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Abstract

A new learning algorithm called extreme learning machine (ELM) has
recently been proposed for single-hidden layer feedforward neural networks
(SLFNs) with additive neurons to easily achieve good generalization perfor-
mance at extremely fast learning speed. ELM randomly chooses the input
weights and analytically determines the output weights of SLFNs. It is proved
in theory that ELM can be extended to single-hidden layer feedforward neural
networks (SLFNs) with radial basis function (RBF) kernels - RBF networks,
which allows the centers and impact widths of RBF kernels to be randomly gen-
erated and the output weights to be simply analytically calculated instead of
iteratively tuned. The kernel function of ELM can be any nonlinear bounded
integrable function which is almost continuous anywhere. Interestingly, the
experimental results show that the ELM algorithm for RBF networks can com-
plete learning at extremely fast speed and produce generalization performance
very close to that of SVM in some benchmarking function approximation and
classification problems.

Index terms - Radial basis function network, feedforward neural networks, real time
learning, extreme learning machine, ELM, arbitrary kernels.

The preliminary idea of the ELM algorithm for RBF networks has been shown in the Proceedings
of the Eighth International Conference on Control, Automation, Robotics and Vision (ICARCV
2004), Dec 6-9, Kunming, China.

Guang-Bin Huang and Chee-Kheong Siew
Extreme Learning Machine with Randomly Assigned RBF Kernels

16



1 Introduction

It is clear that gradient descent based learning methods generally run very slowly due
to improper learning steps or may easily converge to local minimums. Many iterative
learning steps are required by such learning algorithms in order to obtain better
learning performance and on the other hand cross-validation and/or early stopping
need to be used in order to prevent over-fitting.

It is not surprising to see that it may take several minutes, several hours and
several days to train neural networks in most applications. Furthermore, it should
not be neglected that more time need to be spent on choosing appropriate learning
parameters (i.e, learning rates) by trial-and-error in order to train neural networks
properly using traditional methods. Unlike traditional popular implementations, for
single-hidden layer feedforward neural networks (SLFNs) with additive neurons we
have recently proposed a new learning algorithm called extreme learning machine
(ELM)[1] which randomly chooses the input weights and the hidden neurons’ bi-
ases and analytically determines the output weights of SLFNs. Input weights are
the weights of the connections between input neurons and hidden neurons and out-
put weights are the weights of the connections between hidden neurons and output
neurons. In theory, it has been shown [2, 3] that SLFNs’ input weights and hidden
neurons’ biases need not be adjusted during training and one may simply randomly
assign values to them. The experimental results based on a few artificial and real
benchmark function regression and classification problems have shown that compared
with other gradient-descent based learning algorithms (such as backpropagation al-
gorithms (BP)) for feedforward networks this ELM algorithm tends to provide better
generalization performance at extremely fast learning speed and the learning phase of
many applications can now be completed within seconds[1]. Baum[4] has also claimed
that (seen from simulations) one may fix the connections on one level and simply ad-
just the connections on the other level and no gain is possible by using an algorithm
able to adjust the weights on both levels simultaneously. It should be noted that
tuning methods may neither be suitable for non-di erential activation functions nor
prevent the troubling issues such as stopping criteria, learning rate, learning epoches,
and local minima. However, ELM algorithm may avoid these di culties very well.

The main target of this paper is to extend ELM from SLFNs with additive neu-
rons case to SLFNs with radial basis function (RBF) kernels case - RBF networks.
It will simply be proven in theory in this paper that instead of tuning the centers and
impact widths of RBF kernels, we may just simply randomly choose values for these
parameters and analytically calculate the output weights of RBF networks. Very in-
terestingly, testing results on a few benchmark artificial and real function regression
and classification problems ELM for RBF networks can reach the generalization per-
formance very close to those obtained by the SVMs but complete learning phase at
extremely fast speed.

This paper is organized as follows. Section 2 simply proves that from the func-
tion approximation point of view the RBF kernels can be randomly chosen. Section
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3 extends the ELM learning algorithm from SLFN case to RBF networks case. Per-
formance evaluation is presented in Section 4. Conclusions are given in Section 5.

2 Universal Approximation of SLFNs with Arbi-

trary RBF Kernels

The output of a RBF network with Ñ kernels for an input vector x Rd is given by

fÑ (x) =
Ñ

i=1

i i(x) = (µi, i,x) (1)

i = [ i1, i2, · · · , im]
T is the weight vector connecting the ith kernel and the output

neurons and i(x) is the output of the ith kernel. µi = [µi1, µi2, · · · , µin]
T is the ith

kernel’s center and i is its impact width. is a radially symmetric kernel function
and it is assumed that (x) is nonlinear bounded integrable and almost continuous
anywhere. Such kernels include the popularly used Gaussian function:

(µi, i,x) = exp
x µi

2

2
i

(2)

and some other functions which may not be continuous or di erential functions.

