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Abstract 

 

Adaptive neural network control was presented for a class of strict-feedback nonlinear systems with 
unknown the sign of control coefficients. A systematic procedure, which relaxes some rigorous 
restrictions on the plants in the literature at present stage, was developed based on Nussbaum-type 
function and RBF neural networks. The developed control scheme guarantees global stability of the 
closed-loop systems. Finally, numerical simulation study was presented to demonstrate the 
effectiveness of the proposed method. 
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I. Introduction 
 
Recently, interest in adaptive control of nonlinear system has been ever increasing, and many 
significant developments have achieved. In order to guarantee the global stability, some restrictions 
on the plants had to be made such as matching condition, or growth conditions on system nonlinear. 
To overcome these restrictions, a recursive design procedure called adaptive backstepping design 
was developed in [1]. Adaptive backstepping control has been studied for certain class of strict-
feedback nonlinear systems [2]-[5]. Several adaptive control systems have been proposed for 
parametric strict-feedback systems with unknown control coefficients but with known signs (either 
positive or negative) in [3], [6]. 
 
When there is no a prior knowledge about the signs of control coefficients, adaptive control of such 
systems becomes much more difficult. Up to now, there are mainly two ways to address the problem. 
One way is to incorporate the technique of Nussbaum-type gain into the control design [5], [7]. 
Another way is to directly estimate unknown parameters involved in the control directions [8]-[9]. 
Most of these results only can be applied to first-order systems or second-order systems. 
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Motivated by previous works on unknown control direction system, we successfully incorporate the 
technique of Nussbaum-type gain into backstepping design and propose an adaptive neural network 
control scheme. The proposed method avoids the controller singularity problem and 
overparameterization problem encountered in many results. The main contributions of this paper lie 
in: 
 
i) backstepping design techniques and the Nussbaum-type functions are incorporated  to solve 

the problem of the completely unknown control direction; 
ii) no growth restriction are imposed on system nonlinearities; 
iii) the resulting adaptive control is smooth. Computer explosion problem, and 

overparameterization problem are reduced. 
iv)  
The paper is organized as follows. Formulation and preliminaries of our adaptive control problem of 
uncertain nonlinear system is given in Section II. An adaptive neural control design procedure is 
presented in Section III. Simulation study and conclusion are presented in Section IV and V, 
respectively. 
 

II. Problem Formulation and Preliminaries 
 
Consider the following uncertain nonlinear system 

( ) ( )
( ) ( )
( ) ( )

1 1 1 1 1 2

1,  2 1i i i i i i

n n n n n

x f x g x x

x f x g x x i n

x f x g x u
+

= +

= + ≤ ≤ −

= +

&

&

&

, (1)

where [ ]1 ,  2T
i ix x x i n= ≤ ≤L , u R∈  are the state variable and system input respectively,  

( ) ( ),i i i if x g x  are uncertain smooth functions.  

Assumption 1. ( )0 0if = , 1 i n≤ ≤ . 
 
Assumption 2. Function ( )i ig x  and their signs are unknown, and there exist constants 0ig  and 

known smooth functions ( )i ig x  such that ( ) ( )00 i i i i ig g x g x< ≤ ≤ , i
ix R∀ ∈ . 

The RBF neural network as a kind of linear parametrized neural networks is found wide applications 
in control system design because of its nice approximation properties.  
 
Assumption 3.  Function vector : R∆ Ω a , Ω belongs to a sub-compact set of R . ∀  0ε > , there 
always exist a Gaussian base function vector : lR Rϕ a  and an optimal weight matrix * 1lW R ×∈  
such that 

* ,TW x∆ ϕ ε Ω= + ∀ ∈ , (2)

where 
2 2

1
2 2
1

exp exp

T

l

l

ς µ ς µ
ϕ

σ σ

⎡ ⎤⎛ ⎞ ⎛ ⎞− − − −
⎢ ⎥= ⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
L , , 1, 2,...,i i lµ =  is the center, l  is the number 

of hidden layer nodes, , 1, 2,...,i i lσ =  is the affect size, ς  is the input of RBF NN, and ε  is the 
construction error of NN. 
 
