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Abstract

In this paper, we propose a method, called the nearest feature midpoint (NFMgtfern classifica-
tion. Any pair of feature points of the same class is generalized by the featdp®int (FM) between
them. Hence the representational capacity of available prototypes can be expandethssification
is determined by the nearest distance from the query feature point to eachhidbaper compares the
NFM classifier against the nearest feature line (NFL) classifierchivhas reported successes in various
applications. In the NFL, any pair of feature points of the same class is digrdrhy the feature line
(FL) passing through them, and the classification is evaluated on the ndetesice from the query
feature point to each FL. The NFM can be considered to be the refinement of the NFL

A theoretical proof is provided in this paper to show that for the n-dimensional Gaudistribution,
the classification based on the NFM distance metric will achieve tre¢ &xeor probability as com-
pared to those based on any other points on the feature lines. Furthermore, addleoxe@stigation
is provided that under certain assumption the NFL is approximately equivaléme t8§FM when the
dimension of the feature space is high. The experimental evaluations on both sorahak real-life
benchmark data concur with all the theoretical investigations, as wetidisate that the NFM is ef-
fective for the classification of the data with a Gaussian distributionitir a distribution that can be
reasonably approximated by a Gaussian.
Keywords: pattern classification, nearest feature midpoint (NFM), nearest éhte (NFL), nearest
neighbor (NN) classificatiork—nearest neighbok(NN) classification.
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1 Introduction

In the context of pattern recognition, the performance of a classification appreleeh critically on
the distance metric employed over the input feature space. various distabheesrhave been used for
pattern classification: Euclidean distance, Cosine distance, Hammiragaks and so on, as well as
their variations in locally adaptive fashion [10, 14, 6]. However, theyalle distinction between the
guery and an individual prototype (feature point). In classification, a class igdeved as a collection
of isolated points in the feature space, and there is no class membershiptclomabe prototypes.
This type of classification can be referred collectively as the neasghbor (NN) classification [4,
3, 8, 13, 12, 14]. However, in many cases, multiple prototypes are avaathlim a class. Such a
characteristic can be utilized to improve the classification perdioca but has been ignored by the NN
type of methods [18].

1.1 Related Work

In [19, 17, 18], the method of the nearest feature line (NFL) is proposed for patessification to
circumvent the above mentioned limitations of the NN. The basic assumptionimémeNFL is that at
least two prototype feature points are available for each class, whichadysatisfied. In the NFL, a
feature subspace is constructed for each class from straightfigadsre line$ passing through each pair
of the prototypesféature pointybelonging to that class. The prototypes are generalized by the feature
lines. A feature line (FL) covers more space than the two feature pomne @nd virtually provides
an infinite number of feature points of the class that the two prototypes belong to. Tasarfational
capacity of available prototypes is thus expanded. A FL provides information about Vergants of
the two prototypes. The NFL distance metric is defined as the minimum Euclidsi@mck between
the query and the feature lines. The rationale of the NFL can be justified wetyitis follows [18]: An
image or sound, for example, corresponds to a point (vector) in a feature space. Whmotohygpe
image or sound changes continuously to another prototype in some way, it draws a tdjekiog
the corresponding feature points in the feature space. All such trajectotles same class constitute a
subspace representing that class. A similar image or sound should be closeuospp@ce though may
not be so to the original prototypes. In the NN, such dynamic information is not repedsent

1.2 Our Work

In this paper, we present a refined method of the NFL, called the nearasefeatpoint (NFM), for
pattern classification. We followed the same methodology of the NFL andawipare the performance
of the NFM against the NFL. The basic assumption made in the NFM is samelasNFL, that is at
least two prototype feature points are available for each class. In the BVl feature subspace is con-
structed for each class from respective midpoifgat{ire midpoinfsbetween each pair of the prototypes
belonging to that class. In addition, the NFM also makes use of the availabteniation about classes
contained in the multiple prototypes of each class. The within-class prototypeeaeralized by the
feature midpoints to represent variants of that class, and the generdiigdad the classifier is thus
improved. The NFM distance metric is defined as the minimum Euclidean désbeteeen the query
and the feature midpoints. In this paper, we first provide the theoretical prodbthatdimensional
Gaussian distribution and under some reasonable assumptions, the classifiaagd on the NFM dis-
tance metric will achieve the least error probability relative to tHossed on any other points on the
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Figure 1. Generalizing two prototype feature points X1 and X3 by the feature line X;X5, and the feature
midpoint my, «,, respectively. The feature point x of a query is projected onto the line as point Xp.

feature lines. Furthermore, we will prove that, under the assumption thabthponents of the query
and two prototypes are independent and identically distributed. (for short), the projection point
of the query on the feature line passing through the two prototypes will converge in gityltabihe
feature midpoint of the two prototypes when the dimension of the feature space is higiNFLhe
thus approximately equivalent to the NFM in the case. But it will be pointed outhlikatomputational
complexity of the NFM is significantly less than the NFL. In the experimerti@@owve will show from
empirical evidences that all theoretical claims developed in this papefeanonstrated.

