
International Journal of Information Technology Vol. 11 No. 12 2005

59

Abstract

Since the appearance of Napster in 1999, peer-to-peer networks which don't distinguish clients with
servers, have become one of the fastest growing and most popular Internet applications. Content
location is a key function, but it presents a very difficult and challenging problem for large-scale
peer-to-peer systems. A number of different methods are currently in use. However, new mechanism
which gains high success rate with low search scope and retains the simplicity and robustness of
Gnutella-like systems is still under research. In this paper, we introduce a new self-learning
algorithm- SLPS. SLPS learns interest similarity of nodes from history search results, and computes
friend relations which can be used to locate content effectively. Simulation results show that,
compared to the flood-based algorithm, SLPS improves query efficiency by up to ten times without a
significant increases in load.

Keyword: peer-to-peer, file sharing, search, learning, interest

I. Introduction

Today computing and storage capacity of ordinary PCs are much higher powerful than those of
former mainframes. The advances of fiber transmission and high-speed network switching
technology provide possibilities for sufficiently utilizing the re-sources of ordinary PC. As a
revolutionary technology, P2P technology devotes to reasonably and sufficiently organize and utilize
Internet edge's huge decentralized resources of computing, storage and information. P2P networks
have become, in a short period of time, one of the fastest growing and most popular Internet applica-
tions. The big challenge of constructing P2P application is how to implement effi-cient and
distributed search in complex environments which contains decentralized and huge-amount users,
uncontrollable nodes with unbalanced computing capacity and network connection.

This paper presents a self-learning semantic search method-SLPS. SLPS learns the interests of nodes
by passive learning. It learns the file sharing relations from the search results and constructs friend
relations. In SLPS, queries are routed to friend nodes in an un-structured pattern. If the searches in
friend nodes fail, broadcast search will be executed.

Self-learning Routing in Unstructured P2P Network

Haitao Chen, Zhenghu Gong, and Zunguo Huang

School of Computer Science, National University of
Defense Technology, 410073 Changsha, Hunan, China

nchrist@163.com

Haitao chen, Zhenghu Gong, Zunguo Huang
Self-learning Routing in Unstructured P2P Network

 60

The rest of this paper will be structured as follows. Section 2 reviews important related works.
Section 3 presents a self-learning algorithm in unstructured peer-to-peer network. In section 4 we
make sufficient simulation tests on performance of SLPS algorithm. The last section offers our
conclusions and future work.

II. Related Work

We can categorize the content location algorithms used in current P2P systems into four groups by
overlay network architecture. The earliest design, used in Napster [1], is the most similar to the
client/server model. It depends on a central server (or cluster of servers) which maintains an index
with the location of all shared files available in the system. In this approach, content location is
centralized, but the download of contents is decentralized.

The other three approaches are based on the distribution of the indices to the shared files among all
participant peers: structured, unstructured and hybrid. These approaches differ as to whether the
content location mechanism relies on any special structuring of the peers. Different architectures
support different search capacities like fuzzy search in different degrees.

Structured overlays, based on the Distributed Hash Table (DHT) abstraction, [2] [3][4][5] have been
proposed to address the scalability problem inherent to flooding. In these protocols, each content is
identified by a key and nodes organize themselves into a well-defined graph that maps each key to a
responsible node. These constraints provide efficient support for exact-match queries. Some
researches devote to realize complex search in DHT network. In [6], keywords are hashed into DHT
space and nodes are responsible for neighboring keywords. In PGroup, nodes with the same classes
of contents are connected to each other by building semantic peer-to-peer networks in CAN network
[7]. Arpeggio is a peer-to-peer file-sharing net-work, based on the Chord lookup primitive, in which
queries for data whose Meta-data matches a certain criterion are performed efficiently by using a
distributed key-word-set index, augmented with index-side filtering [8]. Indeed, the obvious
approaches to distributed full-text document search scale poorly [9]. It is not clear how to perform
searches without sacrificing scalability or query completeness, and DHTs incur larger overhead than
unstructured architectures in the presence of peer failure or disconnection and inherently, cannot
efficiently support partial-match queries [10].