Nussbaum-type gains have been effectively used in controller design in solving the difficulty of 
unknown control directions. 
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Any continuous function ( ) :v k R R→  is a Nussbaum-type function if it has the following 
properties 

( )

( )

limsup

liminf

s

s

s

s

v k dk

v k dk

→∞

→∞

= ∞

= −∞

∫
∫

. (3)

 
For example, the continuous functions ( )2 cosk k , and ( )2 sink k . Through this paper, we choose 

( ) ( )2 cosv k k k= . 
 
Lemma 1. [5] Let ( )V ⋅  and ( )k ⋅  be smooth functions defined on )0, ft⎡⎣  with ( ) 0V t ≥  , 

)0, ft t⎡∀ ∈⎣ , ( )v ⋅  be an even smooth Nussbaum-type function, and 0θ  be a nonzero constant. If the 
following inequality holds 

( ) ( )( )( ) ( ) )1 1
0 00

1 ,  0,
tc t c

fV t e v k k e d c t tτθ τ τ τ− ⎡≤ + + ∀ ∈⎣∫ & , (4)

where constant 1 0c > , c  is some suitable constant, then ( )( )( ) ( )00
1

t
v k k dθ τ τ τ+∫ & , ( )V t , and ( )k t   

must be bounded on )0, ft⎡⎣ . 
 
In this paper, an adaptive neural network controller is design for the regulation problem. The method 
can be extended to the tracking problem easily. 

III. Adaptive Control Design 
 
The design procedure consists of n  step, at the i th step, 1 1i n≤ ≤ − , the state variable 1ix +  is viewed 
as the fictitious control. Firstly, an ideal fictitious signal iα  is designed. Then, the actual control u  is 
given at the n th step, which completes the design.  
 
Step 1: Defining the new state variable 1 1z x= , which satisfies 

( ) ( )1 1 1 1 1 2z f z g z x= +& . (5)

 
We choose the following ideal fictitious control signal 1α  to stabilize (5) 

( ) ( )

( )

( )

1 1 1 1 1 1

2
1 1 1 1 1 1

1 1 1 1 1 1 1 1

ˆ

ˆ

ˆ ˆ

T

T

v k z W z

k z W z z

W z z W

α ϕ

ϕ

Γ ϕ Γ σ

⎡ ⎤= +⎣ ⎦

= +

= −

&

&

, (6)

where ( )v ⋅  is an smooth Nussbaum-type function, small constant 1 0σ >  is to introduce the σ -
modification for the closed-loop system. Other symbols will be explained later. 
 
Choose Lyapunov function as 

( ) ( )2 1
1 1 1 1 1

1 1

1 1
22

TV z tr W W
g z

Γ −= + % % , (7)
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where 1 1 0TΓ Γ= > . Here, it should be emphasized that ( )1 1g z  is only required for analytical 
purposes, its true value is not necessarily known. 
 
Viewing as 2 1x α= , the time derivative of 1V  along (5) is given by 

( ) ( ) ( )( )

( )
( )

1
1 1 1 1 1 1 2 1 1 1

1 1

1 1 1
1 1 2 1 1 1

1 1

1 T

T

V z f z g z x W W
g z

f z
z x W W

g z

Γ

θ Γ

−

−

= + +

⎛ ⎞
= + +⎜ ⎟⎜ ⎟

⎝ ⎠

&& % %

&% %
, (8)

where 1 1 or -1θ =  is unknown constant. Apparently, 
( )
( )

1 1

1 1

f z
g z  is continuous and can be approximated 

by RBF neural networks to arbitrary any accuracy as 

( ) ( )
( ) ( ) ( )1 1 *

1 1 1 1 1 1 1
1 1

Tf z
z W z z

g z
∆ ϕ ε= +� , (9)

where ( ) *
1 1 1zε ε<  is the approximation error. * 1

1
lW R ×∈  are unknown ideal constant weights. Here, 

we use its estimate 1̂W  instead to form the control law as (6). The weight estimation error is 
*

1 1 1
ˆW W W= −% .  

