
International Journal of Information Technology Vol. 11 No. 2

Abstract

The characteristics of mobile ad hoc networks (MANETs) determine that the authentication
approaches to protect routing and data packet transmission in MANETs should be lightweight and
scalable. In this paper, we propose a lightweight authentication protocol, which utilizes one-way
hash chain to provide effective and efficient authentication for communications between neighboring
nodes in MANETs. Delayed key disclosure scheme is used to prevent from in-the-middle attack on
key release. The security properties of the protocol are analyzed in the paper. We also demonstrate
simulation results and performance analysis on trust management, message authentication and the
delayed key disclosure approach. The analysis shows that the protocol incurs low overhead penalty
and achieves a low dropped packet rate on key disclosure with a cache of fair size.

Keyword: MANET, security, authentication, one-way hash function.

I. Introduction

Authentication mechanisms are used to ensure that the entity who supposedly sent a message to
another party is indeed the legitimate entity. General security requirements for authentication include
protection against replay attacks, resistance against man-in-the-middle attacks and provision of
confidentiality. There are two basic kinds of cryptography that have been widely used for the
traditional Internet: symmetric cryptography and asymmetric cryptography (such as digital
signature).

Different from the fixed networks, the communication links in mobile ad hoc networks are open
shared medium, which makes the communications between neighboring nodes more vulnerable to
attacks such as packet forging and malicious alteration. In addition, mobile ad hoc networks are
characterized by absence of fixed infrastructure, rapid topology change and constrained resources
(such as limited battery power, small computational capacity and bandwidth). These characteristics
determine that the authentication protocols used for routing and data packet delivery in mobile ad
hoc networks (MANETs) should be lightweight and scalable. Asymmetric cryptography does not
adapt well to MANETs in that the processing required for asymmetric cryptography is very CPU
(Central Process Unit) intensive and the technique has been proved to be prohibitively insufficient in
wireless ad hoc networks in terms of message overhead and computation complexity. Symmetric

A Lightweight Authentication Protocol for Mobile Ad
Hoc Networks

Bin Lu, and Udo W. Pooch

Department of Computer Science
Texas A&M University

College Station, TX 77843-3112, USA

{ bin4549, pooch}@cs.tamu.edu

119

Bin Lu, Udo W. Pooch
A Lightweight Authentication Protocol for Mobile Ad Hoc Networks

cryptography algorithms are fast. Nevertheless, it introduces complexity in key maintenance and
exerts difficulty in authentication for multicast or broadcast communications.

Moreover, radio channels in wireless networks are more erroneous and lossy than the
communication links in the Internet. With multiple receivers, there could be a high variance among
the bandwidth and radio interference of different receivers, with high packet loss for the receivers
with low bandwidth and high radio interference. In consideration of this problem, the authentication
mechanism is expected to be effective even in the presence of high packet loss.

In this paper, we propose a lightweight authentication protocol, which utilizes one-way hash chain to
provide effective and efficient authentication for neighboring communications in MANETs. Our
protocol is lightweight, scalable and tolerant of packet loss.

The rest of this paper is organized as follows: Section II gives a brief description on main related
work; Section III describes our authentication protocol in details; a security analysis will be given in
Section IV; we will evaluate the performance of the protocol in Section V; and Section VI concludes
the paper.

II. Related Work

The idea of TESLA key is proposed in [1].TESLA uses one-way hashed chain to generate keys, and
delays disclosure of keys to guarantee that a node receives the packet before another node can forge
the packet with already released keys. But the security condition of TESLA requires clock
synchronization, which is very difficult to achieve in mobile ad hoc networks, if not impossible.

The design of our protocol is motivated by LHAP (a Lightweight Hop-by-hop Authentication
Protocol for Ad Hoc Networks) [2]. LHAP is a lightweight hop-by-hop authentication specially
designed for ad hoc networks. It uses two keys: TRAFFIC key and TESLA key. TRAFFIC key is
used to authenticate packets; and TESLA key is used to achieve trust maintenance by authenticating
KEYUPDATE message. KEYUPDATE message is sent periodically to guarantee that the current
released key is valid so that a malicious node will not be able to use an obsolete key to forge a
packet. LHAP is not only a comprehensive authentication approach, by thoroughly describing key
management and traffic authentication, but also proved to be computationally efficient. However, it
requires two keys, which hence not only adds more complexity in authentication, but also needs to
periodically send key maintenance packages that themselves need to be authenticated with TESLA
keys. In addition, LHAP does not eliminate the disadvantage of delayed authentication in TESLA
because the authenticity of the packets and the TRAFFIC key can not be verified until TESLA key is
authenticated.