Unstructured content location is used in systems such as Gnutella [11]. Gnutella relies on flooding of
messages. Peers organize themselves into a random overlay. In order to find content, a peer sends a
query to all its neighbors on the overlay, which, in turn, forward the query to all of their neighbors
and so on, until the query time-to-live has expired. While this solution is simple and robust, it does
not scale well. Several works tried to solve the scalability problems inherent to Gnutella networks,
but none thoroughly solve the problem. The authors of [12] proposed a content location algorithm
for such networks based on multiple random walks that resolves queries almost as quickly as
flooding while considerably reducing the network traffic. BFSFlood [13] is a variation of the
flooding scheme, with peers randomly choosing only a ratio of their neighbors to forward the query
to. Iterative Deepening [14] in-creases the TTL of flood only when search with smaller TTL fails.

Hybrid architecture may be a promising direction. It tries to combine the advantages of both
unstructured and structured P2P networks. Castro et al proposed Structella, a hybrid of Gnutella built
on top of Pastry [15]. Another design used structured search for rare items and unstructured search
for massively replicated items [16].

International Journal of Information Technology Vol. 11 No. 12 2005

61

The effective pruning technique is the key problem to complex query, which can greatly reduce the
number of involved files and nodes during one search probing. Recent years many researches
concentrate on pruning technique by files or by key-words. SETS divides nodes into different
themes and searches spread in theme scope [17]. Mercuzy supports for multi-attributes search. It
divides attribute space according to scalar attributes [18]. NeuroGrid learns keywords distribution
from history search results [19]. It implements the division of keywords space by learning the
relations between nodes and keywords. Alpine depends on users' definition to maintain group
relation and nodes in same group are all connected with each other [20]. Recently, GS proposed a
new content location algorithm that explores common interests among peers [21]. Peers that share
similar interests create shortcuts to one another and use them to locate content. When shortcuts fail,
peers resort to using the underlying Gnutella protocol. In conclusion, further research is needed on
automatic grouping, making full use of file relations and user relations to realize efficient pruning.

Like the shortcut-based algorithm described in GS, our new algorithms also explore the common
interests among peers to improve the scalability of the content location mechanisms in Gnutella
systems. However, they differ from the previous approach in how common-interests among peers
are assessed. By exploring locality of interest in a different way, we expect to reach more significant
improvements in the Gnutella performance.

III. Self-Learning Query Routing

A. Design Idea

Partitioning files or users to limit search scope and improve search efficiency is a common
method used in distributed files search researches. Most traditional file grouping methods
depend on users to specify attributes or description of a group. But different users may have
different descriptions on the same group or have different classification options. This
disagreement often leads to inconvenient centralized or predefined group management. SLPS
algorithm presents a new user grouping method which requires no users’ description and
avoids inconsistency of group descriptions. With good grouping method, search-oriented friend
relations can be established automatically based on interests similarity between two users.
SLPS can greatly optimizes the traditional broadcast algorithm through friend routing and is
expected to gain high search success rate with low spend.

As sharing files of each user can stand for his interests, we guess the number of same sharing
files between users can be used to compute the similarity of users’ interests. The design of
SLPS is bases on this assumption. SLPS has to solve two problems. How to collect sharing
information in distributed environment? And how to route query based on users’ interests?

B. Passive Learning Algorithm

The basic process of learning friend relations includes two self-governed algorithms executing
at different opportunities. First algorithm is devoted to learning file sharing relations from
history search results. When any node issue search request and get results from some nodes, it
will send the search results to those who return successful results. By this process, the nodes
can get to know who is sharing the same files with them. The second algorithm is devoted to
selecting friend nodes. Each node regards nodes sharing same files with it as friend candidates.
Then at regular intervals, nodes ranks friend candidates from high to low according to the

Haitao chen, Zhenghu Gong, Zunguo Huang
Self-learning Routing in Unstructured P2P Network

 62

number of sharing same files and chooses the first top k nodes as its friend nodes. As time goes
on, each node can learn those friend nodes who share same interests with it.

C. Query Routing Based on Friend Relations

Query Routing based on friend relations includes two steps. First it makes use of friend
relations to search. The levels of friend relation can vary from 1 to n. In most cases two levels
of friend relation are enough. Most requests can receive responses in first step. If the friend
search fails, it adopts flooding search as supplement. The detailed two-levels query routing
algorithm is shown as follows.