 
Substituting (6) and (9) into (8), we have 

( ) ( )( )
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( )( ) ( )( )
( ) ( )

( )( ) ( )
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−

−

−
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. (10)

 

Since
22*1 1

1 1 1 1 1
ˆ

2 2
TW W W Wσ σσ− ≤ −% % , 2 * *2

1 1 1 1
1
4

z z ε ε− + ≤ , the following inequality can be obtained  

( )( )

( )( )
( )( )

22 1
1 1 1 1 1 1

2* *21
1 1

22 1
1 1 1 1 1 1

1 1 1 1 1 1
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4 2

2
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4 2

1

V z W v k k

W

z W v k k c

V v k k c

σ θ

σ ε

σ θ

λ θ

≤ − − + +

+ +

= − − + + +

≤ − + + + +

&& %

&%

&

, (11)

where constant ( ){ }1
1 1 max 1min 3 4,λ σ λ Γ −= , 

2* *21
1 1 12

c Wσ ε= + . Multiplying (11) by 1teλ , it 

becomes 

( ) ( )( )1 1 1
1 1 1 1 11t t td V e c e v k k e

dt
λ λ λθ≤ + + & . (12)

Integrating (12), we have 
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( )
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∫

&
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, (13)

here 1 1 1cρ λ= . Applying Lemma 1, we can conclude that 1V  and ( )1k t , hence ( )1z t  and 1̂W  are all 

bounded on )0, ft⎡⎣ . As an immediate result, ( )1z t is square integrable and ( )1z t&  is bounded, both on 

[ )0,∞ . Therefore, using Barbalat’s lemma, regulation of ( )1z t  can be concluded, i,e., 

( )1lim 0t z t→∞ = . However, 2x  is not the actual control, hence there exists a difference between 2x  
and 1α , which is defined as 

( )2 2 1 1 1 1
ˆ, ,z x z k Wα= − . (14)

 
Accordingly, expression (11) should be modified as 

( )( )1 1 1 1 1 1 1 1 1 21V V v k k c z zλ θ θ≤ − + + + +&& , (15)

and the undesired effects of 2z  on 1V&  should be controlled at the next step using the conventional 
backstepping design procedure. However, the situation is somewhat different here. At the next step, 
there exist another Nussbaum-type gain in the expression of 2V& , it seem difficult to conclude any 
stability results [7]. So, some methods must be adopted to resolve this problem. 
 
To proceed with our design procedure, we observe form (11) and (15) that  

( )( )

( )( )

22 1
1 1 1 1 1 1

2
2

1 1 2 1 1 2

22 1
1 1 1 1 1

2
1 1 2

1 1
2 2

1
2

1 1
2 2

V z W v k k

c z z z

z W v k k

c z

σ θ

θ θ

σ θ

θ

≤ − − + +

⎛ ⎞+ + − −⎜ ⎟
⎝ ⎠

≤ − − + +

+ +

&& %

&%

. (16)

 
Thus, at step 2, if ( )2z t  can be regulated such that it is square integrable, then according to Lemma 1, 

regulation of ( )1z t  can also be achieved.  
 
Step i  ( )2 1i n≤ ≤ − : The time derivative of iz  is given by 

( ) ( ) 1 1i i i i i i iz f x g x x α+ −= + − && . (17)
 
Since 1iα −  is a function of 1ix − , 1ik − , 1̂W , L , and 1

ˆ
iW − , 1iα −&  can be expressed as 

( ) ( )( )
1

1
1 1 1

1

i
i

i j j j j j i
j j

f x g x x
x
αα ζ

−
−

− + −
=

∂
= + +

∂∑& , (18)

where 
1

1 1
1 1

11

ˆ
ˆ

i
i i

i i j
ji j

k W
k W
α αζ

−
− −

− −
=−

∂ ∂
= +
∂ ∂

∑ &&  is computable. Then, (17) can be expressed as 
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( ) ( )1 1,i i i i i i iz f x g x xζ − += +& , (19)

here, we assume that ( ) ( )1 1,i i i i i if x f xζ α− −= − &  is unknown smooth function. We choose the 
following ideal fictitious control iα  