III. The Authentication Protocol

Our authentication protocol utilizes one-way hash chains, which is more efficient and less expensive
than asymmetric cryptographic operations. One-way hash chain is a widely-used cryptographic
primitive that uses a one-way hash function to generate a sequence of random values that serve as
authentication keys. It has been used in authentication schemes for wireless ad hoc networks [3] and
sensor networks [4].

120

International Journal of Information Technology Vol. 11 No. 2

Figure 1 demonstrates the one-way hash chain construction, utilization and revelation. To generate a
key chain of length n+1, the first element of the chain

0h is randomly picked and then the chain is
generated by repeatedly applying a one-way function (denoted as H in Figure 1). A one-way hash
function maps an input of any length to a fixed-length bit string, which is defined
as φ}1,0{}1,0{: * →H , where φ is the length of the output of the hash function – the newly generated
key. The function H should be simple to compute nonetheless must be computationally infeasible in
general to invert. In utilization and revelation of these keys, we use the reverse direction of key
generation: we start from

nh , the last generated, and then
1−nh , …,

0h . Any key of the one-way key

chain commits to all previous keys1, and
nh is a commitment to the entire one-way chain. Any key

jh can be verified from
ih (nji ≤<≤0) to be indeed an element in the chain by repeatedly applying H

for ij − times, that is,)(i
ij

j hHh −= . Therefore, given an existing authenticated element of a one-way

hash chain, it is possible to verify elements later in the sequence of use within the chain.

Figure 1: One way hash chain example

The chain of keys can be created all at once off-line before the mobile node joins the network and
then stored for later use.

We use the following notations to describe our authentication protocol in this paper (see Table 1).

In this section, we will discuss the assumptions on which our protocol is established, which is
followed by a detailed description on the basic scheme of our authentication protocol, including trust
management and message authentication; and at last we will address the problem of key disclosure.

1 In the sequel, when we refer to the direction of key generation as the direction of the chain. For example, the subsequent key of h0 is h1, and so on.

Generate keys

h1 … … hn-1

H(hn-1)
hn

H(hn-2)
hn-2

H(h1)
h0

H(h0)

Use/ Reveal keys

TABLE 1.
 NOTATION OF THE PROTOCOL

Symbol Description

A, B Identities of mobile nodes
CertA Certificate of node A’s public key signed by CA’s

private key
SignA(M) Digital signature of message M, signed with node

A’s private key
MAC(M, K) MAC over message M with key K

A
ih The ith key in node A’s one-way hash chain

AH Node A’s hash function
k
AH Applying A’s hash function for k times

M1|M2 The concatenation of message M1 and M2

A
iP The ith packet of node A’s.

121

Bin Lu, Udo W. Pooch
A Lightweight Authentication Protocol for Mobile Ad Hoc Networks

A. Assumptions

To prevent a malicious entity from forging packets with MACs that are computed using
already released key, a packet sent by a node has to be received by an immediate neighboring
node before a third party is able to replay the packet to it, unless the receiver has dropped the
packet. This necessary condition for authentication using one hash key chain is assured in our
approach by using delayed key disclosure. The scheme of key disclosure will be discussed later
in this section.

We assume that each node can communicate with a trusted certificate authority (CA) before it
enters the ad hoc network, and it can obtain a public key certificate signed by the CA as well as
an authentic public key of the CA. The public key of the CA will be used to verify key
certificates distributed by other nodes. However, a node may not be able to contact the CA
after it joins the network because it is difficult for an ad hoc network to provide a central
administration point since all the nodes in an ad hoc network are mobile. Moreover, a central
entity is very likely to become the most vulnerable point in the network, which is subject to
various malicious attacks.

We also assume that the mobile nodes that we are protecting are relatively underpowered so
that asymmetric key operations such as digital signatures are too expensive for them to
compute for each packet. In our scheme, digital signature is only used in trust bootstrapping so
that the nodes can verify the genuineness of the first revealed key. Once the initial key is
confirmed to be authentic, the subsequent keys can be verified by applying the one-way hash
function.

On the contrary, the adversaries are powerful with the following capabilities: (1) an adversary
can be capable of various attacks: eavesdrop, delay, drop, replay or alter packets; (2) an
adversary’s computation resources can be very large but yet limited. This means that an
adversary may be able to conduct fast computations, such as computing MACs with negligible
delay. The adversary, nevertheless, cannot invert a hash function and hence cannot obtain a
hash key before the key owner reveals it.

