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Abstract 
 

Since the appearance of Napster in 1999, peer-to-peer networks which don't distinguish clients with 
servers, have become one of the fastest growing and most popular Internet applications. Content 
location is a key function, but it presents a very difficult and challenging problem for large-scale 
peer-to-peer systems. A number of different methods are currently in use. However, new mechanism 
which gains high success rate with low search scope and retains the simplicity and robustness of 
Gnutella-like systems is still under research. In this paper, we introduce a new self-learning 
algorithm- SLPS. SLPS learns interest similarity of nodes from history search results, and computes 
friend relations which can be used to locate content effectively. Simulation results show that, 
compared to the flood-based algorithm, SLPS improves query efficiency by up to ten times without a 
significant increases in load.  
 
Keyword: peer-to-peer, file sharing, search, learning, interest  

I. Introduction 
 
Today computing and storage capacity of ordinary PCs are much higher powerful than those of 
former mainframes. The advances of fiber transmission and high-speed network switching 
technology provide possibilities for sufficiently utilizing the re-sources of ordinary PC. As a 
revolutionary technology, P2P technology devotes to reasonably and sufficiently organize and utilize 
Internet edge's huge decentralized resources of computing, storage and information. P2P networks 
have become, in a short period of time, one of the fastest growing and most popular Internet applica-
tions. The big challenge of constructing P2P application is how to implement effi-cient and 
distributed search in complex environments which contains decentralized and huge-amount users, 
uncontrollable nodes with unbalanced computing capacity and network connection. 
 
This paper presents a self-learning semantic search method-SLPS. SLPS learns the interests of nodes 
by passive learning. It learns the file sharing relations from the search results and constructs friend 
relations. In SLPS, queries are routed to friend nodes in an un-structured pattern. If the searches in 
friend nodes fail, broadcast search will be executed. 
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The rest of this paper will be structured as follows. Section 2 reviews important related works. 
Section 3 presents a self-learning algorithm in unstructured peer-to-peer network. In section 4 we 
make sufficient simulation tests on performance of SLPS algorithm. The last section offers our 
conclusions and future work. 
 

II. Related Work 
 
We can categorize the content location algorithms used in current P2P systems into four groups by 
overlay network architecture. The earliest design, used in Napster [1], is the most similar to the 
client/server model. It depends on a central server (or cluster of servers) which maintains an index 
with the location of all shared files available in the system. In this approach, content location is 
centralized, but the download of contents is decentralized.  
 
The other three approaches are based on the distribution of the indices to the shared files among all 
participant peers: structured, unstructured and hybrid. These approaches differ as to whether the 
content location mechanism relies on any special structuring of the peers. Different architectures 
support different search capacities like fuzzy search in different degrees.  
 
Structured overlays, based on the Distributed Hash Table (DHT) abstraction, [2] [3][4][5] have been 
proposed to address the scalability problem inherent to flooding. In these protocols, each content is 
identified by a key and nodes organize themselves into a well-defined graph that maps each key to a 
responsible node. These constraints provide efficient support for exact-match queries. Some 
researches devote to realize complex search in DHT network. In [6], keywords are hashed into DHT 
space and nodes are responsible for neighboring keywords. In PGroup, nodes with the same classes 
of contents are connected to each other by building semantic peer-to-peer networks in CAN network 
[7]. Arpeggio is a peer-to-peer file-sharing net-work, based on the Chord lookup primitive, in which 
queries for data whose Meta-data matches a certain criterion are performed efficiently by using a 
distributed key-word-set index, augmented with index-side filtering [8]. Indeed, the obvious 
approaches to distributed full-text document search scale poorly [9]. It is not clear how to perform 
searches without sacrificing scalability or query completeness, and DHTs incur larger overhead than 
unstructured architectures in the presence of peer failure or disconnection and inherently, cannot 
efficiently support partial-match queries [10].  
 
Unstructured content location is used in systems such as Gnutella [11]. Gnutella relies on flooding of 
messages. Peers organize themselves into a random overlay. In order to find content, a peer sends a 
query to all its neighbors on the overlay, which, in turn, forward the query to all of their neighbors 
and so on, until the query time-to-live has expired. While this solution is simple and robust, it does 
not scale well. Several works tried to solve the scalability problems inherent to Gnutella networks, 
but none thoroughly solve the problem. The authors of [12] proposed a content location algorithm 
for such networks based on multiple random walks that resolves queries almost as quickly as 
flooding while considerably reducing the network traffic. BFSFlood [13] is a variation of the 
flooding scheme, with peers randomly choosing only a ratio of their neighbors to forward the query 
to. Iterative Deepening [14] in-creases the TTL of flood only when search with smaller TTL fails. 
 
