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Abstract 

A new approach to computation of spectral moments of temporal signals is proposed. The ap-
proach is based on the auto correlation sequence of the original temporal signal, and makes use 
of the fact that the power spectral density is a discrete-time continuous-frequency function. The 
new approach offers more efficient generation of moments than the approaches based on nu-
merical integration of the power spectral density function. The impact of noise is also analyzed, 
which was found to be very high at higher-order moments. Based on the analysis, a simple lin-
ear transformation of moments is suggested. It is shown that the new features are very little 
affected by additive white Gaussian noise. 
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1   Introduction 

Usage of power spectral density functions (PSD) for extraction of features from temporal and 
spatial signals is a standard approach in various areas of pattern recognition, including acous-
tics, seismology, oceanography, imaging, and biomedical engineering. PSD reduces the redun-
dancy in signals by concentrating its energy (information) into smaller areas of the frequency 
domain. However, the PSD still represents a significant amount of data, which is inconvenient 
to be directly presented to a pattern classifier. Therefore a further data reduction is needed. The 
goal is to come up with fewer quantities (features) that best characterize the PSD in some effi-
cient manner. A straightforward approach is to use magnitude averages of PSD over a few fre-
quency intervals. Another approach is to use the moments of PSD function. 

 
This work has been motivated by the practical needs which the authors have met in the area 

of classification of prehensile electromyographic signals (EMG). The magnitude averages of 
PSD obtained from EMG patterns are used in [1], [2] and [3], which we consider as notable 
contributions to biomedical applications. The spectral moments are used by the authors of this 
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−

work [4] who have shown empirically the advantage of moments over the magnitude averages 
in prehensile EMG pattern classification. 

 
This work focuses on a new method for efficient computation of spectral moments, and on 

the analysis of their performance in presence of noise. The concrete real-life temporal signals 
used in examples in subsequent sections deal with the classification of different types of grasps 
as defined by Schlesinger [5]: spherical, cylindrical, lateral and precision grasp. The EMGs 
were recorded from real subjects who have repeatedly performed grasping of spherical and 
cylindrical objects, keys and pens. The purpose of the experiments was to build multifunctional 
hand prosthesis. The experiments were described in detail in [6] and [7]. Although the exam-
ples used here are based on the prehensile EMG patterns, we believe that the ideas discussed 
here can be equally successfully applied to the classification of other types of temporal signals. 

2   Computation of Spectral Moments 

The PSD for a time sequence  can be estimated via periodogram [ ], 0,1, 2,..., 1s i i N=

                                  2 *1 1( ) ( ) ( ) ( )P f S f S f S f
N N

= = ,                    (1) 

where  and  are discrete-time Fourier transform of ( )S f *( )S f [ ]s i  and its conjugate 

          
1

2

0

( ) [ ]
N

j fi

i

S f s i e π
−

−

=

= ∑ .       (2) 

Note that  is a discrete-time, continuous-frequency version of PSD, with discrete time 

 and continuous frequency 
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f ∈ . The raw spectral moments are defined as 
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In order to compute Mm, the frequency can be discretized, f j f j N= ∆ = , which would give  
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where (jP P j N= )  can be obtained via discrete Fourier transform of [ ]s i  followed by subse-
quent absolute operation. 

 
In our approach we compute the moments by using a different representation of the PSD, 

based on Wiener-Khintchine theorem 
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where  is the autocorrelation function of the sequence [ ]ssC k [ ]s i  
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where . Now, by substituting (7) into (3) we finally get 1K N≤ −

1
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The equation (8) represents the new approach in computation of spectral moments of any 
degree. The coefficients  are defined as ( )mI k

   
1 2 1 2

0 0

(0) , ( ) cos(2 )π= =∫ ∫m m
m mI f df I k fk f df .    (9) 

After integration, the first few I-coefficients yield 
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The rest of the I-coefficients can be obtained from the following recurrent relation (see ap-
pendix) 

  1
21 2( ) (( 1) 2 ( 1) ( ))

2 (2 )
k m

m mm

mI k m I k
kπ

−
−−= − − − .    (11) 

It is important to notice that the coefficients  do not depend on input data, and therefore 
can be computed in advance and kept in memory as reusable constants. 

( )mI k

 
We also emphasize that this approach does not use the discretization of frequency. Instead, it 

takes the advantage of the fact that the PSD as defined by (1) and (2) is continuous in fre-
quency. The continuous integration over the frequency is encapsulated in coefficients . It ( )mI k
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is expected that this may reduce the integration error due to frequency discretization, which is 
inherent in straightforward approach. 