B. Trust Management

 1) Trust bootstrapping

To use one-way hash key chain for authentication, a node needs to distribute an authentic key
such as hn, which is the first revealed key from its generated chain. This key commits to the
whole key chain and therefore the genuineness of the subsequent keys can be verified by
applying hash function to this key, such as: given a key hi, it is a genuine key from the chain if

)(i
in

n hHh −= , or a counterfeit one otherwise.

Our scheme requires that a node contact the certificate authority to obtain public key of the CA
as well as the certificate of the node’s own public key before it joins an ad hoc network. The
node can also pre-compute the whole one-way hash key chain off-line to reduce computational
latency. Then the node signs the message with its private key and broadcasts a JOIN message
to its neighbors. We suppose that a node, say node A, is sending JOIN message to its
neighbors. The JOIN message will be in the following format:

122

International Journal of Information Technology Vol. 11 No. 2

),,(},{,: A
A
nAA

A
nA HhASignHhACertA ∗→

where CertA denotes the certificate of node A’s public key that has been signed by CA’s
private key; A denotes the identity of node A; and),,(A

A
nA HhASign denotes the digital signature

of message }{ A
A
n HhA .

Upon receiving this JOIN message, every receiving node first uses CA’s public key to verify
the certificate of A’s public key. Once the genuineness of node A’s public key is confirmed,
the key can be used to verify the digital signature on A’s message. If the digital signature is
validated to be authentic, the receiving node will record A’s initial key A

nh as well as its hash

function AH .

To bootstrap an authentic hash key to node A, each of its neighbors (say node B) unicasts the
following ACK message to node A:

),,(},{,: B
B
mBB

B
mB HhBSignHhBCertAB →

where B

mh denotes B’s most recently released key. Node A will perform the same verifications
on B’s ACK message as what node B did with A’s JOIN message.

2) Trust maintenance

The trust relationship between a node and its neighbors is maintained with a periodical
broadcast of KEYUPDATE message. In the KEYUPDATE message, a key that has been used
to compute MACs will be released, and the neighboring nodes will verify the new released key
with corresponding hash function. The maintenance process is described below:

Each node periodically broadcasts a KEYUPDATE message to its neighbors, which discloses
its most recently used key:

A
jhAA ,:∗→

The key A

jh will be authenticated by its neighbors based on the previously released key A
jh 1+ : if it

can be proved A
j

A
jA hhH 1)(+= , the key A

jh is considered valid; otherwise, the key is invalid and

the receiving node may optionally issue an intrusion alert to other nodes.

3) Trust termination

In our authentication scheme, the trust relationship between two nodes may be terminated
under two circumstances. First, when a node is detected to be compromised, the detecting
nodes will permanently terminate their trust relationship with the compromised node. In this
case, a further step such as excluding the node from the network might be taken. Second, when
a node does not receive the KEYUPDATE message from a neighbor for a period that exceeds a
predefined threshold, it will terminate its trust of the neighbor temporarily. This can happen
when the neighboring node moves out of the node’s transmission range, or when the
neighboring node is not transmitting any data packets for a fairly long time (we assume that in
case a node does not have any packets to send, it will not release key periodically in order to
save its keys). If the two nodes want to restart their communications, they can run the trust
bootstrapping process again to reestablish their trust relationship. The value of the threshold is

123

Bin Lu, Udo W. Pooch
A Lightweight Authentication Protocol for Mobile Ad Hoc Networks

dependent on the size of the cache for authentication at the node. The cache is used to store the
authentication information of other nodes’, such as hash function, previously released key, and
non-verified messages. A node with a larger cache can store more commitment information
and therefore a trust relationship may be kept for longer time.

C. Message Authentication

When a node wants to send a message, it computes the MAC on the message and then unicast
to the receiving node (say node B), or multicast (or broadcast) the packet (denoted as PA) to the
receivers in the following format:

),(,:(*) A

ihMMACMBA →

where A

ih is the currently used key of node A’s. Note that the key A
ih has not been disclosed at

this point. The originator of the packet (node A in this case) will later disclose A
ih in

KEYUPDATE message. The key enables the receiver to verify the MAC of the message. If the
verification is successful, the message is then authenticated and trusted. Once the key is
disclosed, it becomes obsolete and can not be used to generate MACs any more.

