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Abstract 
 

Underwater signal classification is mostly based on frequency domain or time-frequency domain 
analysis so far. However, they are not enough to capture all useful information. To enhance the 
current solutions, we present a feature extraction method based on principal component analysis in 
reconstructed state space (RSS-PCA) for acoustic echo classification, with the emphasis on time 
domain. We utilized 3 kinds of features, RSS-PCA, spectra, and the combination of RSS-PCA and 
spectra, to classify the underwater signals backscattered from 5 categories of lake bottoms. The 
classification results show that: (1) The RSS-PCA feature and the spectra feature is alone effective 
for underwater echo classification. (2) The combination of both features performs much better than 
either feature alone. This confirms that the RSS-PCA feature is able to enhance the current solution 
and the fusion of the different features promises better performance. We attribute this to the 
following factor. Since reconstructed state space is a new domain to view signals, different natures 
of signals can then be revealed than those in frequency domain. As different feature extractors 
capture the profile of an object of interest from different viewpoints, fusion of multiple feature 
extractors usually leads to a more complete profile of the object. 
Keyword: Acoustic Signal Classification, Feature Extraction, State Space Reconstruction, Principal 
Component Analysis (PCA).  

I. Introduction 
 

Underwater acoustic signals falls into two groups: acoustic echoes and acoustic emissions. The two 
groups are also referred to as active and passive sonar signals. Since the natures of the two categories 
of signals are quite different, the classification of either category of signals is an independent 
research area. This paper is dedicated to study acoustic echo classification. Underwater acoustic echo 
classification has been continuously receiving intensive investigations so far. Most feature extraction 
methods in the current literature are focused on frequency domain or time-frequency domain. Some 
representative methods are: wavelet packets in conjunction with linear predictive coding (LPC) [1], 
textural features derived from wavelet transformation [2], and partition of DFT data into subsets with 
constant variance [3]. In general, no single feature can capture all useful information. Different 
features working in collaboration with each other usually provide complementary information. As 
the underwater acoustic echo classification is an open problem so far, new feature extraction and 
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classification methods are in urgent demand to augment the existing solutions. According to our 
investigations, time domain features also play an important role in underwater acoustic echo 
classification. However, few investigations in the current literature are devoted to time domain 
features. In this study, we apply principal component analysis [9] based on state space reconstruction 
[7,8] (RSS-PCA) as a feature extractor for active sonar signal classification. We firstly proposed this 
feature extractor in [6], aiming at passive sonar signal classification. We extend the usage of it to 
acoustic echo classification in this study and the emphasis is placed on investigating its performance 
with active sonar signals. By means of the state space reconstruction, the time sequence of interest 
can be embedded to a space with higher dimensionality. The benefit of applying state space 
reconstruction lies in that some regular patterns invisible in the time sequence can be revealed in the 
embedding space. 
 
To investigate the contribution of RSS-PCA to active sonar signal classification, we conducted the 
following experiments. We classify the underwater echoes returned from 5 classes of objects, which 
are lake bottoms consisting of 5 different kinds of materials: rock, grit, scree, sand, and silt, using the 
RSS-PCA feature, a spectral feature, and the fusion of both. Here, the nearest neighbor classifier [11] 
is employed to perform the classification. The classification results justified two facts: (1) Either 
feature is alone effective for underwater acoustic echo classification. (2) The combination of both 
features promises a much better performance than either one alone. We attribute this to the following 
factors: (1) State space reconstruction provides a new insight into the different natures of active 
sonar signals in contrast to traditional means. (2) The fusion of different features could provide 
complementary information to each other and compensate for the limits of each other. Thus, fusion 
of features obtained in different domains is a way to enhance the existing solutions. 

II. Feature Extractors 
 

A. Principal Component Analysis in Reconstructed State Space  

The state space reconstruction performed on a given time series [sk]:k=1,2,…,NT is described as 
follows. At first, we have to determine the values of two parameters, the delay time τ and the 
embedding dimension N. Then, we can construct M=NT-(N-1)τ vectors {xi|i=1,2,…,M}, where 
 

xi=(si,si+τ,si+2τ,…,si+(N-1)τ)T
. (1) 

 

There exist various ways in the literature to decide the parameter τ. Here, we employ the 
method presented in [4] because it is more suitable for processing underwater acoustic signals 
in accordance with our practice. Such method sets τ as the minimum duration during which the 
autocorrelation function of the time series [sk] approaches 0. The criterion to determine the 
embedding dimension N has been discussed in detail in our former report [10], that is, the 
embedding dimension resulting in the highest classification precision. 
 