3   Efficiency 

From (10) and (11) it is apparent that I-coefficients decrease with the square of time lags k . 
Similarly, the autocorrelation function also tends to generally decrease with the time lags. 
Therefore we can expect that the maximal number of time lags, K , which is necessary to com-
pute the moments through equation (8), can be much smaller than the length of the time se-
quences [ ]s i . The figures below illustrate this. (Note the coefficients  in figure 1 are mul-
tiplied by for a better graphical presentation.) 

( )mI k
k

 

 

Fig. 1. Coefficients for   ( )mI k 1,2,3m =

The error diagram in figure 2 shows the relative differences between moments computed for 
 and N K  time lags. The diagram is obtained by averaging 30 time sequences of length 400 ms 

recorded from a surface EMG electrode while the subject was grasping a cylindrical object. 
Evidently, the error is smaller than 1%  if . Similar error rates are obtained for other grasp 
types. 

10K >

 

Fig. 2. Error in computing moments at K N<  

 

 115



Marko Vuskovic and Sijiang Du 
Spectral Moments for Feature Extraction from Temporal Signals 
 

Table 1. No. of floating-point operations for two approaches. 

(Example: 5,m = 400N = and 20.K = )  

Approach   ( )S f [ ]ssC k
2( )S f   mM        Total              Example 

Standard    *     - 3 2 N           ( 1) 2m N+    ( 4)m N 2+    1,800

Here    -     *     -           2mK 2mK 200

(*) The sequence computed recurrently during signal acquisition. 

The proposed approach for computation of spectral moments eliminates the need for FFT 
and for the subsequent absolute operation. At this point it can be argued that the FFT has to be 
used anyway for fast computation of autocorrelation functions [8]. However, this is not the case 
here because  can be computed recurrently during the signal acquisition. Consequently, by 
the time the last sample  is acquired the sequence  is already available for use in (8). 

[ ]ssC k

[ 1s N − ] [ ]ssC k
 
The table 1 summarizes the number of floating-point operations needed to compute  raw 

moments by using (4) and (8) respectively. 
m

4   Impact of Noise 

In real life the time sequences are contaminated with noise. This is especially true in case of 
surface EMG electrodes. The most common method to model the instrumental noise is the ad-
ditive white Gaussian noise (AWGN). Based on (6) the autocorrelation function of the noisy 
sequence becomes 

 
   .    (12) ,[ ] [ ] [ ] [ ] [ ] [ ]ss s n s n ss nn sn nsC k C k C k C k C k C k+ += = + + +

AWGN is uncorrelated with itself and with other signals, therefore  for all 
 while , where  is the noise energy, while 

[ ] [ ] 0sn nsC k C k= =

,k 2
0[ ] ( )nnC k N kδ= 2

0N (0) 1, ( 0) 0.kδ δ= > =  The noise-to-
signal ratio can be defined as [0] [0]n nn ssC Cλ = , hence 

 
   [0] [0].nn n ssC Cλ=       (13) 

In the case of realistic noise and shorter time sequences, the correlation sequences 
[ ]snC k  and  for all , and  for  can not be ignored. Substitution of (12) and (13) 

into (8) gives the noise-contaminated raw moments 
[ ]nsC k k [ ]nnC k 0k >

 

02 (0)m m n mM M M I mλ ε= + + ,      (14) 

where: 
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Note that the index k  in the sum above starts from 1.The quantity mε  vanishes if the noise is 
AWGN, or 0M I2 (0)m n mε λ  if the noise is close enough to AWGN. The relative variation of 
moments due to noise can be finally expressed as 
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It is apparent that the variations are very big even for ideal AWGN. 

5   Reduced Moments 

The high impact of noise on the accuracy of spectral moments suggests a modification of fea-
tures based on the following linear transformation 

0
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2 (0)
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M I M
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−
= = ∑ ss mC k I k ,     (17) 

We will call the new moments  "reduced moments". It can easily be shown that the rela-
tive variation of reduced moments due to noise is 

mR

m m

m m

R
R R

ε ′∆
= ,      (18) 

where  

( [0] [0]) (0)
2

m sn ns m
m

C C Iε
ε

− +′ =      (19) 

Since  m Rmε ′  it appears that the reduced moments are much less impacted by noise. This is 
best illustrated in figure 5, which shows that the relative variations of reduced moments ,  
and  are below 5% even at the noise-to-signal ratio 

1R 2R

3R 0.5nλ = , while the variations of straight 
moments can be hundred times higher. 