D. Key Disclosure

1) Security condition and threat model on authentication

This authentication protocol can be compromised if an adversary obtains node A’s secret key
A
ih before a receiver receives the data packet that is protected with this key, because the

adversary would be able to change the message and then use the key to re-compute the MAC
of PA, or even to forge all subsequent traffic. To prevent from this type of attacks, the receiver
needs to be assured that it receives the data packet before the corresponding key is disclosed by
the sender. The following security condition describes this requirement:

“A data packet P arrived safely, if the receiver receives the packet when the sender did not yet
send out the corresponding key disclosure packet.”

It is known that radio channels in MANETs are more prone to error than those in the Internet
in that wireless communication links use open shared medium. The erroneous communication
caused by signal conflicts may result in deteriorations of packets or even packet drops.

Figure 2 exemplifies an attack that takes advantage of KEYUPDATE packet drop to send
maliciously modified or forged packets. Suppose node A is sending a message Ms to its
neighbors with MAC (denoted by MAC(Ms, K) in Figure 2), which was generated with key K.
Then A discloses key K to its neighbors B, C, D and M. Suppose node B does not immediately
receive the message Ms and the KEYUPDATE message due to signal conflict at its channel.
Node M, which is a malicious entity, then takes advantage of this chance to modify the
message to Ms’ and sends the tampered packet to node B with a MAC that is generated using
the disclosed key K (denoted by MAC(Ms’, K) in Figure 2). Node B would believe that it is a
legitimate packet from A when it later receives the resent KEYUPDATE message from A (or a
replayed KEYUPDATE message from node M).

124

International Journal of Information Technology Vol. 11 No. 2

Figure 2: An example of in-the-middle attack on key disclosure

2) Delayed key disclosure

To prevent from the “in-the-middle” attacks described above, a receiver should have the
knowledge of when to expect a KEYUPDATE message. TESLA uses delayed key disclosure
to solve the problem. It also uses time synchronization to guarantee that the receiver can
unambiguously verify if the security condition holds on each packet and then decide to keep or
drop the packet. However, clock synchronization relies on two assumptions: first, the nodes to
be synchronized have the ability to periodically exchange messages; and second, the nodes
have the ability to estimate the time it takes for a message to travel between them. In mobile ad
hoc networks, the high mobility of nodes lead to frequent reconfiguration of topology and
frequent change of communication capacity between two nodes. Therefore, clock
synchronization is very difficult (if not impossible) to achieve in a MANET in that there is no
central control and packet delays may vary due to unpredictable mobility and radio
interference.

Our authentication protocol uses delayed key disclosure without requirement for clock
synchronization. In the protocol, a currently used key is broadcast after the key has been used
to generate or verify MACs for a time interval. This time interval, namely delay of key
disclosure in this context, is determined by the sender and announced in the data packets that
are protected with the key. Before a key is disclosed, the packets with MACs that are computed
with the key cannot be authenticated. Packets can be stored in cache at the receiving node until
the key has been received and the authentication is completed.

We define the delay of key disclosure, denoted by d, as the time difference between key
disclosure and the time when sender starts to send messages that use the key to compute
MACs. Specifically, if a sender starts to send the first packet that is authenticated via MACs
with key K at time 0t , then key K will be disclosed at time

0t t d= + . Suppose there are m packets

on which MACs are computed with key K: denoted by
1 2, , ,K K K

mP P P� respectively in sequence

of being sent, and the times when they will be sent are
1 2, , ,K K K

mt t t� respectively. We denote the
time interval between sending of the packet and the key disclosure as r, and the interval for
packet i as r i. The timeline is shown in Figure 3.

Ms, MAC(Ms, K)

Ms’, MAC (Ms’,K)

KEYUPDATE

D

C

M

B A

125

Bin Lu, Udo W. Pooch
A Lightweight Authentication Protocol for Mobile Ad Hoc Networks

Figure 3: An example of the timeline for delayed key disclosure

In the example demonstrated in Figure 3, we have:

1 1

2 2

();

;

.

K K

K K

K K
m m

r t t d

r t t

r t t

= − =

= −

= −
��

In our protocol, a sender announces the remaining time r in its data packets2. The receiver can
estimate when to expect the arrival of the KEYUPDATE message according to the remaining
time. Suppose the receiver receives the packet (1)K

iP i m≤ ≤ at time K
irt . The remaining time

indicated in the packet is r i. In case that the data packet and the KEYUPDATE message are
delivered at the same transmission rate, the KEYUPDATE message should arrive at the
receiving end at timeK K

i irt rt r= + . If the data packet and the KEYUPDATE message are

delivered at different transmission rate (supposedly the difference is δ), then the KEYUPDATE
message should be expected at the receiving end at K K

i irt rt r δ= + + . δ can be estimated at each
node according to its observation on the traffic .

