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Abstract 
A genetic algorithm simulating evolution is proposed to yield near - optional solution to the 
Traveling Salesman Problem. Noting that Darwinian Evolution is itself optimization process, we 
propose a heuristic algorithm that incorporates the natural selection. The time complexity of this 
algorithm is equivalent to the fastest sorting scheme. The algorithm is used to solve the China -
Traveling Salesman Problem, the shortest route is obtained in this paper. The adaptability of this 
technique to tackle other NP -complete problems such as the tree problem is also discussed. 
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I. Introduction 
 
The classic Traveling Salesman Problem (TSP) has been studied extensively in the past and regarded 
as a simple benchmark problem which is difficult to solve. Given n cities the objective is to visit 
each city exactly once, returning to the starting point, minimizing the total distance. Since the 
number of distinct paths, nn 2/! (there are !n permutations of the n cities); the clockwise path is 
equivalent to the counter - clockwise one; The problem is, in principle, solvable by exhaustive 
search of the solution space. This brute force algorithm is highly impractical because its computing 

effort is )!(nO .  
 
In fact, there is no known algorithm for determining the optimal path whose computational effort is  
bounded by any power of n . This lack of any polynomial time algorithm is characteristic of the 
diverse class of NP -complete (non - deterministic polynomial time complete) problem, of which the 
TSP is a classical example. For deeply understood reasons it is believed that such polynomial time 
algorithm exists. 
Since the difficult problem finds a variety of practical applications it is necessary to develop 
heuristic algorithms for finding near-optimal solutions in polynomial time. Most of the heuristic 
methods proposed in the literature are specific problem. 
Genetic algorithms have been proposed to simulated evolutionary optimization through iterative 
mutation and selection. We propose a robust iterative improvement algorithm that simulates 
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Darwinian evolution whose computation effort is )log( nnO , no more than the effort of the fastest 
sorting scheme, and yields solutions that are typically less than 25% longer than the "expected" 
optimal tour. Selection of improved variants from the population that emerge as a resu1t of mutation 
is held to be the central principle underlying optimal evolution is clear when we observe that natural 
selection as formulated by Darwin is itself an optimization process whose objective is to foster the 
survival of fit species while inhibiting that of inferior ones. 

II. Algorithm 
 
Consider an n  cities TSP. A feasible solution (path) is represented by an array of n distant elements 
of the set },...,2,1{ n . For example, the following array: 
 
 
 
Represented a tour from 26...472 →→→→→ . Each such array is thought of as an organism. 
Each such organism will posses a score that represents the tota1 distance of its paths. 
An initial popu1ation of NP organisms is randomly generated and each associated score is computed. 
From these NP, a survival set containing the organisms with the best N scores are chosen to 
reproduce. Reproduction occurs by repeated point mutation (exchanging 2 elements) as illustrated 
below: 
 

  
 
 
 
 
 
 
 
 

 
Reproduction is as follows: 
do exchange 2  elements 
whi1e  ( PX < ) 
where X  is a uniformly distributed random variable on (O ) and ∈P  (0, 1) determines the expected 
number of exchanges per reproduction. This variable of genetic drift is denoted by )(XEgd , where 
X  = 1,2, is a discrete variable. We claim: 

 
Lemma 1  )1()( 1 PPmP m

x −= − . 
Proof   )(mPx  denotes the probability that exactly m  exchanges are performed. Obviously at least 1 
exchange is preformed. To perform exactly m exchanges the loop must be repeated 1−m times and 
stopped at the thm −  repetition. Each loop repetition occurs with a probability of P, while a loop 
stoppage occurs with a probability of P−1 . 
 
Lemma 2  1)1()( −−= pXE gd  and 22 )1()( −−= PPXgdσ . 
Proof    By definition 
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Where 2
gdσ  is the variance. 

 
Reproduction is therefore a stochastic process which can be thought of as searching a neighborhood 
of the solution space in order to better the population. It seems intuitive to search a larger 
neighborhood in the beginning when the population is not very good, and research a smal1er 
neighborhood later on when it has become substantially better. Thus we believe a graded 
perturbation of the organisms is efficient. Computer simulations indicate that by setting the initial 

)(XEgd  proportional to log n , a quick and effective search is conducted. Therefore, we choose 

1)1log()( +−= −∗ i
gd enkiE α                                                (3) 

Where )(iE gd
∗  is the desired expected number of exchanges at the thi − iteration and α  and k  are 

constant. 
Setting )(XEgd = )(iE gd

∗  yields 
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Note that since )(iE gd
∗  is a decreasing function, the overall expected number of exchanges per 

reproduction. 
 