 
An example of ability of spectral moments (straight and reduced) to cluster and classify is 

shown in figure 4. Two sets of five-moment features, one for spherical grasps (dots) and the 
other for cylindrical grasps (circles) are considered. The five-moment feature vectors are pro-
jected onto 2D plane for the purpose of visual presentation. The projection uses two not neces-
sarily orthogonal vectors. The first vector is a normal to the hyper-plane obtained by the sup-
port vector machine (SVM), which provides a separation of clusters with a maximal margin. 
The SVM are a family of learning algorithms [10] based on the work of Vapnik [9], which have 
recently gained a considerable interest in pattern recognition community. The success of SVM 
comes from their good generalization ability, robustness in high dimensional feature spaces and 
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good computational efficiency. The other vector is along the direction of minimal pooled vari-
ance of both clusters. 
 

 

 

 

 

 

Fig.3. Relative variations of straight and reduced moments due to noise 

 

Fig.4. Comparison of straight 1,..., 5M M  and reduced moments 1,..., 5R R  without noise (above), and 
with AWGN at 1N S = (below). 

The figure compares the straight and the reduced moments, without and with AWGN at 
1nλ = . For each case the Hotelling  statistic [11] is computed, in order to compare the dis-

tance between clusters (the higher is the  value, the better separation of clusters). The figure 
shows that the  value has dropped due to noise more than five times in case of straight mo-
ments, while in case of reduced moments  has dropped only by 27%. The figure also shows 
that the reduced moments performed slightly better than the straight moments in absence of 
noise. This could be explained by the fact that the time sequences recorded from real subjects 
might already be contaminated with noise. 

2T
2T

2T
2T
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In some applications the zero moment 0M  may be a very important feature. In such cases the 
zero moment might be retained in the set of reduced moments, i.e. . This can be af-
forded since the zero moment is impacted by noise only linearly with the 

0R M= 0

N S  ratio, while the 
higher moments are more critical. 

 
If we represent the straight and reduced moments by ( 1) 1m+ ×  vectors ( )T

mM = and 
nt transformation (17) can be expressed in matrix form: 

 

0 1, ,...,M M M
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             (20) 
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     (21) 

 

The matrix  is invertible since T det( ) 1 2mT = , therefore the transformation (21) has an in-
verse, i.e. 1M T R−= . 

6   Conclusion 

A new algorithm for computation of spectral moments of any degree is proposed in this work. 

he impact of noise has also been analyzed. It has been shown that the higher-order mo-
m

The algorithm utilizes autocorrelation sequence of the original temporal signal, rather than the 
signal’s power spectral density, and offers much faster computation of moments than the stan-
dard method based on direct numerical integration of the power spectral density. The algorithm 
does not discretize the frequency and is therefore more accurate than the traditional approach. 
The algorithm enables to compute the raw spectral moments of any order by simply multiply-
ing and summing the autocorrelation function of the input data signal with a series of coeffi-
cients that do not depend on data, and can therefore be pre-computed and kept in memory for 
use with any signal. A recurrent equation has been derived to generate these coefficients for a 
moment of any order. 

 
T
ents are very vulnerable to noise. Based on this analysis, the new set of modified moments is 

suggested. It is shown that the new moments are less impacted by the additive white Gaussian 
noise. 
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Appendix 

Equation (11) can be derived if we apply partial integration to cos( )mx x and sin( )mx x , 

       1
0

0 0

cos( ) [ sin( )] sin( )
k k

m m k mx x dx x x m x x dx
π π

π −= −∫ ∫ ,     (22) 

      1
0

0 0

sin( ) [ cos( )] cos( )
k k

m m k mx x dx x x m x x dx
π π

π −= − +∫ ∫ .     (23) 
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where 2x fkπ= . If we substitute definite integrals with and respectively, the equations 
above become 

mC mS

      , 1m mC mS −= −

     1( ) cos( )m
mS k k mCπ π m−= − + .       (24) 

After applying induction to the second equation, we get 

    ,      (25) 1
1 2( ) cos( ) ( 1)m

m mS k k m Cπ π−
− −= − + −

which substituted into (24) gives 

        (26) 1
2[ ( ) cos( ) ( 1) ].π π−

−= − − + −m
m mC m k k m C

The equation (11) follows directly from (26) since cos( ) ( 1)kkπ = − and 

         (27) 1 1
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m m m m
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