = 0 � = 0:25 � = 0:5 � = 0:75 � = 1 � = 1:5 � = 2
8 6 19.79 31.25 42.71 40.62 47.92 40.62 42.71 31.25 19.79
16 6 28.12 35.42 46.88 54.17 63.54 54.17 46.88 35.42 28.12

12 22.40 31.77 50.00 63.02 64.58 63.02 50.00 31.77 22.40
6 17.71 41.67 55.21 66.67 68.75 66.67 55.21 41.67 17.71

32 12 24.48 35.42 55.73 73.44 74.48 73.44 55.73 35.42 24.48
24 23.18 40.10 63.54 78.65 83.07 78.65 63.54 40.10 23.18
6 20.83 34.38 50.00 65.62 71.88 65.62 50.00 34.38 20.83

64 12 18.75 30.21 55.21 78.65 83.85 78.65 55.21 30.21 18.75
24 20.83 35.68 61.72 85.42 91.67 85.42 61.72 35.68 20.83
48 28.52 45.70 73.70 90.89 94.53 90.89 73.70 45.70 28.52
6 23.96 37.50 61.46 83.33 87.50 83.33 61.46 37.50 23.96
12 25.52 36.98 56.77 80.21 89.06 80.21 56.77 36.98 25.52

128 24 15.36 25.00 50.00 86.20 93.49 86.20 50.00 25.00 15.36
48 22.01 33.59 73.44 95.70 98.70 95.70 73.44 33.59 22.01
96 19.01 36.00 72.01 95.44 98.18 95.44 72.01 36.00 19.01

Table 1 displays the accuracy of classifications using the NFM (� = 0:5) and those based on other
points in the feature lines. The NFM yields consistently higher accuracy ratesof classifications than all
the others.

Table 2. Accuracy(%) of the NFM in comparison to the NFL, NN, a nd k-NN for the simulated data

Dim Nc NFM NFL NN 5-NN 10-NN 15-NN
8 6 47.92 36.46 36.46 37.50 31.25 31.25
16 6 63.54 50.00 50.00 42.71 40.62 20.83

12 64.58 59.90 52.60 47.40 43.23 39.06
6 68.75 69.79 56.25 51.04 42.71 31.25

32 12 74.48 72.40 57.29 50.52 45.31 42.71
24 83.07 79.43 62.24 59.38 53.91 52.34
6 71.88 71.88 51.04 41.67 35.42 20.83

64 12 83.85 81.77 54.17 48.96 42.71 38.54
24 91.67 90.36 64.84 58.59 57.81 55.47
48 94.53 93.62 74.74 73.70 73.31 72.53
6 87.50 88.54 60.42 47.92 50.00 42.71
12 89.06 89.06 55.21 50.00 48.44 48.44

128 24 93.49 93.49 48.70 41.67 40.62 38.02
48 98.70 98.57 74.09 70.18 68.23 66.54
96 98.18 98.11 72.53 66.67 63.48 61.26

Table 2 shows the accuracy of classifications using the NFM, NFL, NN andk�NN methods. The
NFM also yields consistently higher accuracy rates of classifications thanthe NFL, NN andk�NN.
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For k�NN, values ofk equal to 5, 10 and 15 are tested. As proved in theorem 3.2, under thei.i.d.
assumption, the NFL is approximately equivalent to the NFM when the dimension of thefeature space is
high. In Table 2, for example, when the number of prototypes is 6, the difference between accuracy rates
of NFM and NFL decreases, although not monotonically, from 11.46% to 1.04% when the dimension
increases from 8 to 128. In view of theorem 3.2, our observation is emphasized on the cases when
the number of prototypes in each class is finite and the dimension of feature space isrelatively high,
and therefore the Dim in Table 1 and Table 2 is set to be large. In addition, since the simulated data
is generated from a standard Gaussian distribution, theNc in Table 1 and Table 2 can be set small. In
Gaussian case, the NFM is effective with small sample data sets

4.2 Benchmark Data

In what follows, we present the experimental examination of the performance of the NFL classifier on
15 real-life benchmark data sets from the UCI machine learning repository. The experimental results are
reported in Table 3, Table 4, and Table 5.