1.3 Organization of Paper

The rest of this paper is organized as follows. In the next section we give fardriew of the NFL
classifier and formally define the NFM classification. The detailed thieafeanalysis of the NFM is
given in section 3. Section 4 reports empirical results on both simulaigdeal-life benchmark data.
Conclusions and remarks about future directions are provided in the final section.

2 Pattern Classification Using NFL and NFM

In the NFL, the straight line passing through andx, of the same class, denot&gxs, is called a
feature line(FL) of that class. The feature poirtof a query (test) sample is projected onto an FL as
pointx, (Fig. 1). The FL distance betweanandx;x; is defined as

d(X,X1X2) = ||X - Xp”a (1)

where|| - || is some norm.
The projection point can be computedsgs= x; + ;(x2 — x;), Wherep € R, called the position
parameter, can be calculated frenx,, andx, as follows:

_ (x —x1) - (%2 —x1)
(x2 —x1) - (%2 — x1)’

(@)

where “” stands for dot product. The paramejedescribes the position of, relative tox; andx..
Assuming that there aré&/,, > 1, prototype feature points available for classa number ofK,. =

3



Zonglin Zhou and Chee Keong Kwoh
The Nearest Feature Midpoint - A Novel Approach for Pattelas€ification
w lines can be constructed to represent the class. The total number of featisréoli a number
of M classes iSV;oy = Y, K.. The NFL classification is done by using the minimum distance
between the feature point of the query and ¥g,, feature lines.

In the NFM proposed here, the midpoint betwegnandx, of the same class is calledfeature
midpoint(FM) of that class, and is denoted,,,,. Any point on the feature lin€x; can be expressed
asx; + A(x; — x;), where—oo < A < oo. When\ = 1, my,x, = 3(X; + X3) is the FM. The FM

2
distance between the feature patndf a query andny, x, is defined as

d(X7 mxlxz) = ||X — My, x, ||: (3)

where|| - || is the same norm as in Eq. (1).

If there areN,, > 1, prototype feature points available for class number ofi(, = W feature
midpoints can then be constructed to represent the class. The total numbeund featpoints for a
number ofM classes i€V, = 2, K., which amounts to the same number of feature lines ofithe
classes.

The NFM classification is done by evaluating the minimum distance betweeadhed point of the
query and theV,.,, feature midpoints. Mathematically, lef andx$ be two distinct prototype feature
points belonging to class The FM distance betweenof the query and each pair of prototypesand
x§, i # j, is calculated for each class This yields a number o, distances. The distances are
sorted in ascending order, each being associated with a class ideatifigryo prototypes. ThRFM
distanceis the first rank FM distance:

dX, Myeryer) = min | min - d(x, Myye). (4)

The first rank gives the NFM classification of the best matched efaasd the two best matched proto-
typesi* and;* of the class.

3 Theoretical Analysis

In this section, we will investigate in theory the NFM method as wellhasrelationship between the
NFL and NFM. The comparison of computational complexities of the NFL and NFMbailinade as
well.

3.1 The Theoretical Justification of the NFM Method
Denote the mean vector of clagdy X, and covariance matrix by{,. Let x; andx, be any two

prototypes of clasé. F(x;) = E(x3) = Xy, Cov(xy) = Cov(xy) = ¥y. Assume that all the points in
each class are independent of each other, then

E(x1 + A(x2 — x1)) = Xy, Cov(x; + A(x2 —x1)) = ((1 = N) + A%, (5)
Lmip (=020 = (=2 )y = 5, ©)

The following lemma elucidates the assumptions under which the nearest-neigbocl@ssifier is
equivalent tdBayesclassifier.
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Lemma 3.1 Suppose there aré classesv, ..., w. The likelihood distribution is

plx | wi) = - exp{— x| wi)), ™)
where
d(x |wp) = (x — ig)TZgl(x —Xy), (8)

is the distance betweenandx, giveny,, andZ, = (2m)"/?|%,|'/?, ¢ € {1,...,L}, nis the dimension
of x.
The N N classifier is equivalent to Bayes classifier, if the following assumptions hold:

(i) All classes are equally probabl®, = P(w,) = 1,

.y Aexp{—ld(x | w .
(i) == fd(;d‘(w‘) QLIS S forall (€ {1,..., L}, especiallys, = ¥, = ... = 5.