( ) ( )

( )

( )

2

ˆ

ˆ

ˆ ˆ

T
i i i i i i

T
i i i i i i

i i i i i i i i

v k z W Z

k z W Z z

W Z z W

α ϕ

ϕ

Γ ϕ Γ σ

⎡ ⎤= +⎣ ⎦

= +

= −

&

&

, (20)

where  ( )v ⋅  is an smooth Nussbaum-type function, small constant 0iσ >  is to introduce the σ -
modification for the closed-loop system, 0T

i iΓ Γ= >  is constant matrix. 
 
Considering the following Lyapunov function candidate 
 

( ) ( )2 11 1
22

T
i i i i i

i i

V z tr W W
g x

Γ −= + % % . (21)

 
Its time derivative along (19) and (20) is 
 

( )
( )

1 1
1

,i i i T
i i i i i i i

i i

f x
V z x W W

g x
ζ

θ Γ− −
+

⎛ ⎞
= + +⎜ ⎟⎜ ⎟

⎝ ⎠

&& % % , (22)

where 1 or -1iθ =  is unknown constant. RBF neural network is used to approximate continuous 

function 
( )
( )

1,i i i

i i

f x
g x

ζ − . Assuming that 

( ) ( )
( ) ( ) ( )1 *,i i i T

i i i i i i i
i i

f x
Z W Z Z

g x
ζ

∆ ϕ ε− = +� , (23)

where 1,
TT

i i iZ x ζ −⎡ ⎤= ⎣ ⎦  is input vector of RBF neural network, ( ) *
i i iZε ε<  is the approximation 

error, * 1l
iW R ×∈  are unknown ideal constant weights. ˆ

iW  is the estimating value of *
iW  in (20). The 

weight estimation error is *ˆ
i i iW W W= −% .  Using the same procedure as step 1, we have 

( )( ) 2
11i i i i i i i i iV V v k k c zλ θ θ +≤ − + + + +&&  (24)

where constant ( ){ }1
maxmin 1 2,i i iλ σ λ Γ −= , 

2* *2

2
i

i i ic Wσ ε= + . 

 
According to Lemma 1, if 1iz +  can be regulated such that it is square integrable, then iV  and ( )ik t , 

hence ( )iz t  and ˆ
iW  are all bounded on )0, ft⎡⎣ . Furthermore, ( )iz t is square integrable.  

Step n : This is the final step, since the actual control u  appears in the derivative of nz  as given in 
 

( ) ( ) 1n n n n n nz f x g x u α −= + − && . (25)
 
Since 1nα −  is a function of 1nx − , 1nk − , 1̂W , L , and 1

ˆ
nW − , 1nα −&  can be expressed as 
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( ) ( )( )
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n j j j j j n
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x
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−
−

− + −
=

∂
= + +

∂∑& , (26)

where 
1

1 1
1 1

11

ˆ
ˆ

n
n n

n n j
jn j

k W
k W
α αζ

−
− −

− −
=−

∂ ∂
= +
∂ ∂

∑ &&  is computable. Then, (25) can be expressed as 

( ) ( )1,n n n n n nz f x g x uζ −= +& , (27)

here, we assume ( ) ( )1 1,n n n n n nf x f xζ α− −= − &  is unknown smooth function.  
 
We now design the following actual adaptive control  

( ) ( )

( )

( )

2

ˆ

ˆ

ˆ ˆ

T
n n n n n

T
n n n n n n

n n n n n n n n

u v k z W Z

k z W Z z

W Z z W

ϕ

ϕ

Γ ϕ Γ σ

⎡ ⎤= +⎣ ⎦

= +

= −

&

&

, (28)

and consider the following Lyapunov function candidate 

( ) ( )2 11 1
22

T
n n n n n

n n

V z tr W W
g x

Γ −= + % % , (29)

where 0T
n nΓ Γ= >  is constant matrix. Its time derivative is 

( )
( )