Let X=[x1,x2,…,xM] represent a matrix being composed of {xi|i=1,2,…,M}. Such matrix forms a 
trajectory in the embedding space, which reveals the dynamical behaviors of the system behind 
the observed time series of interest. 
 
Then, the pattern analysis in the embedding space is performed as follows. First, we construct a 
new base spanned by N vectors {u1,u2,…,uN}. Let λ1≥λ2≥…≥λN denote the eigenvalues of XXT. 
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The {u1,u2,…,uN} are chosen to be the corresponding eigenvectors of XXT. Then, xi can be 
transformed to the new space spanned by {u1,u2,…,uN} via 
 

yi=UTxi, (2) 

where U=[u1,u2,…,uN] forms a matrix. Let Y=[y1,y2,…,yM] and X=[x1,x2,…,xM]. On account of 
Eq. (2), it follows that 
 

Y=UTX. (3) 

It can then be derived that 

XXT=UΛUT, (4) 

where Λ=diag(λ1,λ2,…λN). According to Eq. (3) and (4), it is easy to deduce that 

YYT=UTXXTU=UTUΛUTU=Λ. (5) 

 

It means that the correlations among different dimensions have been eliminated following the 
transformation defined in Eq. (3). Here, the eigenvalues λ1,λ2,…,λN are utilized as features 
because they indicate the characteristics of the reconstructed trajectory of interest along 
different dimensions in the space spanned by {u1,u2,…,uN}. 
 

B. Spectral feature 

The spectral feature is computed as follows. (1) Compute the power spectrum of every signal 
using Welch’s averaged periodogram method, where a Hanning window is used and the 
computation is based on a 2-segment average without overlay. (2) The entire frequency axis is 
divided into some equal bins without overlay, where 10 bins are used. Then, the mean of the 
spectral values in every bin is used to form the pattern for every sample. 

III. Nearest Neighbor Classifier 
 
In this study, we employ the nearest neighbor classifier presented in [10] for signal classification. 
Following is the detailed implementation. Suppose that there are Q training samples and the pattern 
of the ith sample is denoted as Fi=(Fi1,Fi2,…,FiK)T: i=1,2,…,Q. The class label of every training 
sample is prior known and denoted as C(Fi): i=1,2,…,Q. Let f=(f1,f2,…,fK)T represent the pattern of 
the sample to be classified. The distance between f and Fi is defined as 
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(6) 

where σj:j=1,2,…,K is the standard deviation of the jth attribute of the Q training samples, namely, 
{Fij|i=1,2,…,Q}. The function of {σj|j=1,2,…,K} is to compensate for the scale difference among 
different attributes. If 

},...,2,1|),({minarg QiFfdk ii
==  (7) 
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then, the class label of f is assigned to be C(Fk). This means that f is classified into the class to which 
the kth training sample belongs. 