Table 3. Accuracy(%) of the NFM in comparison to those based o n other points on the feature lines
for 15 benchmark data sets

Data sets classes, dim, inst� = �1 � = �0:5 � = 0 � = 0:25 � = 0:5 � = 0:75 � = 1 � = 1:5 � = 2
balance 3, 4, 625 52.64 77.12 62.72 90.72 92.32 90.72 62.72 77.12 52.64
image 7, 19, 2310 91.73 94.81 96.97 97.27 96.36 97.27 96.97 94.81 91.73
ionosphere2, 34, 351 83.19 86.32 90.88 93.16 92.02 93.16 90.88 86.32 83.19
iris 3, 4, 150 83.33 90.00 95.33 96.00 95.33 96.00 95.33 90.00 83.33
lenses 3, 4, 24 62.50 70.83 37.50 79.17 79.17 79.17 37.50 70.83 62.50
liver 2, 6, 345 54.78 56.23 60.87 63.77 66.38 63.77 60.87 56.23 54.78
newthyroid3, 5, 215 84.65 89.30 97.21 97.21 95.81 97.21 97.21 89.30 84.65
pendigits 10, 16, 10992 98.22 99.22 99.45 99.66 99.60 99.66 99.45 99.22 98.22
pima 2, 8, 768 65.23 65.62 69.27 69.66 72.66 69.66 69.27 65.62 65.23
sonar 2, 60, 208 81.25 85.10 85.10 86.06 88.94 86.06 85.10 85.10 81.25
soybean 4, 35, 47 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
spect 2, 22, 267 75.66 78.28 70.41 77.90 78.65 77.90 70.41 78.28 75.66
waveform 3, 21, 5000 64.78 69.38 76.78 82.32 83.42 82.30 76.74 69.36 64.78
yeast 10, 8, 1484 39.22 45.62 51.28 52.83 54.18 52.76 51.08 45.55 39.22
zoo 7, 16, 101 94.06 96.04 96.04 96.04 96.04 96.04 96.04 96.04 94.06

Table 3 displays the accuracy of classifications on the 15 data sets using the NFM(� = 0:5) and
those based on other points in the feature lines. The NFM yields consistently higher accuracies of
classifications than all the others.

Table 4 shows the accuracy of classifications on the 15 data sets using the NFM,NFL, NN, andk�NN
methods. The NFM also yields consistently higher accuracies of classifications than the NFL, NN, andk�NN. As in the above simulated data, values ofk equal to 5, 10 and 15 are tested fork�NN.

The empirical results on the 15 data sets as well further support theorem 3.2, i.e., under the i.i.d.
assumption the NFL is approximately equivalent to the NFM when the dimension of thefeature space
is high. For instance, it can be found from Table 4 that in higher dimensional data setssuch as soybean
and sonar, the difference between accuracy rates of NFM and NFL is very small. In lower dimensional
data sets such as balance, iris, and lenses, the difference is relatively large. This fact shows as well
that thei.i.d. assumption made in theorem 3.2 approximates well for many real-life data sets of high
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Table 4. Accuracy(%) of the NFM in comparison to the NFL, NN, a nd k-NN for 15 benchmark data sets