Lemma 3  Reproduction time )(log nO≤  with probability 1→θ . 
Proof   Since the population space is constant, reproduction time is proportional to X , the number of 
exchanges.  
For any fixed probability 1<θ ,let )(θX  be the smallest integer that satisfies 

0))(())(( ≥≤= θθ XXPXF , the probability that the total number of exchanges does not exceed 
)(θX  is at 1east θ . We shall show that )(θX )(log nO≤ . 

Since )0,()0,([ >≥=∀ αα iPiPi , it follows from (4) that )0,()0;([ >≥=∀ αθαθθ XX . Hence, it 
suffices to show that )(log)0;( nOX ==αθ .  
Chebgchev’s inequality states that for any 2/11)(,0 λλδµλ −≥≤−> XP , where the 

random variable X is distributed with mean µ and variable 2δ . Thus if == )0;( αθX λδ+gdE , 

where )1/1( θλ −= , then θθ ≥))((XF . 

Since gdE≤δ , ==≤> )0;()0;( αθδθ XX gdE + )(log)(
1

nOEO gd ==
−θ
δ                    (5) 

 
Theorem 4    Running time )log( nnO≤  with probability 1→θ . 
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Fig.1 The logarithmic learning curves 

 
 Proof Creating the organisms and calculating their scores takes )(nQ  time. From (5) we know that 
reproduction takes )log( nnO≤  time. Computer simu1ations indicate that “good” solution to even 
1arge city problems can be obtained in )(log nO  iterations (See Fig.1). Therefore, composite 
analysis shows that the proposed algorithm runs, even in the Probabilistic worst case, 

)],log( )(log[ nnOnO +⋅≤ or )log( nnO≤  time. The expected running time is also )log( nnO≤ . 
From left to right, in Fig.1, the curved depict the convergence for a 10, 20, 50, and 100 cities TSP. 

III. Conclusion 
 
We have used the algorithm to China-Traveling Salesman Problem, the shortest route in Fig.2. 

 
Fig.2   The route of the C-TSP 

We present some results of computer simu1ations of proposed algorithm for various size TSP’ s. 
Uniform random variables distributed on a Square of side length 100. The following result 

                                                 749.0lim ≈
∗

ns
d n   )( ∞→n                                                 (6) 

Where ∗
nd  is the optional distance and s is the length of the square containing the cities, can been 

used to evaluate the asympotic efficiency of the algorithm. 
Tab.1   The comparison of the algorithms 
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The 

proposed algorithm was compared against the greedy algorithm and the genetic algorithm proposed 
by Fogel. The former algorithm, Perhaps the most intuitive one, consists of starting at a random city 
and proceeding to the closest city not already visited and finally returning to the starting city. The 
latter (hereafter referred to as GA) consists of mutating a population of organisms each of which 
competes against a fixed number of other organisms for survival. The probability of an organism’s 
survival is inversely proportional to its score and directly proportional to that of its Competitor. 
Selection is probabilistic in GA, whereas it is deterministic in our algorithm. 
 
The biological algorithm presented above has both theoretical and practical interest. The latent 
power of Darwin evolution as apply to combinatorial optimization, two seemingly unrelated subjects. 
 
Most NP -comp1ete problems can easily be reformulated so that their feasible solution can undergo 
the process of mutation and reproduction as described above. The adaptability of this technique to 
tackle other NP -complete problems such as the tree problem demonstrates its robustness as a 
combinational optimization technique. 
 
It is a1so appealing to consider hybrids of neural network learning algorithm with evolutionary 
search procedures, in view of Nature’s success in this area. Genetic algorithm may be used to take 
advantage of the stochastic variation that often gradient techniques. This approach may also reduce 
the training times of neural networks. Further research will focus on investigating these interesting 
avenues.   
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Methods Number of Cities 
Evolution 

Time 
Distance 

10 
0.100 
268.324 

20 
0.285 
431.878 

50 
0.868 
620.131 

100 
8.901 
924.751 

Greedy 
Time 

Distance 

 
0.053 
268.324 

 
0.210 
1075.610 

 
1.428 
2565.541 

 
6.470 
4899.416 

GA 
Time 

Distance 

 
0.113 
268.324 

 
4.351 
431.878 

 
1.083 
814.601 

 
2.411 
1230.887 

Expected 
Min 

Distance 
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529.623 
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