1 1,n n n T
n n n n n n

n n

f x
V z u W W

g x
ζ

θ Γ− −
⎛ ⎞

= + +⎜ ⎟⎜ ⎟
⎝ ⎠

&& % % . (30)

 
Assuming that 

( ) ( )
( ) ( ) ( )1 *,n n n T

n n n n n n n
n n

f x
Z W Z Z

g x
ζ

∆ ϕ ε− = +� , (31)

where 1,
TT

n n nZ x ζ −⎡ ⎤= ⎣ ⎦  is input vector of RBF neural network, ( ) *
n n nZε ε<  is the approximation 

error, * 1l
nW R ×∈  are unknown ideal constant weights. ˆ

nW  is the estimating value of *
nW  in (28). The 

weight estimation error is *ˆ
n n nW W W= −% . Using the same procedure as step 1, we have 

( )( )1n n n n n n nV V v k k cλ θ≤ − + + +&& , (32)

where constant ( ){ }1
maxmin 3 4,n n nλ σ λ Γ −= , 

2* *2

2
n

n n nc Wσ ε= + . (32) and nλ  are different with (24) 

and iλ  because here u  is the actual control. 
So far the design procedure is complete. Applying Lemma 1 to (32), we conclude that nV  and nk  are 

bounded; furthermore, nz  is square integrable, all on )0, ft⎡⎣ . Applying Lemma 1 1n −  times, it can 

be shown from the above design procedure that iV  and ik , 1 1i n≤ ≤ − , and all estimates ˆ
iW , 

1 i n≤ ≤ , and in turn iα , 1 1i n≤ ≤ −  and the original state ix , 1 i n≤ ≤ , are also bounded on )0, ft⎡⎣ . 

Therefore, no finite time escape phenomenon may occur and ft = ∞ . As an immediate result, 
, ,i iu x z& &  and ix&& , 1 i n≤ ≤ , are also bounded on [ )0,∞ . Thus, using Barbalat’s lemma, we can 

conclude that ( ) ( )1 1lim lim 0t tx t z t→∞ →∞= = , ( )1lim 0t x t→∞ =& , 1 i n≤ ≤ . Furthermore, since 

( )0 0if = , 1 i n≤ ≤ , it can also shown from (1) that ( )lim 0t ix t→∞ = , 2 i n≤ ≤ . Then, we can obtain 
the following results. 



International Journal of Information Technology     Vol. 11   No. 10  2005 
 

                                                                                                                                                                

 

61

 
Theorem. Suppose that the proposed design procedure is applied to system (1), then for all initial 
conditions, uniform boundedness of all signals in the resulting closed-loop system is guaranteed; 
furthermore, regulation of the state ( )x t  is achieved, ( )lim 0t x t→∞ = . 

IV. Illustrative Example 
 
Consider the following second-order nonlinear system 

( )
( )

2
1 1 2 2

2 2

3 sin 6 6
sin 6 6

x x x x
x x u

⎧ = + − −⎪
⎨ = − +⎪⎩

&

&
 

where the dynamic of the system is unknown. We choose the initial condition 
( ) ( ) [ ]1 20 , 0 2,2

T Tx x = −⎡ ⎤⎣ ⎦ . The controller is designed using the above design procedure. In the 
simulation, the first RBF neural network contain 9 hidden nodes, and the second RBF neural 
network contain 36 hidden nodes. The design parameters of the controller are 1 2 0.5Γ = Γ = , 

1 2 0.1σ σ= = . We choose the initial weights  1 2
ˆ ˆ 0W W= = . Figs.1-3 depict the simulation results. 

  
Fig. 1.  State variables 1x and 2x       Fig. 2.  Neural networks output      Fig. 3.  Adaptive variables 1k and 2k  

V. Conclusion 
 
An adaptive neural-based control has been proposed for a class of strict-feedback nonlinear systems 
with unknown control direction. It has been shown that Nussbaum-type gains can be incorporated in 
the backstepping design to counteract the lack of a prior knowledge of control directions. The 
proposed method avoids the controller singularity problem and overparameterization problem 
encountered in many results. Global stability results for the resulting closed-loop system have been 
established. 
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