Proof: The posterior distribution is

Py p(x | wy)

p(x) ®)

plwe [ %) =

wherep(x) = Y1, Pip(x | wy). In terms of Bayes classification rubejs classified as; if p(w; | x) =
max; <<z, p(we | x), which is equivalent t(x | w;) = max;<<z p(x | we) in terms of Eq. (9) and
assumption (i). According to assumption (ii), the changel©f | w,) relatively dominates that of
p(x | wg) from the change o¥,, i.e., from the change of,. Thereby,Z, in Eqg. (7) assumes to be
almost unchanged for all € {1,...,L}. As such,p(x | w;) = maxi<,<;p(x | wy) if and only if
d(x | w;) = minj<y<z d(x | wy), which is just theNV N classification rule. Thus, th& N classifier is
equivalent to the Bayes classifier under the assumptioms.

The assumption (i) of lemma 3.1 is especially true in many real casesevwhe prototypes from
different classes are subjected to the same noise processes, henceseggan ¥, = ... = X, [9].

Since the approximate expression of the error probability of Bayes classifigailatde in [11],
derivation of lemma 3.1 will have the same result for the NN.

To illustrate further, the error probability of Bayes classifier and hendeothizne NN is examined
in the two-class case for simplicity, where the two classes are gquadkible,P, = P, = P, i.e., no
priors are available. Under the assumptions of lemma 3.1, the error probabilityes$ Bessifier [11],
thus that of the NN, is

e = Pigy+ Pyes (20)
= P [T olendn+ P [ pyhlen)dn (11
where
h(x) = —Inp(x|w)+Inp(x|ws) (12)
- %(x %) (x - %) — %(x %) (x - %) + % n % (13)
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is called the discriminant functiom; ands, can be calculated as follows.
WhenX; = %, = 5, h(x) = (X — %) S 'x + 3(X] £ 7'X; — X5 X7 'X,). In this caseh(x) is also
a Gaussian random variable. The mean(of) can be calculated as:

1
B{h(x)|w} = (X — %) E{x|w,} + 5(2{2*121 —xXIYIxy) (14)
whereE{x|w;} =X, { =1,2.

Letting,n = (X, — X)"X1(X> — X3), we haveE{h(x)|w} = —n, andE{h(x)|w.} = +n. The
variance ofh(x) is

Var{h(x)lw} = B{[h(x) — B{h(x)lwi}Plwi} = (® — %) 'S (R — %) = 2. (15)
Now,

o= [ meyin = [T e i =1-a(2) (16)

gy = /_Ooo pr(hlwz)dh = /_‘O:/” \/%BCQ/QdC - @(_g), (17)

whered(¢) = ¢ \/%_We*CQ/QdC is the normal error function, antt = Var{h(x)|w:} = Var{h(x)|ws} =

2n.
Therefore,

e=P(1-d(L)) + Pa(-1). (18)

o

Q|3

Derivation of Eq. (18) is needed for the proof of the theorem below. The following ¢heaovill
theoretically justify the correctness of the NFM method. In the theorem béhevclassification based
on an arbitrary poink, on feature lines means that the position parameisrfixed for all the feature
lines. The classification is done using the nearest distance from the quenhto,ea

Theorem 3.1 For the n-dimensional Gaussian distributionin Eq. (7), if the two assumptions inde3rim
are satisfied and; = X, = ¥, then the classification based on the nearest feature midpoint will achieve
the least error probability as compared to those based on any otherpgint # % on the feature lines.

Proof: Assume thak,, x, are two prototypes selected arbitrarily from same clag®t x, be any point
on the feature lin& x3, x) = x; + A\(x3 — x1), —00 < A < oc. From Eq. (5)x, follows a Gaussian
distribution N (x;, (1 — A\)? + A\?)3,). In addition, from Eq. (5) and Eq. (14),

E{h(xy)|w1} = -n, (19)
E{h(x))lw2} = n, (20)
Var{h(xy)lwe} = E[{h(xx) = E{h(x))lwe}}*|wi]
= (% —%)" Y D{x\|Jw (X, - X))
= (1-=N2+2)o% (=12 (21)
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From Eq. (18), the error probability of the classification based oxtheill be
eW = P(1—®(=B{h(x)|wi}/Var{h(xs)|w1})) + PO(=E{h(xs)|ws}/Var{h(xs)|w2})

_ _ U B U
= P CI)(( (1—)\)2+)\2)0))+P®( ( (1—)\)2+)\2)a)' (22)
Thus, from Eq. (6),
min {£M} = - 1 - d =3
Jmin (60} = (P = @)+ PR ey
= P(1- @(@)) + P@(—@). (23)

|

In the case:; # X5, no optimal solution, in theory, is available sinte, ¥, are class-dependent and
the discriminant functiork(x) in Eq. (13) is quadratic. The common practice is to convert this case
into the class-independent case, i.e., to approximatey lettingY; = ¥, = X, ¥ = PiY; + PYy =
%Zl + %ZQ. That is to obtain the suboptimal solution [7, 21]. This is so callecstivenkagetechnique.
In many real-life problems, it’s often assumed that the prototypes fromrdift classes are subjected to
the same noise processes, hence we can assymeY, [5]. The empirical results on both simulated
and real-life benchmark data in next section will demonstrate the finding amethre3.1.