Hybrid architecture may be a promising direction. It tries to combine the advantages of both 
unstructured and structured P2P networks. Castro et al proposed Structella, a hybrid of Gnutella built 
on top of Pastry [15]. Another design used structured search for rare items and unstructured search 
for massively replicated items [16]. 
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The effective pruning technique is the key problem to complex query, which can greatly reduce the 
number of involved files and nodes during one search probing. Recent years many researches 
concentrate on pruning technique by files or by key-words. SETS divides nodes into different 
themes and searches spread in theme scope [17]. Mercuzy supports for multi-attributes search. It 
divides attribute space according to scalar attributes [18]. NeuroGrid learns keywords distribution 
from history search results [19]. It implements the division of keywords space by learning the 
relations between nodes and keywords. Alpine depends on users' definition to maintain group 
relation and nodes in same group are all connected with each other [20]. Recently, GS proposed a 
new content location algorithm that explores common interests among peers [21]. Peers that share 
similar interests create shortcuts to one another and use them to locate content. When shortcuts fail, 
peers resort to using the underlying Gnutella protocol. In conclusion, further research is needed on 
automatic grouping, making full use of file relations and user relations to realize efficient pruning. 
 
Like the shortcut-based algorithm described in GS, our new algorithms also explore the common 
interests among peers to improve the scalability of the content location mechanisms in Gnutella 
systems. However, they differ from the previous approach in how common-interests among peers 
are assessed. By exploring locality of interest in a different way, we expect to reach more significant 
improvements in the Gnutella performance. 
 

III. Self-Learning Query Routing 
 

A. Design Idea 

Partitioning files or users to limit search scope and improve search efficiency is a common 
method used in distributed files search researches. Most traditional file grouping methods 
depend on users to specify attributes or description of a group. But different users may have 
different descriptions on the same group or have different classification options. This 
disagreement often leads to inconvenient centralized or predefined group management. SLPS 
algorithm presents a new user grouping method which requires no users’ description and 
avoids inconsistency of group descriptions. With good grouping method, search-oriented friend 
relations can be established automatically based on interests similarity between two users. 
SLPS can greatly optimizes the traditional broadcast algorithm through friend routing and is 
expected to gain high search success rate with low spend. 
 
As sharing files of each user can stand for his interests, we guess the number of same sharing 
files between users can be used to compute the similarity of users’ interests. The design of 
SLPS is bases on this assumption. SLPS has to solve two problems. How to collect sharing 
information in distributed environment? And how to route query based on users’ interests?  
 

B. Passive Learning Algorithm 

The basic process of learning friend relations includes two self-governed algorithms executing 
at different opportunities. First algorithm is devoted to learning file sharing relations from 
history search results. When any node issue search request and get results from some nodes, it 
will send the search results to those who return successful results. By this process, the nodes 
can get to know who is sharing the same files with them. The second algorithm is devoted to 
selecting friend nodes. Each node regards nodes sharing same files with it as friend candidates. 
Then at regular intervals, nodes ranks friend candidates from high to low according to the 
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number of sharing same files and chooses the first top k nodes as its friend nodes. As time goes 
on, each node can learn those friend nodes who share same interests with it. 
 

C. Query Routing Based on Friend Relations 

Query Routing based on friend relations includes two steps. First it makes use of friend 
relations to search. The levels of friend relation can vary from 1 to n. In most cases two levels 
of friend relation are enough. Most requests can receive responses in first step. If the friend 
search fails, it adopts flooding search as supplement. The detailed two-levels query routing 
algorithm is shown as follows.  
 