Let L2(X) be a space of functions f on a measurable compact subset X in the
d-dimensional Euclidean spaceRd such that |f |2 are integrable. The norm in L2 space
will be denoted as · , and the closeness between the output fn of a RBF network
and the target function f is measured by the L2-norm distance:

fn f =
X

|fn(x) f(x)|2dx
1/2

(3)

In this paper the sample input space X is always considered as a bounded measurable
compact subset of the Euclidean space Rd. It is very unlikely that one will deal with
nonmeasurable sample input sets in the applications of neural networks. As rigorously
proved in Huang et al.[5], we have the following universal approximation theorem for
RBF networks:

Theorem 2.1. For any continuous target function f , given any RBF network func-
tion sequence fn with their kernel centers µi and impact factors i randomly generated
based on any continuous sampling distribution probability, we have limn + fn
f = 0 with properly chosen output weights i.

According to Theorem 2.1, obviously furthermore we can have

Theorem 2.2. For any continuous target function f and any small positive constant
> 0, given any RBF network function sequence fn with their kernel centers µi and

impact factors i randomly generated based on any continuous sampling distribution
probability, there exists a positive integer Ñ such that the probability we have fÑ
f < with properly chosen output weights i is one.
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Thus, for any continuous target function f and any small positive constant >

0, given any RBF network function sequence fn with their kernel centers µi and
impact factors i randomly generated based on any continuous sampling distribution
probability, given Ñ RBF kernels, we may only need to find the output weights i

such that

min fÑ f =
X

|fÑ(x) f(x)|2 dx
1/2

(4)

3 Extension of Extreme Learning Machine to RBF

Case

In this section, we will show that the ELM previously proposed for the case of SLFNs
with additive neurons [1] can linearly be extended to the case of SLFNs with RBF
kernels.

3.1 Approximation Problem of RBFs

For N arbitrary distinct samples (xi, ti), where xi = [xi1, xi2, · · · , xin]
T Rd and

ti = [ti1, ti2, · · · , tim]
T Rm, RBFs with Ñ kernels can be mathematically modeled

as
Ñ

i=1

i i(xj) = oj, j = 1, · · · , N (5)

Similar to SLFN case, that standard RBFs with Ñ kernels can approximate these

N samples with zero error means that Ñ
j=1 oj tj = 0, i.e., there exist i, µi and

i such that
Ñ

i=1

i (µi, i,xj) = tj, j = 1, · · · , N. (6)

The above N equations can be written compactly as:

H = T (7)

where

H(µ1, · · · , µÑ , 1, · · · , Ñ ,x1, · · · ,xN ) =

(µ1, 1,x1) · · · (µÑ , Ñ ,x1)
... · · ·

...
(µ1, 1,xN ) · · · (µÑ , Ñ ,xN ) N×Ñ

(8)

=

T
1

...

Ñ
T

Ñ×m

and T =

tT1
...
tTN N×m

(9)
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Similar to SLFNs [6, 2], H is called the hidden layer output matrix of the RBF
network; the ith column of H is the output of the ith kernel with respect to inputs
x1,x2, · · · ,xN .

3.2 Minimum Norm Least-Squares Solution of RBF

Since in practice the network is trained using finite training samples (xi, ti), where
xi X, finding the min fÑ f can be equivelant to min H(µ1, · · · , µÑ , 1, · · · , Ñ )
T . According to Theorem 2.2 RBF kernels can be randomly generated instead of
being tuned. For fixed kernel centers µi and impact widths i, to train an RBF is
simply equivalent to finding a least-squares solution ˆ of the linear system H = T:

H(µ1, · · · , µÑ , 1, · · · , Ñ)
ˆ T = min H(µ1, · · · , µÑ , 1, · · · , Ñ) T (10)

However, in most practical applications Ñ = N (the number of kernels may be much
less than the number of distinct training samples, Ñ N ,) H is a nonsquare matrix
and there may not exist i (i = 1, · · · , Ñ) such that H = T. According to our
previous analysis[1], the unique smallest norm least-squares solution ˆ of the above
linear system is:

ˆ = H†T (11)

where H† is the Moore-Penrose generalized inverse[7].

Relationship between weight norm and generalization performance

Bartlett[8] pointed out that for feedforward networks with many small weights
but small squared error on the training examples, the Vapnik-Chervonenkis (VC)
dimension (and hence number of parameters) is irrelevant to the generalization per-
formance. Instead, the magnitude of the weights in the network is more important.
The smaller the weights are, the better generalization performance the network tends
to have. Since RBF networks look like the standard feedforward neural networks
except that di erent hidden neurons are used, it is reasonable to conjecture that
Bartlett’s conclusion for feedforward neural networks may be valid in RBF network
case as well. Our approach of finding the kernels and output weights not only reaches
the smallest squared error on the training examples but also obtains the smallest
output weights. Thus, reasonably speaking, this approach may tend to have good
generalization performance, which is consistent with our simulation results in a few
benchmark problems.