This scheme eliminates the need for clock synchronization, which is used in TESLA. Although
it still needs to estimate the difference between transmission rates of a data packet and its
KEYUPDATE message, it is easier than clock synchronization because it does not need to
estimate the absolute value of transmission delay. Instead, it only needs to estimate the
variance of the transmission delays on data packets and the corresponding KEYUPDATE
message, which is much easier.

In our protocol, it is possible that a key (say hi) is disclosed after the packets using the next key
hi-1 have been sent. Therefore, the receiver needs to know which key is used for which packets.
To solve this problem, we include the index of the key in data packets, so that the receiver will
be able to know which key should be used to authenticate the message. Therefore, a data
packet from node A destined to all its neighbors (broadcast) or to node B (unicast) is in the
following format:

*() : , (), ,A B M MAC M r index→

2 Note that the time when a packet will be sent can not be exactly known at the time of packet generation. However, it can still be
accurately predicted according to the cache status at each node.

… …

r2

rm
t1

K t2K

Pm
K P2

K P1
K

tm
K

KEYUPDDATE(K)

d (or r1)

tK

126

International Journal of Information Technology Vol. 11 No. 2

where index denotes the index of the key that will be used to authenticate the message. And the
KEYUPDATE message will be:

: , ,A
jA A h index→ ∗

The index of the key is not protected in the message. In case that it is tampered such as
maliciously increased or decreased, it can still be verified by repeatedly applying hash
functions to the key until the result matches the previously received key and meanwhile
counting how many times the function has been applied. For example, if the newly arrived key
is K and the previously received key is K’ and ' ()nK H K= , then () (') .index K index K n= +

Using this method, our protocol is tolerant of packet loss because the key verification is not
based on the immediate previous key.

In our scheme, the delay of key disclosure can vary for different keys. It is not a predetermined
and unchanging value since establishment of the trust relationship, as what TESLA has used.
The advantage of varying delays of key disclosure is that it allows a sender to choose key
disclosure period according to the pattern of the traffic transmitted by the sender: when the
traffic is heavier, the delay should be smaller; and vice versa. This can prevent the cache from
being “flooded”. An example of this varied delays scheme is demonstrated in Figure 4.

Figure 4: Varied delays of key disclosure

3) Comparison with TESLA key disclosure scheme

The differences between our key disclosure and that of TESLA are:

• We broadcast KEYUPDATE message to release keys, while TESLA releases keys in data
packets. Because different data packets may be targeted at different groups of receivers,
TESLA is not able to guarantee that the key would be disclosed to all the receivers that
have received the data packets protected by the key.

• Our protocol eliminates the need for clock synchronization. Clock synchronization has

been proved to be prohibitively difficult and therefore we argue that it should be used in
authentication mechanisms.

• In our protocol, the delay of key disclosure is not a fixed value since configuration of the

network, as TESLA has used. It is up to the sender to decide the delay values based on
the traffic status of the network. It allows more flexibility than TESLA and avoids the
problem of authentication cache overflow.

KEYUPDDATE
(K j-1)

Pi Pi+1 Pi+2

K j

Pi+3 Pi+4

K j-1

Pi+5 Pi+6 Pi+7

K j-2

KEYUPDDATE
(K j)

KEYUPDDATE
(K j-2)

dj dj+1
dj+2

127

Bin Lu, Udo W. Pooch
A Lightweight Authentication Protocol for Mobile Ad Hoc Networks

IV. Security Analysis

In this section, we will analyze the security properties of our protocol and compare with digital
signatures and the protocol of LHAP, which is also a lightweight authentication protocol designed
specifically for ad hoc networks.

1) Trust management

Our protocol uses digital signature in both initial trust establishment and subsequent trust
reestablishment. Compared to the scheme that uses asymmetric cryptography in only initial trust
bootstrapping, our protocol can guarantee the genuineness of the key that commits to all the
subsequent keys, and an “in-the-middle” attacker would not be able to replay an already released key
and forge packets with the obsolete key afterward.

2) Message authentication

Up to date, MD5 [5] and SHA-1[17] are two of the most widely used cryptographic hash functions.
MD5 has been recently shown to be vulnerable to collision search attacks [7]. This type of attacks
and other currently known weaknesses of MD5 can be thwarted by the use of MD5 within HMAC
[8]. MD5-HMAC is proved to be more secure than MD5 in protecting the authenticity of traffic.
Our message authentication can effectively thwart the attacks of forging or maliciously alteration of
packets.