N is the set of all nodes. iN  denotes i th node. iN .Friend denotes friend set of iN . 
Program SLPS (int i, int j, string r, int step)  
{ 

//node i receives the searching request r that node j  
//sends. Step denotes the phase of search process. 
If (step=1){ 

//the value of step of original node is one. 
result:= LocalSearch(r);  
// Executing search on local disk including cache. 
if (result ≠  nil)  return result ;  
//Process finishes if local search successes. 
for l:=1 to k  SendRequest (r, jN .Friend[l],2);  
// Search request is sent to all its friend nodes. 
result:=WaitForResponse();  
// Waiting for response from friend nodes. 
if(result=nil )  result= FloodSearch(r); 
//if the search on friend nodes fails, it switches //to flooding search 
return result; 

} 
if(step=2){ 

//If the nodes getting requests are the friend nodes 
 // of original node, then the value of step is 2. 
result:= LocalSearch(r); 
 // Executing search on local disk. 
if (result ≠  nil) then return( jN ,result);  
// Return results and finish search process if local  
// search successes. 
for l:=1 to k SendRequest(r, jN .Friend[l],3);  
// Search Request is sent to all its friend nodes. 
// This is the use of second friend relations. 
result:=WaitForResponse(); 
// Waiting for response of friend nodes. 
return( jN ,result); //Return search result to node j    

} 
if(step=3){ 

// if the node receiving the request is the friend  
// nodes of friend nodes of original node, 
// then the value of step is three. 
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result:= LocalSearch(r).  
// Executing search on local disk 
return( jN ,result); // Return search result.     

}// end of step3    
}// end of program 

Ⅳ. Performance Evaluation 
 
Integrating the former researches [22][23], we evaluate the performance of P2P query routing 
algorithms using the following four metrics.  
 
1) Search Success Rate denotes the proportion of success rate of search.  

SearchAllofNumber
SearchSuccessfulofNumberRateSuccessSearch

   
     =  

 
2) Query Scope is the number of peers in the system involved in query processing for each query. A 

smaller query scope increases system scalability. 
∑=

StepSearch

stepeachininvolvedNodesofNumberScopeQuery
 

        

 
3) Query Efficiency denotes the efficiency of search algorithm which is a new metrics introduced 

by this paper.  

ScopeQuery
RateSuccessQueryEfficiencyQuery
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4) Query Hop denotes average search hops which stands for the average search delay. 
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In this section, we use both simulator-based and trace-based simulation for our performance 
evaluation. Artificial data later named Simdata are generated by a generic P2P simulator developed 
by Tokyo University of Japan which has configurable parameters [19]. Simdata contains two 
thousand nodes, four thousand files, and four thousand keywords. Query nodes and query contents 
are generated randomly. Because web traces and P2P access data are similar at some ways, trace-
based simulation is widely used in P2P search domain [21] [22]. The trace-based test methodology 
used in this paper is the same as in [21]. For each web trace, we assume that all Web clients 
participate in a Web content file-sharing system. Query workloads are generated in the following 
way: if peer P1 downloads file A (or URL A) at time t0, peer P1 issues a query for file A at time t0. 
We model the query string as the full URL, A, and perform exact matching of the query string to 
filenames. We assume that P1’s intention is to search for file A, and all hosts with file A will 
respond to the query. To preserve locality, we place the first copy of content at the peer who makes 
the first request for it. Subsequent copies of content are placed based on accesses. That is, any peer 
who downloaded a file at time t0 will share it to all other nodes after time t0.  
 
Here we adopt three groups of wildly-used web traces with different scale to test SLPS algorithm. 
Boston [24] is the web traces of Boston University which contains 558261 records, 538 nodes and 
9431 files. Berkeley [24] is the web traces of Berkeley University which contains 1703836 records, 



Haitao chen, Zhenghu Gong, Zunguo Huang 
Self-learning Routing in Unstructured P2P Network 

 64

5222 nodes and 116642 files. Boeing [24] is the web traces of Boeing Corporation which contains 
4421526 records, 28895 nodes and 254240 files.  
 
In trace-based simulation, each node has at most five friend nodes. Note that peers who have just 
joined the system do not have any friends on their friend lists, and have no choice but to flood to 
locate contents. We start counting the search success rate after the search success rate is stable. 
Figure 1 depicts the average search success rates of SLPS and BFSFLood [13] for different test data. 
The vertical axis is the search success rate, and the horizontal axis is the search hop.  
 