N is the set of all nodes. iN denotes i th node. iN .Friend denotes friend set of iN .
Program SLPS (int i, int j, string r, int step)
{

//node i receives the searching request r that node j
//sends. Step denotes the phase of search process.
If (step=1){

//the value of step of original node is one.
result:= LocalSearch(r);
// Executing search on local disk including cache.
if (result ≠ nil) return result ;
//Process finishes if local search successes.
for l:=1 to k SendRequest (r, jN .Friend[l],2);
// Search request is sent to all its friend nodes.
result:=WaitForResponse();
// Waiting for response from friend nodes.
if(result=nil) result= FloodSearch(r);
//if the search on friend nodes fails, it switches //to flooding search
return result;

}
if(step=2){

//If the nodes getting requests are the friend nodes
 // of original node, then the value of step is 2.
result:= LocalSearch(r);
 // Executing search on local disk.
if (result ≠ nil) then return(jN ,result);
// Return results and finish search process if local
// search successes.
for l:=1 to k SendRequest(r, jN .Friend[l],3);
// Search Request is sent to all its friend nodes.
// This is the use of second friend relations.
result:=WaitForResponse();
// Waiting for response of friend nodes.
return(jN ,result); //Return search result to node j

}
if(step=3){

// if the node receiving the request is the friend
// nodes of friend nodes of original node,
// then the value of step is three.

International Journal of Information Technology Vol. 11 No. 12 2005

63

result:= LocalSearch(r).
// Executing search on local disk
return(jN ,result); // Return search result.

}// end of step3
}// end of program

Ⅳ. Performance Evaluation

Integrating the former researches [22][23], we evaluate the performance of P2P query routing
algorithms using the following four metrics.

1) Search Success Rate denotes the proportion of success rate of search.

SearchAllofNumber
SearchSuccessfulofNumberRateSuccessSearch

 =

2) Query Scope is the number of peers in the system involved in query processing for each query. A

smaller query scope increases system scalability.
∑=

StepSearch

stepeachininvolvedNodesofNumberScopeQuery

3) Query Efficiency denotes the efficiency of search algorithm which is a new metrics introduced

by this paper.

ScopeQuery
RateSuccessQueryEfficiencyQuery

 =

4) Query Hop denotes average search hops which stands for the average search delay.

NumberSearch

searcheachinHopsSearch
HopQuery NumberSearch

∑
=

In this section, we use both simulator-based and trace-based simulation for our performance
evaluation. Artificial data later named Simdata are generated by a generic P2P simulator developed
by Tokyo University of Japan which has configurable parameters [19]. Simdata contains two
thousand nodes, four thousand files, and four thousand keywords. Query nodes and query contents
are generated randomly. Because web traces and P2P access data are similar at some ways, trace-
based simulation is widely used in P2P search domain [21] [22]. The trace-based test methodology
used in this paper is the same as in [21]. For each web trace, we assume that all Web clients
participate in a Web content file-sharing system. Query workloads are generated in the following
way: if peer P1 downloads file A (or URL A) at time t0, peer P1 issues a query for file A at time t0.
We model the query string as the full URL, A, and perform exact matching of the query string to
filenames. We assume that P1’s intention is to search for file A, and all hosts with file A will
respond to the query. To preserve locality, we place the first copy of content at the peer who makes
the first request for it. Subsequent copies of content are placed based on accesses. That is, any peer
who downloaded a file at time t0 will share it to all other nodes after time t0.

Here we adopt three groups of wildly-used web traces with different scale to test SLPS algorithm.
Boston [24] is the web traces of Boston University which contains 558261 records, 538 nodes and
9431 files. Berkeley [24] is the web traces of Berkeley University which contains 1703836 records,

Haitao chen, Zhenghu Gong, Zunguo Huang
Self-learning Routing in Unstructured P2P Network

 64

5222 nodes and 116642 files. Boeing [24] is the web traces of Boeing Corporation which contains
4421526 records, 28895 nodes and 254240 files.

In trace-based simulation, each node has at most five friend nodes. Note that peers who have just
joined the system do not have any friends on their friend lists, and have no choice but to flood to
locate contents. We start counting the search success rate after the search success rate is stable.
Figure 1 depicts the average search success rates of SLPS and BFSFLood [13] for different test data.
The vertical axis is the search success rate, and the horizontal axis is the search hop.