3) Key disclosure

The delayed key disclosure can prevent from in-the-middle attack in which an adversary may use an
obsolete key to forge or alter packets. However, the performance is dependent on the value of the
delay.

Non-repudiation is also achievable in case of using large delay values.

V. Simulation and Performance Analysis

In this section, we will evaluate our trust management and message authentication as well as the
delayed key disclosure approach.

A. Simulation Setup

We use Network Simulator, ns2 [10], for our simulations. The routing protocol we used in our
simulation is AODV. The Medium Access Control (MAC) protocol is IEEE 802.11 and the
Transportation layer protocol is User Datagram Protocol (UDP), which are both available as a
part of the simulator. The size of data packets is 512 bytes the traffic sources are Constant-Bit-
Rate (CBR). We assume all the nodes have the same initial transmission range of 250 meters.
 In our simulation, all traffic is generated and the statistical data are collected after a warm-up
time of 100 seconds in order to allow the network to finish initialization process.

Scenario 1: The first scenario we used is demonstrated in Figure 5. There are totally nine nodes
in the scenario. Eight of them (denoted as N1, N2, … , N8 in the figure) serve as transmission

128

International Journal of Information Technology Vol. 11 No. 2

nodes, who transmit packets to one single receiving node (denoted as N9 in the figure). Node
N9 is the sink of all the traffic. The nodes are positioned at the mesh that is demonstrated in the
figure. Static network topology used in this scenario allows us to easily observe the network
performance (such as hop-by-hop delay, etc) according to varied channel loads.

Figure 5: Network topology of 9-node scenario

Scenario 2: In our second scenario, 50 mobile nodes are randomly distributed in a 1500x300
rectangular space. The node mobility model is random waypoint model, which is commonly
used in simulations for mobile ad hoc networks. The maximum node speed is 20 m/s.

B. Performance Evaluation on Trust Management and Message Authentication

The performance metrics employed to analyze our system are: computational overhead,
authentication latency, message overhead.

1) Computational overhead

As any authentication mechanisms, our protocol introduces computational overhead by two
operations: message authentication and trust management.

In our protocol, symmetric cryptography is used for message authentication. It is known that
symmetric cryptographic operations are three to four orders of magnitude faster than
asymmetric operations, especially on CPU limited devices.

We used asymmetric cryptography in trust bootstrapping, that is, when a node is establishing
or reestablishing trust relationship with its neighboring nodes. This may introduce more
overhead than LHAP because LHAP employs digital signature only when the trust is
bootstrapped for the first time. However, we have argued that using digital signature is
necessary even in re-bootstrapping since the key release is vulnerable to replay attack,
especially when the receiving node has moved out of transmission range for a time interval
hence is likely to be unaware of the currently released key. It will not introduce significant
overhead on receivers because signature verification is much faster than signature generation
[9].

Moreover, our protocol only maintains one authentication key, which consumes much less
resource such as CPU and memory than LHAP, which maintains two keys – TRAFFIC key

N2 (0, 100)

N1 (0, 0)

N3 (0, 200)
N4 (100, 200) N5 (200, 200)

N6 (200, 100)

N7 (200, 0) N8 (100, 0)

N9
(100, 100)

129

Bin Lu, Udo W. Pooch
A Lightweight Authentication Protocol for Mobile Ad Hoc Networks

and TESLA key. We only use digital signature for trust bootstrapping. The trust maintenance is
still based on one-way hash function, which is so efficient that is usually considered negligible.

2) Authentication latency

The latency of authenticating a packet is introduced by two parts: MAC verification latency
and key disclosure delay.

MAC verification is accomplished by computing one hash. The latency for this verification is
less than one millisecond even for very constrained computational capability such as handheld
PDAs [9]. Therefore, the authentication latency is mainly determined on the key disclosure
delay.

The delay of key disclosure is a value that is determined by the sender of packets based on the
traffic pattern. A very small delay may cause difficulty in satisfying the security condition and
consequently increase the risk to key replay attack; while large delay may result in an increase
on authentication latency. Tradeoff should be made between performance and security
properties. A quantity analysis on the delay of key disclosure is included later in this section.

3) Message overhead

 Message overhead is introduced by trust management messages (such as trust bootstrapping,
KEYUPDATE and trust relationship termination messages) and MACs of packets.

Suppose that the authentication is performed using MD5 Message Digest Algorithm. Then the
MAC attached to each packet is a hashed digest that is 128-bit long. If the data packet size is
512 bytes, the overhead introduced by MACs is approximately 3%, which is very small.