 
Figure 1   Comparion of Search Success Rate 

 
Table 1  Comparion of Query Scope 

  SimData BostonData BerkeleyData BoeingData 
BFSFLood 305 388 664 691 
SLPS 28 41 37 128 
BFSFlood/SLPS 11 9.5 18 5.4 

 
Table 2  Comparion of Query Efficiency 

  SimData BostonData BerkeleyData BoeingData 
BFSFLood 0.279 0.206 0.11 0.084 
SLPS 3.52 2.28 2.62 0.65 
SLPS / 
BFSFlood  

12.6 11.1 23.8 7.7 

 
Table 3  Comparison of Query Hop 

  SimData BostonData BerkeleyData BoeingData 
BFSFLood 4 4 4 4 
SLPS 1.6 1.8 1.5 2.5 
BFSFlood/SLPS 2.5 2.2 2.7 1.6 

 
The average search success rate of SLPS at the first hop is as high as 70%-85% for four different 
groups of data. Yet the average search success rate of BFSFlood at the first hop is as low as 4%-18% 
for four different groups of data. At the end of search, the search success rate of SLPS algorithm is 
still higher than BFSFlood. The search success rate of SLPS increases fast at the first two hops but 
increases slowly at the last two hops. So SLPS is efficient to locate popular contents and depends on 
expensive flooding to locate rare contents. BFSFlood method depends on query scope to improve 
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success rate, so its success rate is linearly increasing. It is clear that friend relations can gain high 
success rate with very low search scope and latency.  
 
Table 1 lists the query scope of SLPS and BFSFlood algorithm. The query scope of BFSFlood is 5-
18 times higher than that of SLPS. If we increase the friend node of each node for Boeing traces, 
also the reduction of search scope will be about a factor of 10. Table 2 lists the query efficiency of 
SLPS and BFSFlood. The query efficiency of SLPS is 7.7-23.8 times higher than that of BFSFlood. 
Table 3 lists the average query hop of SLPS and BFSFlood algorithm. The query hop of BFSFlood is 
1.6-2.7 times higher than that of SLPS. With the help of friend relations, SLPS can greatly reduce 
query expense and query delay. We can see that the scalability of SLPS is much better than 
BFSFlood. The improvements are achieved by using friend relations before flooding so that only a 
small number of peers are exposed to any one query. 
 

 
Figure 2  Constringency Test of Berkeley Traces 

 
Table 4 Relations between constringency speed with node number 

  SimData BostonData BerkeleyData BoeingData 
Node Number 4000 538 5222 28895 
Constringency 
Speed 
(query counter) 

20000 2000 28000 42000 

Constringency 
Speed /Node 
Number 

5 3.7 5.4 1.5 

 
Table 5  FriendSearch VS Flood 

  SimData BostonData BerkeleyData BoeingData 
SLPS 94% 92.45% 96.1% 80.3% 

 
Next, we research on the learning process of SLPS. Figure 2 depicts the constringency process of 
Berkeley traces. As time goes on, the fraction of query finished by friend search increase while the 
fraction of query finished by flood decrease. The speed of constringency is as high as in table 4. The 
learning process will be stable only after the average search number of each node exceeding 2-6 
times. This means that the learning algorithm is efficient and nodes can learn its friend nodes in a 
short period of time after joining P2P network. Table 5 lists the fraction of queries finished by friend 
nodes after the learning process converged. The success rate is as high as 80%-96%. This means the 
learning process is very successful. 
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Ⅴ. Conclusion 
 
This paper researches distributed file search in complex environment and presents a new method of 
searching sharing files- SLPS. SLPS learns friend relations between nodes based on search results. 
The queries are forwarded to friend nodes. Only failed requests will continue to broadcast. 
 
Simulation tests show that SLPS algorithm is efficient and stable. SLPS brings the performance to 
within an order of magnitude of improvement compared with classical algorithms such as BFSFlood 
and so on. It can relieve the bandwidth consumption black hole of existing P2P file sharing systems 
and can be used in file sharing, con-struction of scale web caches, resource discovery of grid and so 
on. And SLPS is incentive-compatible, because only active nodes learn the search results. The more 
a node services others in P2P network, the higher success rate and the lower latency it gains. The 
future researches include: 1) more effective algorithm of mining friend relations. For example it can 
take file rarity into count. 2) Adding semantic description on friend relations to improve the 
expansibility of system.A conclusion section is not required. Although a conclusion may review the 
main points of the paper, do not replicate the abstract as the conclusion. A conclusion might 
elaborate on the importance of the work or suggest applications and extensions. 
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