3.2 The Gaussian Approximation

If the likelihood distributionp(x | w,) in Eq. (7) for some class, is not Gaussian, it can often be
approximated as a Gaussian distribution based on the central limit theAsethe number of samples
in the classwy, increases, this Gaussian approximation is expected to become increasiogtgte.
Furthermore, it is common to use gradient-based methods to find the maximum(&f| w,), which
defines the most probable valug; () for the variablex. Using a second degree Taylor polynomial of
Inp(x | wy) aboutx,, p(, to approximatén p(x | w,) , we obtain

1
Inp(x | we) = Inp(Xppe) | we) + —§(X — Xup) A(X — Xupr), (24)

whereA = —V?Inp(x | we) x=x, ¢, the negative Hessian af p(x | w,) evaluated ak;p). Expo-
nentiating both sides in the above equation, we obtain

1

p(x | we) = p(Xarpee) | we) exp{—i(x — pr(g))TA(x — Xmp()}- (25)

On the accuracy of Gaussian approximation, in general it provides adequate appimxioathe
problems in which the likelihood distributions of modest dimensionality are not lgroea-Gaussian.
It is hard to be specific, roughly the sample size of one class should be not lessithaiths] being
the dimension of parameters of the likelihood distribution of the class. Thosewdtt sample size
greater than 20 are large enough for Gaussian approximation to work well in most cases, provided
that a reasonably good parameterization is used [15]. For more generaicslatistdels with multiple
maxima in their likelihood distributions, we can still expect the likelihokgtributions to be dominated
by locally Gaussian peaks in terms of the central limit theorem.
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3.3 The comparison of the NFM against the NFL

In the NFM, the midpoint position of each pair of prototypes in each class is fixég@wise in theo-
rem 3.1, the position parametgiin the classification based on an arbitrary poigts fixed for all the
feature lines. In the NFL, the paramejei Eq. (2) describing the position of the projection patyt
varies for different feature lines. Consequently, theorem 3.1 can not ensutedhatror probability
of the NFM is less than the NFL. The theorem below addresses the relationshgebehe NFL and
NFM.

Theorem 3.2 Letx = (x, ..., x™)T, x; = (x\", ....x{")T, x, = (x\", ..., x{)T be n-dimensional
random vectors, ang;, x, belong to the same class and have a common distribution,

(x —x1) - (X2 — X1)
(%2 = X1) - (x2 — X1)

(X2 - Xl): (26)

X, = X1 +

where “” stands for dot product. If the components:afx; andx, are i.i.d., thenx, LN %(xl + X3)
whenn — oo. It means thak, converges, in probability sense, $6x; + x,) when n goes to infinity.

Proof: From Eg. (26), we have, form =1, ..., n,

X = (™ (x = x1) - (%2 — x1)
(x2 — x1) * (X2 — x1)
(™ = xi™), (27)
therefore,
n k k k
) T X7 = xi)
n k k k k
o () = x{7) () — x{”
(" = x{™). (28)

According to the assumption made in the theoref) —x{") (x{" —=x{V), ..., (x™ —x{) (=™ = x{™)

arei.i.d., andx$” — x{")(x" = x), ., x5 — x")(x — xM) are i.i.d. as well.
Vk,k=0,..n, Supposé/ar(x(lk>) = Var(xéw) = o?, then,

E[(x™ —x{") (" —x{)] = o,
Bl — x{)(x? —x{")] = 207,

In the law of large numbers, we have,

1 n
— S (x® — xM) (= — ) £ 62 = oo,
™ =1

From Eq. (28),
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that is,

1
xm i(xgm—{-xgm)), n — oo,

equivalently,

1
X, — §(x1+x2), n—oc. m

In theorem 3.2x; andx, belong to the same class, so they should follow a common distribution. The
assumption that the componentsxgfx; andx, are i.i.d. seems too demanding in practice. It is only
expected to hold approximately for many real life applications. Whenmuch larger than the number
of all the prototype feature points available, however, the classificaties agdsuming that the feature
dimensions are independent often perform better than the rules assuming dependentifeansions
[1]. This phenomenon has been reported recently for texture classificationafidfor microarray
data [9]. In this paper, derivation of the theoretical relationship betwee™NEM and the NFL in the
above theorem is based on thied. assumption. The dimension of the feature spaces of many real life
applications is high. Thus, the performance of the NFL classifier is approximaqelyalent to the
NFM in such cases according to theorem 3.2.