Data sets classes, dim, inst NFM NFL NN 5-NN 10-NN 15-NN
balance 3, 4, 625 92.32 86.24 62.72 42.08 33.28 27.04
image 7, 19, 2310 96.36 96.32 96.06 94.16 92.73 91.21
ionosphere 2, 34, 351 92.02 88.60 86.61 84.62 83.76 83.19
iris 3, 4, 150 95.33 88.67 96.00 96.67 97.33 96.67
lenses 3, 4, 24 79.17 50.00 37.50 16.67 16.67 16.67
liver 2, 6, 345 66.38 59.42 61.45 66.67 67.25 68.70
newthyroid 3, 5, 215 95.81 90.23 94.88 93.49 89.77 88.37
pendigits 10, 16, 10992 99.60 99.45 99.37 99.29 99.05 98.81
pima 2, 8, 768 72.66 68.36 67.97 71.48 73.83 74.09
sonar 2, 60, 208 88.94 87.50 82.69 82.69 68.75 66.83
soybean 4, 35, 47 100.00 100.00 97.87 97.87 76.60 57.45
spect 2, 22, 267 78.65 70.01 70.01 46.44 24.72 23.22
waveform 3, 21, 5000 83.42 81.98 78.04 81.86 83.52 84.48
yeast 10, 8, 1484 54.18 47.71 49.80 54.58 57.61 58.56
zoo 7, 16, 101 96.04 96.04 98.02 80.20 45.54 40.59

dimension. The NFM and NFL may be both well suited to the data sets with smallnumber of feature
points since they expand the volume of each class in a quadratic way. The error probability of k�NN
approaches theoretically to that of Bayes classifier when the number of prototypes goes to infinity withk fixed. However, the performance ofk�NN will decrease whenk increases on the data sets with small
number of prototypes.

In the simulated data with the Gaussian distribution, the NFM consistentlyoutperforms almost all the
other classifiers considered in this paper. Only the classifier with� = 0:25 and the NFL come close to it.
The more� is deviating from0:5, the worse the corresponding classifier performs. As wellk�NN gives
the worse performance with the increasing value ofk. It conforms theorem 3.1. In the real-life data,
the NFM achieves the best accuracy for 10 of the 15 data sets, followed closely by the classifier with� = 0:25, which is very close to the NFM. For the remaining 5 data sets, the classifier with � = 0:25
achieves the best performance. This observation indicates that most real-life data sets do not follow
Gaussian distributions. They may be approximately Gaussian to certain degrees. We deduce that the
better approximation to Gaussian, the better the NFM performs than the other classifiers. Therefore, it
remains an interesting question to derive the relationship in terms of the superiority in performance of
the NFM, over the other classifiers, on a data set with respect to the degree of its approximation to a
Gaussian distribution.

The computation time of the NFM, NFL, NN, andk�NN on the 15 benchmark data sets is provided in
Table 5. The experiment is executed on the HP AlphaServer SC45 with 44 nodes, each node comprising
of four 1GHz Alpha processors with 4GB memory. From Table 5, the NFM can save about 40-50%
CPU time compared to the NFL for the 15 benchmark data sets. But it still consumes much more CPU
time than the NN andk�NN. The NFM takes 408517 seconds to complete the computation on the super
computer for the pendigits data set, but achieves the comparable performance of classification with the
NN andk�NN. The NFM may be not well suited to this kind of data sets with very large number of
samples in contrast to the classical NN algorithm. The NFM is very effective as compared to the classical
NN algorithm for a data set with small number of samples if its likelihood distribution is a standard or
very close to Gaussian.
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Table 5. The CPU time (seconds) of the NFM, NFL, NN, and k-NN running on 15 benchmark data sets