Thus, similar to SLFNs, the extreme learning machine (ELM) for RBF networks
can now be summarized as follows:

ELM Algorithm for RBFs: Given a training set = {(xi, ti)|xi Rd, ti
Rm, i = 1, · · · , N}, kernel function , kernel number Ñ ,

step 1 Assign arbitrarily kernel centers µi and impact widths i, i = 1, · · · , Ñ .
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step 2 Calculate the hidden (kernel) layer output matrix H.

step 3 Calculate the output weight

= H†T (12)

where T = [t1 · · · tN ]
T

4 Performance Evaluation

In this section, the performance of the proposed ELM learning algorithm for RBF
networks is compared with the popular Support Vector Machines (SVMs) [9, 10, 11,
12] on several benchmark problems in function regression and classification areas.
It shows that the ELM-RBF could reach good generalization performance which is
very close to SVMs, however, our ELM-RBF can be simply conducted and runs
much faster, especially for function regression applications. 50 repeated trials have
been conducted for both ELM-RBF and SVM for each benchmark problem and the
training and testing data are randomly generated at each trial. The average training
and testing performance of both ELM-RBF and SVM are given in this section. 8,000
training data and 12,640 testing data randomly generated from the California Housing
database1. for each trial of simulation. 3000 training data and 1177 testing data
are randomly generated from the Abalone database[13] for each trial of simulation
as usually done in literature. For Diabetes problem2, 75% and 25% samples are
randomly chosen for training and testing at each trial.

All the simulations for the ELM-RBF algorithm3 are carried out in MATLAB
6.5 environment running in a Pentium 4, 1.9 GHZ CPU. The simulations for SVM
are carried out using popular compiled C-coded SVM packages: LIBSVM4 running
in the same PC. Both ELM-RBF and SVM use the same Gaussian kernel function:
(x, µ, ) = exp x µ 2

2 . The inputs of all cases are normalized into the range

[ 1, 1] for both the ELM-RBF and SVM algorithms while The output value is nor-
malized into [0, 1].

In order to get good generalization performance, the cost parameter C and kernel
parameter of SVM need to be chosen appropriately. Similar to Hsu and Lin[14] we
estimate the generalized accuracy using di erent combinations of cost parameters C
and kernel parameters : C = [212, 211, · · · , 2 1, 2 2] and = [24, 23, · · · , 2 9, 2 10].
Therefore, for each problem we try 15× 15 = 225 combinations of parameters (C, )
for SVM.

Seen from Tables 1-2, ELM-RBF can get generalization performance close to SVR

1http://www.niaad.liacc.up.pt/ ltorgo/Regression/cal housing.html
2ftp://ftp.ira.uka.de/pub/neuron/proben1.tar.gz
3Refer to http://www.ntu.edu.sg/eee/icis/cv/egbhuang.htm for ELM source codes.
4http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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(Support Vector Machine for Regression) with much less kernels and faster learning
speed.

Problems Algorithms Training Time Testing No of SVs/
(seconds) RMS Dev Neurons

Housing ELM-RBF 7.1282 0.1265 0.0043 100
SVR (C = 22, = 21) 56.6582 0.1181 0.0011 2193.2

Abalone ELM-RBF 0.0325 0.0779 0.0022 15
SVR (C = 210, = 2 6) 44.0474 0.0785 0.0023 457.8300

Table 1: Performance comparison of ELM and SVR in function regression applica-
tions: California Housing Prediction and Abalone Age Prediction.

Algorithms Training Time Success Rate No of SVs/
(seconds) Rate Dev Neurons

ELM-RBF 0.0408 76.48% 2.81% 30
SVM (C = 211, = 2 7) 0.9436 77.70% 2.94% 294.07

Table 2: Performance (successful testing rate) comparison in real medical diagnosis
Application: Diabetes.

5 Conclusions

This paper has extended the extreme learning machine (ELM) from single-hidden
layer feedforward neural networks (SLFNs) with additive neurons to SLFNs with
RBF kernels - RBF networks. The main feature of the proposed ELM for RBF
networks is that ELM arbitrarily assigns the kernels instead of tuning them. Com-
pared with the popular SVM, the proposed ELM can be used easily and the ELM
can complete learning phase at very fast speed and provide more compact network.
As demonstrated in a few simulations on real and artifical benchmark problems, the
proposed ELM for RBF networks can achieve comparable generalization performance
with SVM. It is worth further systematically investigating the arbitrariness of the
RBF kernels.
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