The overhead introduced by trust management varies with the frequency of bootstrapping and
KEYUPDATE messages. It is obvious that high node mobility will result in more frequent
trust bootstrapping and therefore introduce more overhead. In addition, a node sending more
traffic will lead to more frequent broadcast of KEYUPDATE messages, which also introduces
more overhead.

0

0.5

1

1.5

2

2.5

3

3.5

4

2 4 6 8 10

Packet rate (pkt/sec)

R
es

en
t

p
er

ce
n

ta
g

e
(%

)

Figure 6: Average resent rate of KEYUPDATE messages

130

International Journal of Information Technology Vol. 11 No. 2

Figure 6 demonstrates the simulation results of the KEYUPDATE messages that have been
resent. Data packet rates that are used in our simulation vary from 2 pkt/sec (packets per
second) to 10 pkt/sec. The KEYUPDATE messages are sent with the same rate of the data
packets. This implies that we use a new key for each data packet, which is the worst case for
key update scheme in term of message overhead.

We can tell from Figure 6 that the resent rate of KEYUPDATE packets increases with the
increase of the data packet rate. We assume that the identification of a node is128-bit long and
the index of authentication key is 128-bit long too. In case that the data packet rate is 10
pkt/sec, when the resent rate is the highest in these scenarios, the message overhead introduced
by KEYUPDATE messages is only 9.7%. If we use the less frequent KEYUPDATE messages
(such as one per 3 seconds), the message overhead is negligible.

C. Performance Analysis on Delayed Key Disclosure

To analyze our delayed key disclosure scheme, we first take a measurement on average hop-
by-hop delay. Hop-by-hop delay of data packets is an important metric in determining the
value of the delay that should be used in key disclosure scheme, in that the key disclosure
delay should be large enough to guarantee arrival of the data packets before the key but
meanwhile be as small as possible to achieve low authentication latency. We use hop-by-hop
delay instead of end-to-end delay because our authentication protocol is designed for
neighboring communications and the transmissions the protocol is aimed to protect are only
one-hop transmissions.

Then we will use different key disclosure delay values to evaluate the performance, in metrics
such as percentage of packets arriving safely and dropped packet rate.

1) Average hop-by-hop delay

 We measured average hop-by-hop delay on both Physical Layer level and Network Layer. The
delay on the Physical level is mostly the transmission time the packet takes in the air. We
tested it in the scenario where there are two nodes, one of which transmits packets to the other.
The distance between the two nodes is 150 meters. The average delay is 0.00467269 second
with a standard deviation of less than 1x 10-6 second.

The average hop-by-hop delay at the network layer is tested in both the scenarios of 9 nodes
and 50 nodes we described earlier in this section. The hop-by-hop delay is calculated as end-to-
end delay (a packet takes from the source to the destination) divided by the number of links a
packet has traversed during delivery from the source to destination (the number of hops), i.e.

hopsofnumber

delayendtoend
delayhopbyhop

−−=−−

We measured the delay at the Network Layer because the key disclosure delay value (denoted
as r in previous sections) will be determined and stamped on data packets above the Medium
Access Control Layer level. Above Medium Access Control Layer, data packet delay may
result not only from the transmission in the air but also from the backoff due to channel
contention at Medium Access Control layer and from the queue delay.

131

Bin Lu, Udo W. Pooch
A Lightweight Authentication Protocol for Mobile Ad Hoc Networks

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

2 6 4 8 10

Packet rate (pkt/sec)

H
o
p
-b

y-
h
o
p
 d

el
ay

 (
se

c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2 4 6 8 10

Packet rate (pkt/sec)

H
o
p

-b
y-

h
o

p
 d

el
ay

 (
se

c)

(a) Hop-by-hop delay in Scenario 1 (b) Hop-by-hop delay in Scenario 2

Figure 7: Average Hop-by-hop Delay

The results for Scenario 1 (9 nodes) are shown in Figure 7(a). The deviations are too small
(less than 0.00002 second for all the cases) to be shown in the figure.

We tested average hop-by-hop delay in Scenario 2 with varied pause time, which is changed
from 60 seconds to 480 seconds in an interval of 60 seconds (see Figure 7 (b)). The hop-by-
hop delay for each packet rate is the average value from the cases with different pause time.
The vertical line at each point represents the standard deviation of the value.

We can see from Figure 7 that average hop-by-hop delay increases with the increase of the data
packet rate. The reason for this increasing delay is that increased packet rates result in larger
channel load and therefore more channel contention for packets, and the channel contention
causes more backoff time for data packets. Table 2 and Table 3 give the average channel loads3
according to the packet rates in Scenario 1 and 2 respectively.