Figure 1 Comparion of Search Success Rate

Table 1 Comparion of Query Scope

 SimData BostonData BerkeleyData BoeingData
BFSFLood 305 388 664 691
SLPS 28 41 37 128
BFSFlood/SLPS 11 9.5 18 5.4

Table 2 Comparion of Query Efficiency

 SimData BostonData BerkeleyData BoeingData
BFSFLood 0.279 0.206 0.11 0.084
SLPS 3.52 2.28 2.62 0.65
SLPS /
BFSFlood

12.6 11.1 23.8 7.7

Table 3 Comparison of Query Hop

 SimData BostonData BerkeleyData BoeingData
BFSFLood 4 4 4 4
SLPS 1.6 1.8 1.5 2.5
BFSFlood/SLPS 2.5 2.2 2.7 1.6

The average search success rate of SLPS at the first hop is as high as 70%-85% for four different
groups of data. Yet the average search success rate of BFSFlood at the first hop is as low as 4%-18%
for four different groups of data. At the end of search, the search success rate of SLPS algorithm is
still higher than BFSFlood. The search success rate of SLPS increases fast at the first two hops but
increases slowly at the last two hops. So SLPS is efficient to locate popular contents and depends on
expensive flooding to locate rare contents. BFSFlood method depends on query scope to improve

International Journal of Information Technology Vol. 11 No. 12 2005

65

success rate, so its success rate is linearly increasing. It is clear that friend relations can gain high
success rate with very low search scope and latency.

Table 1 lists the query scope of SLPS and BFSFlood algorithm. The query scope of BFSFlood is 5-
18 times higher than that of SLPS. If we increase the friend node of each node for Boeing traces,
also the reduction of search scope will be about a factor of 10. Table 2 lists the query efficiency of
SLPS and BFSFlood. The query efficiency of SLPS is 7.7-23.8 times higher than that of BFSFlood.
Table 3 lists the average query hop of SLPS and BFSFlood algorithm. The query hop of BFSFlood is
1.6-2.7 times higher than that of SLPS. With the help of friend relations, SLPS can greatly reduce
query expense and query delay. We can see that the scalability of SLPS is much better than
BFSFlood. The improvements are achieved by using friend relations before flooding so that only a
small number of peers are exposed to any one query.

Figure 2 Constringency Test of Berkeley Traces

Table 4 Relations between constringency speed with node number

 SimData BostonData BerkeleyData BoeingData
Node Number 4000 538 5222 28895
Constringency
Speed
(query counter)

20000 2000 28000 42000

Constringency
Speed /Node
Number

5 3.7 5.4 1.5

Table 5 FriendSearch VS Flood

 SimData BostonData BerkeleyData BoeingData
SLPS 94% 92.45% 96.1% 80.3%

Next, we research on the learning process of SLPS. Figure 2 depicts the constringency process of
Berkeley traces. As time goes on, the fraction of query finished by friend search increase while the
fraction of query finished by flood decrease. The speed of constringency is as high as in table 4. The
learning process will be stable only after the average search number of each node exceeding 2-6
times. This means that the learning algorithm is efficient and nodes can learn its friend nodes in a
short period of time after joining P2P network. Table 5 lists the fraction of queries finished by friend
nodes after the learning process converged. The success rate is as high as 80%-96%. This means the
learning process is very successful.

Haitao chen, Zhenghu Gong, Zunguo Huang
Self-learning Routing in Unstructured P2P Network

 66

Ⅴ. Conclusion

This paper researches distributed file search in complex environment and presents a new method of
searching sharing files- SLPS. SLPS learns friend relations between nodes based on search results.
The queries are forwarded to friend nodes. Only failed requests will continue to broadcast.

Simulation tests show that SLPS algorithm is efficient and stable. SLPS brings the performance to
within an order of magnitude of improvement compared with classical algorithms such as BFSFlood
and so on. It can relieve the bandwidth consumption black hole of existing P2P file sharing systems
and can be used in file sharing, con-struction of scale web caches, resource discovery of grid and so
on. And SLPS is incentive-compatible, because only active nodes learn the search results. The more
a node services others in P2P network, the higher success rate and the lower latency it gains. The
future researches include: 1) more effective algorithm of mining friend relations. For example it can
take file rarity into count. 2) Adding semantic description on friend relations to improve the
expansibility of system.A conclusion section is not required. Although a conclusion may review the
main points of the paper, do not replicate the abstract as the conclusion. A conclusion might
elaborate on the importance of the work or suggest applications and extensions.

Acknowledgements

This research is supported by the National Grand Fundamental Research 973 Program of China
under Grant No.2003CB314802, also the 863 National High-Tech Research and Development Plan
of China under Grant No.2003AA142080.