Complexity wise, since the position parameien Eq. (2) for the NFL depends on the query and each
pair of prototypes in each class, it needs to be calculated for each queryadmpagaof prototypes. In
the NFM, however, the midpoint position of each pair of prototypes in each classdsand there is no
need to perform the computation of the position parameter. Thus, the computatiomddxityrof the
NFM is significantly less than the NFL. In view of this and theorem 3.2, the NFMbisod alternative to
the NFL in high dimensional feature spaces. In fact, the NFM consistently rborpes the NFL in the
following experiments on both simulated and real-life benchmark data aralisapplications tested.

4 Numerical Experiments

In this section we report the experimental examination of the NFM method in aopavith some
state of the art classification methods such as NN\N, and the NFL. The experiments are conducted
on a simulated data set and 15 real-life benchmark data sets from the W@in@&earning repository
[2]. They are all evaluated by using theave-one-outest: when a sample is used as the query, it is not
used as a prototype, i.e., itis removed from the prototype set. The experimentseovilustration of
the findings given in theorem 3.1 and theorem 3.2.

4.1 Simulated Data

In the simulated data set, sixteen classes are assumed, of which thiesame randomly generated
from Gaussian distributions. Létand({ denote two uniform random variables/@t1]. They determine,
respectively, the means and variances of the Gaussian distributiontoassfa@l varies with the change
of both the component of a random sample and the membership of the class that the sasngketbel
but does not vary for the same component of different random samples in the samé& blashange
of ( only depends on the change of the membership of the class. Consequently the covartearad ma
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each random sample of each class is a diagonal matrix. All the diagonal componemiy@iovariance
matrix are randomly generated by The components of each random sample of each class are mutually
independent. The random samples of different classes have a different covamatix each. Cases
with different dimensions of data (dim) and different numbers of prototypes per(é¥gsare examined

in Table 1 and Table 2. It is noted that the same random data set is appliedlassifiers. It produces
very similar results that multiple runs of randomization and each sanappbes to all the classifiers.

Table 1. Accuracy(%) of the NFM in comparison to those based o n other points on the feature lines
for the simulated data

DiM[N )= —1[) = 051 =0A=025[1 =05 =075 = 1[A = 1.5} = 2]
8 [ 6] 19./9 31..25 [42.71] 40.62 | 47.92 | 40.62 [42.71] 31.25 [ 19.79
16 | 6 | 28.12 | 35.42 [46.88] 54.17 | 63.54 | 54.17 |46.88] 35.42 |28.12
171 22.40 | 3L.77 [50.00] 63.07 | 64.58 | 63.02 [50.00] 31.77 [ 22.40
6 | 17.71| 4167 |55.21] 66.67 | 68.75 | 66.67 [55.21] 41.67 [17.71
32 [12] 24.48 35.42 |55.73] 73.44 (4.48 (3.44 |55.73] 35.42 |24.48
241 2318 | 40.10 |63.54] 78.65 | 83.07 | 78.65 [63.54] 40.10 [ 23.18
6 | 20.83 | 34.38 [50.00] 65.62 | 71.88 | 65.62 |50.00] 34.38 | 20.83
64 [12] 18.75 30.21 [55.21] 78.65 83.85 /8.65 [5b.21] 30.21 | 18.7/5
241 20.83 | 35.68 |61.72] 85.42 | 9167 | 8542 [61.72] 35.68 [20.83
48[ 2852 | 45.70 [73.70[ 90.89 | 9453 [ 90.89 [73.70] 45.70 [28.52
6 | 23.96 | 37.50 |[61.46] 83.33 | 87.50 | 83.33 |61.46] 37.50 | 23.96
17| 7552 | 36.98 [56.77] 80.21 | 89.06 | B0.2L [56.77] 36.98 [ 25.52
128241 15.36 | 25.00 [50.00] 86.20 | 93.49 | 86.20 |50.00] 25.00 | 15.36
48[ 22.01 | 33.59 [73.44] 95.70 | 98.70 [ 95.70 [ 73.44] 33.59 [22.01
96| 19.01 36.00 |[/72.01] 95.44 98.18 9544 1/72.01] 36.00 | 19.01

Table 1 displays the accuracy of classifications using the NkM (0.5) and those based on other
points in the feature lines. The NFM yields consistently higher accuracyohttsssifications than all
the others.