IV. Classification experiments 
 
The previously presented two features, the RSS-PCA feature and the spectral feature, are utilized for 
classifying underwater acoustic echoes with the nearest neighbor classifier presented in section 3. 
The data set used in the classification experiments contains 5 classes of underwater acoustic echoes 
returned from 5 categories of lake bottoms, which are composed of rock, grit, scree, sand, and silt, 
respectively. The number of the signal samples contained in every class is 144, 180, 179, 180, and 
180, respectively. The length of each sample is 2000. Prior to the feature extraction, each sample was 
normalized to possess unit energy. We select at random half samples of every class to form the 
training set and the residual samples of every class are used for testing. We conduct 3 types of 
testing, classification with RSS-PCA, spectra, and the fusion of both features, respectively. For every 
group of testing, we run the classification test 10 times with randomly selected training and testing 
samples for every run. Then, we summarize the averaged classification accuracy over the 10 runs 
with regard to every class and the overall classification accuracy in Table 1. Here, in computing the 
RSS-PCA feature, the embedding dimension is set to be 30 (The reason will be explained later). It is 
obvious that the fusion of both RSS-PCA and spectral features outperforms either single one. The 
performance improvement achieved by using the fusion of the two features in contrast to the use of 
every signal feature is listed in Table 2. Here, the performance improvement is obvious. For every 
class, the combination of both features leads to better performance in contrast to every single one. 
According to Table 1, the spectral feature is far better than the RSS-PCA feature in classifying the 
echoes returned from rock, grit, and scree. With regard to the echoes returned from sand, the spectral 
feature also promises better performance. Only for the echoes returned from slit, the RSS-PCA 
feature outperforms the spectral feature, but not much. However, when combining the two features 
to classify the 5 classes of signals, the performance is improved obviously in classifying every class 
(See Table 2). We attribute the interesting phenomenon to the following cause. Since every single 
feature extractor views the signals from a specific viewpoint, it is only able to reveal a portion of the 
nature of the signals of interest. Different feature extraction methods reveal different aspects of the 
signals’ nature. When different features are combined, the information regarding different aspects, 
which are in general complementary to each other, are organized. This benefits the classification. In 
this study, since reconstructed state space is a new domain to view signals, different natures of 
signals can be revealed than those in frequency domain. 
 

Table 1: Classification rate using different features (%) 
 Rock Grit Scree Sand Silt Overall 
Spectra&RSS-PCA 96.3889 95.2222 97.0000 99.6667 97.7778 97.2454 
Spectra 92.2222 87.7778 92.0000 99.0000 90.0000 92.1991 
RSS-PCA 77.0833 81.3333 87.8889 96.8889 92.2222 87.5000 

 
Table 2: Performance improvement by using combination of features (%) 
 Rock Grit Scree Sand Silt 
Spectra 4.1667 7.4444 5.0000 0.6667 7.7778 
PCA30 19.3056 13.8889 9.1111 2.7778 5.5556 

 

According to our observation, the classification performance is subject to the embedding dimension. 
A too low or too high embedding dimension will result in performance degradation in terms of 
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classification. So, the choice of embedding dimension plays an important role in the analysis based 
on state space reconstruction. It has been pointed out in [5] that the embedding dimension 
determination should be application-dependent. As for the practice in this study, the optimal 
embedding dimension is that resulting in the highest classification rate. To approach the optimal 
embedding dimension, we conduct the following tests. We compute the classification rates using the 
RSS-PCA features computed under different embedding dimensions. The classification results are 
presented in Table 3. Obviously, when the embedding dimension is 30, the highest classification rate 
is achieved. So, in previous classification experiments, we let the embedding dimension be 30. 
 

Table 3: Classification rate using RSS-PCA under different embedding dimensions (%) 
Dimension Rock Grit Scree Sand Silt Overall 
5 72.0833 57.6667 79.5556 69.5556 74.2222 70.5556 
10 77.3611 60.3333 86.0000 80.3333 81.1111 77.0139 
15 74.8611 71.6667 84.7778 86.8889 84.8889 80.8565 
20 76.6667 75.4444 86.2222 93.7778 92.0000 85.1620 
25 74.4444 78.5556 88.4444 97.7778 92.0000 86.7361 
30 77.0833 81.3333 87.8889 96.8889 92.2222 87.5000 
35 76.3889 81.3333 88.0000 97.6667 88.0000 86.6898 
40 76.1111 82.0000 87.8889 97.6667 85.8889 86.3194 
45 77.0833 81.7778 87.7778 97.8889 86.1111 86.5046 
50 76.1111 79.2222 87.3333 98.0000 86.0000 85.7176 
 

V. Conclusion 
 
The contributions of this study are as follows. (1) Principal component analysis in reconstructed state 
space is experimentally shown to be effective for underwater echo classification. (2) We justified 
through experiments that fusion of different features could provide complementary information to 
each single feature and thus promise better performance in terms of underwater acoustic echo 
classification. In this study, the fusion of RSS-PCA feature and the spectral feature outperforms 
either single feature in the sense of classification. Actually, RSS-PCA is not a powerful feature for 
underwater acoustic echo classification if used alone. When combined with spectra, however, it 
greatly improved the spectra based classification. In this sense, the RSS-PCA is a useful feature 
because it provides complementary information overcoming the limits of the spectral feature. 
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