References

[1] The napster.2004. home page. http://www.napster.com.
[2] Ratnasamy, S, Francis, P., Handley, M., Karp, R., and Shenker, S: A scalable content-

addressable network. In Proc of ACM SIGCOMM pp161–172 (2001)
[3] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan: Chord: A scalable

peer-to-peer lookup service for internet applications. In Proc of ACM SIGCOMM (2001)
[4] A. Rowstron and P. Druschel: Pastry:Scalable, distributed object location and routing for

large-scale peer-to-peer systems. In Proc of International Conference on Distributed
Systems Platforms (Middleware), Nov. 2001.

[5] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph: Tapestry: An infrastructure for fault-
resilient wide-area location and routing. Technical Report UCB//CSD-01-1141, U. C.
Berkeley, April 2001.

[6] Zhou J, Lu HM, Li YD: Using small-world to devise routing algorithm for unstructured
peer-to-peer system. Journal of Software, 2004, 15(6):915~923.

[7] Song Jian-Tao, SHA Chao-Feng, YANG Zhi-Ying, and ZHU Hong: Study on Construction
and Searching of Semantic Peer-to-Peer Networks. Journal of Computer Research and
Development. 2004. Vol.41(4):645~652.

[8] Austin T. Clements, Dan R. K. Ports, David R. Karger: Arpeggio: Metadata Searching and
Content Sharing with Chord. In proc of iptps(2005)

[9] J. Li, B. T. Loo, J. M. Hellerstein, M. F. Kaashoek, D. Karger, and R. Morris: On the
feasibility of peerto-peer web indexing and search. In Proc of IPTPS (2003)

[10] E. Cohen, A. Fiat, and H. Kaplan: Associative search in peer to peer networks: Harnessing
latent semantics. Infocom (2003)

[11] The gnutella. 2004. home page. http://www.gnutella.wego.com.

International Journal of Information Technology Vol. 11 No. 12 2005

67

[12] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker: Search and replication in unstructured peer-
to-peer networks. In Proc of the 16th international conference on Supercomputing, pp 84-95.
ACM Press (2002).

[13] V. Kalogeraki, D. Gunopulos, and D. Zeinalipour-Yazti. A Local Search Mechanism for
Peer-to-Peer Networks. In proc of CIKM (2002)

[14] B. Yang and H. Garcia-Molina: Improving Search in Peer-to-Peer Networks. In proc of
ICDCS (2002)

[15] Castro,M., M. Costa and A. Rowstron: Should we build Gnutella on a structured overlay?
ACM SIGCOMM Computer Communication Review 34(1):131-136.2004.

[16] Boon Thau Loo,Ryan Huebsch,Ion Stoica, Joseph M. Hellerstein: The Case for a Hybrid
P2P Search Infrastructure. In Proc of iptps (2004)

[17] Mayank Bawa, Gurmeet Singh Manku, Prabhakar Raghavan: SETS: Search Enhanced by
Topic Segmentation. ACM SIGIR (2003)

[18] Ashwin R. Bharambe, Mukesh Agrawal, Srinivasan Seshan: Mercury: Supporting Scalable
Multi-Attribute Range Queries. ACM SIGCOMM (2004)

[19] Joseph, S.R.H: NeuroGrid: Semantically Routing Queries in Peer-to-Peer Networks. In proc
of International Workshop on Peer-to-Peer Computing (2002)

[20] Alpine. 2004. http://www.cubicmetercrystal.com/alpine/
[21] Kunwadee Sripanidkulchai, Bruce Maggs, Hui Zhang: Efficient Content Location Using

Interest-Based Locality in Peer-to-Peer Systems, In proc of infocom (2003)
[22] Yang B, Garcia-Molina H: Improving search in peer-to-peer networks. In Proc. of

Distributed Computing Systems. IEEE Computer Society (2002)
[23] Balakrishnan H, Kaashoek MF, Karger D, Morris R, Stoica I: Looking up data in p2p

systems. Communications of the ACM, 2003, 46(2):43~48
[24] Webtraces. http://www.web-caching.com/traces-logs.html.

Haitao Chen, PhD degree candidate in national university
of defense technology. His research interests include: Peer-
to-Peer Computing, Network and Information Security.

Zhenghu Gong, professor in national university of defense
technology. His research interests include: Computer
Network and Communication.

Zunguo Huang, associate professor in national university of
defense technology. His current focus is information
security and network survivability.