Table 2. Accuracy(%) of the NFM in comparison to the NFL, NN, a  nd £-NN for the simulated data

| Dim | N [NFM [ NFL | NN [5-NN ] 10-NN | 15-NN ]
8 6 [47.92] 36.46] 36.46] 37.50] 31.25 ] 31.25
16 | 6 | 63.54] 50.00] 50.00] 42.71] 40.62 | 20.83
12 164.58] 59.90] 52.60] 47.40] 43.23 | 39.06
6 | 68.75] 69.79] 56.25| 51.04] 42.71 | 31.25
32 | 12| 74.48] 72.40] 57.29| 50.52| 45.31 | 42.71
24 1 83.0/7] 79.43| 62.24] 59.38] 53.91 [ 52.34
6 | 71.88] 71.88] 51.04] 41.67] 35.42 | 20.83
64 | 12 [ 83.85] 81.77] 54.17] 48.96| 42.71 | 38.54
24 1 91.67] 90.36] 64.84] 58.59| 57.81 | 55.47
48 194.53]1 93.62] 74.74| 7/3./0] /3.31 | 72.53
6 | 87.50] 88.54] 60.42] 47.92] 50.00 | 42.71
12 1 89.06] 89.06] 55.21] 50.00] 48.44 | 48.44
128 | 24 1 93.49]| 93.49] 48.70| 41.67| 40.62 | 38.02
48 1 98.70] 98.57] 74.09] 7/0.18] 68.23 | 66.54
96 [ 98.18] 98.11] 7/2.53] 66.67/] 63.48 | 61.26

Table 2 shows the accuracy of classifications using the NFM, NFL, NNtkar"dN methods. The
NFM also yields consistently higher accuracy rates of classificationsthehFL, NN andk—NN.
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For k—NN, values ofkt equal to 5, 10 and 15 are tested. As proved in theorem 3.2, under.the
assumption, the NFL is approximately equivalent to the NFM when the dimensionfekiiuee space is

high. In Table 2, for example, when the number of prototypes is 6, the difference betvceracy rates

of NFM and NFL decreases, although not monotonically, from 11.46% to 1.04% when the dimension
increases from 8 to 128. In view of theorem 3.2, our observation is emphasized orsésevwdaen

the number of prototypes in each class is finite and the dimension of feature spatzively high,

and therefore the Dim in Table 1 and Table 2 is set to be large. In additior giecsimulated data

is generated from a standard Gaussian distributionMhie Table 1 and Table 2 can be set small. In
Gaussian case, the NFM is effective with small sample data sets

4.2 Benchmark Data

In what follows, we present the experimental examination of the performanbe &FEL classifier on
15 real-life benchmark data sets from the UCI machine learning repositogyeXperimental results are
reported in Table 3, Table 4, and Table 5.

Table 3. Accuracy(%) of the NFM in comparison to those based o n other points on the feature lines
for 15 benchmark data sets

[Data sets |classes, dim, in§h = —1]A = —0.5[A =0[A=0.25[A =05[A=0.75[A=1[) =1.5[\ = 2]

balance |3, 4, 625 5264 ] 7712 162.72] 90.72 ] 92.32] 90.72 [62.72] 77.12 [52.64
image 7,19, 2310 91.73| 94.81 196.97] 97.27 | 96.36 | 97.27 [96.97] 94.81 | 91.73
ionospherg?, 34, 351 83.19| 86.32 [90.88] 93.16 | 92.02 | 93.16 [90.88] 86.32 | 83.19
irs 3,4, 150 83.33| 90.00 [95.33] 96.00 | 95.33 | 96.00 [95.33] 90.00 [ 83.33
lenses 3,4, 24 62.50| 70.83 [37.50] 79.17 | 79.17] 79.17 [37.50] 70.83 [62.50
liver 2,6, 345 54.78 | 56.23 160.87] 63.77 | 66.38 | 63.77 [60.87] 56.23 [54.78
newthyroid3, 5, 215 84.65| 89.30 |97.21] 9/7.21 | 95.81 | 97.21 [9/7.21] 89.30 | 84.65
pendigits [10, 16, 10992 98.22] 99.22 [99.45] 99.66 | 99.60 | 99.66 |99.45 99.22 [ 98.22
pima 2,8,768 65.23| 65.62 |69.27] 69.66 | 72.66 | 69.66 |69.27] 65.62 | 65.23
sonar 2, 60, 208 81.25] 85.10 |85.10] 86.06 | 88.94 | 86.06 [85.10] 85.10 | 81.25
soybean [4, 35, 47 100.00[ 100.00 [100.00 100.00 | 100.00] 100.00 [100.00 100.00{100.0
spect 2, 22,267 7/5.66]| 78.28 [70.41] 7790 | 7/8.65] 77.90 |70.41] /8.28 | /5.66
waveform [3, 21, 5000 64.78| 69.38 | 76.78] 82.32 | 83.42 | 82.30 |76.74] 69.36 | 64.78
yeast 10, 8, 1484 39.22 ] 45.62 |51.28] 52.83 | 54.18 | 52.76 [51.08] 45.55 | 39.22
Z00 7,16, 101 94.06] 96.04 [96.04] 96.04 | 96.04 | 96.04 [96.04] 96.04 [ 94.06

Table 3 displays the accuracy of classifications on the 15 data sets using thé WEM).5) and
those based on other points in the feature lines. The NFM yields consistently higheaces of
classifications than all the others.