Data sets classes, dim, inst NFM NFL NN 5-NN 10-NN 15-NN
balance 3, 4, 625 84.32 149.57 0.28 1.41 2.86 4.41
image 7, 19, 2310 6719.13 11491.77 19.14 95.32 190.39 285.18
ionosphere 2, 34, 351 161.52 294.43 0.79 4.01 8.03 11.98
iris 3, 4, 150 0.68 1.43 0.01 0.08 0.16 0.24
lenses 3, 4, 24 0.0041 0.0071 0.0003 0.0018 0.0028 0.0041
liver 2, 6, 345 25.94 47.24 0.13 0.68 1.36 2.04
newthyroid 3, 5, 215 5.44 9.51 0.03 0.23 0.44 0.68
pendigits 10, 16, 10992 408517 791779 367 1827 3639 5454
pima 2, 8, 768 369.88 692.53 0.91 4.46 8.89 13.34
sonar 2, 60, 208 53.71 105.36 0.44 2.53 5.01 7.51
soybean 4, 35, 47 0.16 0.26 0.01 0.04 0.09 0.14
spect 2, 22, 267 57.01 101.16 0.23 1.18 2.38 3.56
waveform 3, 21, 5000 188136 359839 104 516 1032 1546
yeast 10, 8, 1484 1158.78 1971.82 3.03 15.16 30.23 45.08
zoo 7, 16, 101 0.63 0.99 0.01 0.11 0.21 0.33

This paper aims to compare the NFM against the NFL in terms of both accuracy andefficiency. The
NFM and NFL are both the NN like algorithms, thus we only compare the NFM with theNFL, NN, andk�NN, and don’t compare it with other classification methods such as C4.5, NB, SVM,etc.

5 Conclusion and Future Directions

In this paper, a pattern classification method named NFM is proposed, as wellas a detailed theoretical
analysis is conducted and provides insights on why and when the NFM works. A theoretical proof shows
that for n�dimensional Gaussian distribution, under some reasonable assumptions, the classification
using the NFM metric will achieve the least error statistically thanthose based on any other points on
the feature lines. Furthermore, it has been theoretically proved that under the i.i.d. assumption, the
performance of the NFL is approaching to the NFM when the dimension of the feature space is high.
However, the computational complexity of the NFM is significantly less than theNFL. Therefore, the
NFM is a good alternative to the NFL in high dimensional feature spaces. This is desirable for the
analysis of many real-life data such as microarray data in bioinformatics, where the number of features
characterizing some data is in the thousands or tens of thousands. Moreover, the NFMexpands, as the
NFL does, the representational capacity of a finite number of available featurepoints, which provides a
way to address thecurse of dataset sparsity.

The experimental evaluation on both simulated and real-life data further shows that the NFM can
yield considerably higher accuracies than the classifications based on other points on the feature lines,
as well as the NFL, NN, andk�NN. This is because the NFM takes advantage of the correlations
between prototypes within a class, whereas NN andk�NN do not. These forms of the correlations may
be such as local linearity. As shown in [20], the global nonlinear structure in some real-life data can
be recovered from locally linear fits. The NFM is a linear pattern classification method. Compared to
nonlinear models, a linear model is rather robust against over-fitting and is able to provide cost-effective
solutions. Overall, the NFM is highly recommended as an alternative to the NFL, NN, andk�NN for
pattern classification in the case where a data set follows a Gaussiandistribution or can be approximated
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by a Gaussian distribution. The NFM is very effective for a data set withthe small number of samples if
its likelihood distribution is a standard or very close to Gaussian.

The NFM and NFL are both the NN like algorithms. The NN algorithms are targeted for arbitrary
distributions in a nonparametric way. In this paper, we recommend the NFM to beemployed in a
Gaussian or an approximate Gaussian case only to address the potential use of it.This doesn’t mean that
the likelihood distribution of a data set must be known and be Gaussian in use of the NFM. For example,
the empirical evaluation of the locally adaptive NN [10, 14] is likewise made at several Gaussian cases.

This work can be extended in various directions. Although the NFM metric expands the represen-
tative capacity of a finite number of prototypes and thus improves the performance of the NN, it still
suffers from bias in high dimensions. It can potentially improve the performance of the NFM further in
some cases to develop a locally adaptive NFM. It can be made by estimatingfeature relevance locally
at the query point, and by computing feature midpoints that are elongated along less relevant feature
dimensions and constricted along most influential ones. In addition, the NFM is still more expensive
computationally than the NN classification. It is under our investigation to develop a novel strategy to
reduce significantly the computational complexity of the NFM.
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