Table 4 shows the accuracy of classifications on the 15 data sets using th&NIREMNN, andk—NN
methods. The NFM also yields consistently higher accuracies of classifisatian the NFL, NN, and
kE—NN. As in the above simulated data, values:adqual to 5, 10 and 15 are tested iorNN.

The empirical results on the 15 data sets as well further support theorem 3.2, i.e. thandied.
assumption the NFL is approximately equivalent to the NFM when the dimension tdahee space
is high. For instance, it can be found from Table 4 that in higher dimensional datsusétas soybean
and sonar, the difference between accuracy rates of NFM and NFL is vatly $mlower dimensional
data sets such as balance, iris, and lenses, the difference is tgl&rge. This fact shows as well
that thei.i.d. assumption made in theorem 3.2 approximates well for many real-life datafskigh
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Table 4. Accuracy(%) of the NFM in comparison to the NFL, NN, a  nd k-NN for 15 benchmark data sets
Data sets | classes, dim,inst NFM | NFL | NN [ 5-NNJ I0-NN] I5-NN]

balance 3,4, 625 92.32 ] 86.24 ] 62.72] 42.08] 33.28 | 27.04
Image 7,19, 2310 96.36 | 96.32 [ 96.06] 94.16] 92.73 | 91.21
lonosphere| 2, 34, 351 92.02 | 88.60 | 86.61] 84.62] 83.76 | 83.19
Irns 3,4, 150 95.33 | 88.67 | 96.00] 96.67| 9/.33 | 96.67
lenses 3,4,24 79.17 ] 50.00 | 37.50] 16.67| 16.67 | 16.67
liver 2,6,345 66.38 | 59.42 | 61.45] 66.67] 67.25 | 68.70
newthyroid| 3, 5, 215 95.81 | 90.23 | 94.88] 93.49] 89.77 | 88.37
pendigits | 10, 16, 10992 99.60 | 99.45 [ 99.37] 99.29] 99.05 | 98.81
pima 2,8, 768 72.66 | 68.36 | 67.97] 71.48| 73.83 | 74.09
sonar 2,60, 208 88.94 | 87.50 [ 82.69] 82.69| 68.75 | 66.83
soybean | 4,35, 47 100.00] 100.00| 97.87] 97.87] 76.60 | 57.45
spect 2,22,267 78.65 | 70.01]70.01]46.44| 24.72 | 23.22
waveform | 3, 21, 5000 83.42 | 81.98 | 78.04]| 81.86| 83.52 | 84.48
yeast 10, 8, 1484 54.18 | 47.71 | 49.80] 54.58| 57.61 | 58.56
Z00 7,16,101 96.04 | 96.04 [ 98.02] 80.20] 45.54 | 40.59

dimension. The NFM and NFL may be both well suited to the data sets with sonalber of feature
points since they expand the volume of each class in a quadratic way. The error liyobali—NN
approaches theoretically to that of Bayes classifier when the number of prototysa® gaénity with

k fixed. However, the performance bfNN will decrease whe# increases on the data sets with small
number of prototypes.

In the simulated data with the Gaussian distribution, the NFM consisteatperforms almost all the
other classifiers considered in this paper. Only the classifierwith).25 and the NFL come close to it.
The more\ is deviating from0.5, the worse the corresponding classifier performs. As ineNN gives
the worse performance with the increasing valué.oit conforms theorem 3.1. In the real-life data,
the NFM achieves the best accuracy for 10 of the 15 data sets, followedychystie classifier with
A = 0.25, which is very close to the NFM. For the remaining 5 data sets, the fitassith A = 0.25
achieves the best performance. This observation indicates that mostaatdth sets do not follow
Gaussian distributions. They may be approximately Gaussian to certaiededVe deduce that the
better approximation to Gaussian, the better the NFM performs than the otbgifiets. Therefore, it
remains an interesting question to derive the relationship in terms otifeisrity in performance of
the NFM, over the other classifiers, on a data set with respect to theedefyits approximation to a
Gaussian distribution.

The computation time of the NFM, NFL, NN, atd-NN on the 15 benchmark data sets is provided in
Table 5. The experiment is executed on the HP AlphaServer SC45 with 44 nodespeacomprising
of four 1GHz Alpha processors with 4GB memory. From Table 5, the NFM can save ab&@40-
CPU time compared to the NFL for the 15 benchmark data sets. But it still cassomach more CPU
time than the NN and—NN. The NFM takes 408517 seconds to complete the computation on the super
computer for the pendigits data set, but achieves the comparable performansiditalkion with the
NN andk—NN. The NFM may be not well suited to this kind of data sets with very large numibe
samples in contrast to the classical NN algorithm. The NFM is vergieas compared to the classical
NN algorithm for a data set with small number of samples if its likelihoodithstion is a standard or
very close to Gaussian.
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Table 5. The CPU time (seconds) of the NFM, NFL, NN, and  &£-NN running on 15 benchmark data sets

| Datasets | classes,dim,insf NFM [ NFL | NN [ 5-NN | 10-NN | 15-NN ]
palance 3,4, 625 84.32 | 149.57 | 0.28 1.41 2.86 441
Image 7,19, 2310 6719.13] 11491.77] 19.14 | 95.32 | 190.39] 285.18
lonosphere| 2, 34, 351 161.52 ] 29443 | 0.79 4.01 8.03 | 11.98
Irs 3,4, 150 0.68 1.43 0.01 0.08 0.16 0.24
lenses 3,4,24 0.0041 | 0.0071 | 0.0003] 0.0018] 0.0028] 0.0041
liver 2,6,345 25.94 47.24 0.13 0.68 1.36 2.04
newthyroid]| 3, 5, 215 2.44 9.51 0.03 0.23 0.44 0.68
pendigits | 10, 16, 10992 408517] 791779 | 367 1827 | 3639 | 5454
pima 2,8, 768 369.88 | 692.53 | 0.91 4.46 8.89 | 13.34
sonar 2, 60, 208 53.71 | 105.36 | 0.44 2.53 5.01 7.51
soybean | 4, 35, 47 0.16 0.26 0.01 0.04 0.09 0.14
spect 2,22, 267 57.01 | 101.16 | 0.23 1.18 2.38 3.56
waveform | 3, 21, 5000 188136| 359839 | 104 516 1032 | 1546
yeast 10, 8, 1484 1158.78] 1971.82| 3.03 | 15.16 | 30.23 | 45.08
Z00 7,16,101 0.63 0.99 0.01 0.11 0.21 0.33

This paper aims to compare the NFM against the NFL in terms of both accura@ffemehcy. The
NFM and NFL are both the NN like algorithms, thus we only compare the NFM witiNfig NN, and
k—NN, and don’t compare it with other classification methods such as C4.5, NB, 8¥M,

5 Conclusion and Future Directions

In this paper, a pattern classification method named NFM is proposed, agsnelletailed theoretical
analysis is conducted and provides insights on why and when the NFM works. A thdqredafeshows
that for n—dimensional Gaussian distribution, under some reasonable assumptions, tHeai@ssi
using the NFM metric will achieve the least error statistically thi@wse based on any other points on
the feature lines. Furthermore, it has been theoretically proved that umelerd. assumption, the
performance of the NFL is approaching to the NFM when the dimension of the featue isgaigh.
However, the computational complexity of the NFM is significantly less tharNfile. Therefore, the
NFM is a good alternative to the NFL in high dimensional feature spaces. Fhissirable for the
analysis of many real-life data such as microarray data in bioinformaticere the number of features
characterizing some data is in the thousands or tens of thousands. Moreover, thexpdiMs, as the
NFL does, the representational capacity of a finite number of available feaiums, which provides a
way to address theurse of dataset sparsity

The experimental evaluation on both simulated and real-life data furtherssthat the NFM can
yield considerably higher accuracies than the classifications based on othergothe feature lines,
as well as the NFL, NN, and—NN. This is because the NFM takes advantage of the correlations
between prototypes within a class, whereas NN/antlIN do not. These forms of the correlations may
be such as local linearity. As shown in [20], the global nonlinear structure ire seal-life data can
be recovered from locally linear fits. The NFM is a linear patternsifestion method. Compared to
nonlinear models, a linear model is rather robust against over-fitting anceiscgitovide cost-effective
solutions. Overall, the NFM is highly recommended as an alternative to fhe NN, andk—NN for
pattern classification in the case where a data set follows a Gaulsstabution or can be approximated
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by a Gaussian distribution. The NFM is very effective for a data settiv@glsmall number of samples if
its likelihood distribution is a standard or very close to Gaussian.

The NFM and NFL are both the NN like algorithms. The NN algorithms are tadgetearbitrary
distributions in a nonparametric way. In this paper, we recommend the NFM &mipdoyed in a
Gaussian or an approximate Gaussian case only to address the potential uBeistibesn’'t mean that
the likelihood distribution of a data set must be known and be Gaussian in use dfkheRdr example,
the empirical evaluation of the locally adaptive NN [10, 14] is likewis@lmat several Gaussian cases.

This work can be extended in various directions. Although the NFM metric expandsphesen-
tative capacity of a finite number of prototypes and thus improves the performanioe N\, it still
suffers from bias in high dimensions. It can potentially improve the perforsnahthe NFM further in
some cases to develop a locally adaptive NFM. It can be made by estinfedinge relevance locally
at the query point, and by computing feature midpoints that are elongated along éessrdétature
dimensions and constricted along most influential ones. In addition, the NFMIimetié expensive
computationally than the NN classification. It is under our investigation teldpva novel strategy to
reduce significantly the computational complexity of the NFM.
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