With the same data packet rate, the average channel loads in Scenario 2 are less than the
corresponding channel loads in Scenario 1. However, the delay values are larger than those in
the scenario of 9 nodes. This is caused by the following reasons:

First, channel loads do not always accurately reflect the contention status at a channel, because
a node’s neighboring communications may also affect its capability of receiving packets and

3 Please note that here “channel” refers to the medium that a nodes shares with all its neighbors, which is different from “link”, which refers to the

point-to-point medium that two neighboring nodes use for transmission.

TABLE 2
 AVERAGE CHANNEL LOADS (SCENARIO 1: 9 NODES)
Packet
rate
(pkt/sec)

Channel load
(bps)

Channel load
Percentage (%)

2 173974 8.70
 4 374926

18.75
 6 534254

26.71
 8 733054

36.65
 10 907016 45.35

TABLE 3
 AVERAGE CHANNEL LOADS (SCENARIO 2: 50 NODES)
Packet
rate
(pkt/sec)

Channel load
(bps)

Channel load
Percentage (%)

2 57096

2.85
 4 107592

5.38
 6 125818

6.29
 8 156477

7.82
 10 182633

9.13

132

International Journal of Information Technology Vol. 11 No. 2

the packets in these communications are not accounted as its channel load. In Scenario 2,
although the channel loads are lighter, the contention is more intensive in that most of the
nodes have more neighbors than node N9 in the first scenario. As we have mentioned earlier,
more intensive contentions result in more backoffs and hence larger transmission delays.

Second, node mobility may also introduce delays since it can cause re-routing when the
network topology changes. These routing packets will compete with data packets for the
bandwidth of channels and therefore cause more backoffs on data packets.
From the above simulations, we can conclude that hop-by-hop delay increases with increase of
traffic load in the neighborhood. Therefore, a sender should use larger key disclosure delay in
case of heavier traffic load.

2) Percentage of packets arriving safely

According to the average hop-by-hop delay demonstrated in Figure 7, we tested our key
disclosure scheme with varied disclosure delay values. The percentages of data packets that
arrive safely according to different data packet rates are shown in Figure 8. We observe that
more than 97.6% of the data packets have arrived safely when the key disclosure delay is set to
3 seconds; more than 94.8% of the data packets have arrived safely if the key disclosure delay
is set to 2 seconds, in all the cases of different data packet rates.

0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Key disclosure delay (sec)

P
er

ce
n

ta
g

e
o

f
p

ac
ke

ts
 a

rr
iv

in
g

sa

fe
ly

2 pkt/sec

4

6

8

10

Figure 8: Percentage of packets arriving safely

3) Dropped packet rate

We also test the dropped packet rates with different cache sizes. We use very small cache sizes
(16 packets and 32 packets) to observe the performance. The key disclosure scheme should
have less dropped packet rates in real networks since larger cache sizes (such as 128 packets)
are often used.

The results for the two cache sizes are shown in Figure 9 (a) and Figure 9 (b) respectively.
From the simulation, we have noticed that with increase of data packet rates, the drop rate at
the cache increases too. We can also observe that, if the cache size is as small as 16 packets,
there will be about 39% data packets dropped at the cache at 10 packets per second of data
packet rate if the key disclosure delay is set to 2 seconds. In case of 3 seconds key disclosure
delay, the drop rate will increase to 60% or so. With the cache size of 32 packets, drop rate

133

Bin Lu, Udo W. Pooch
A Lightweight Authentication Protocol for Mobile Ad Hoc Networks

decreases to 0 in case of 2 seconds or lower key disclosure delay in case that the data packet
rate is 10 packets per second. If the key disclosure delay is 3 seconds, the drop rate is about
19%. However, if we use a cache with size of 64 packets, the drop rate will drop to 0 no matter
what the data packet rate is (in a 2 pkt/s to 10 pkt/s range).

If we use a cache of length 64-byte, the dropped packet rate will be 0 even with 10 pkt/sec data
packet rate.

0

10

20

30

40

50

60

70

2 4 6 8 10

Packet rate (pkt/sec)

P
er

ce
n

ta
g

e
o

f
d

ro
p

p
ed

p

ac
ke

ts
 (

%
)

delay = 3 sec

delay = 2 sec

0

2
4

6
8

10

12
14

16
18

20

1 2 3 4 5

Packet rate (pkt/sec)

P
er

ce
nt

ag
e

o
f

dr
op

p
ed

 p
ac

ke
ts

(%

)

delay = 3 sec

delay = 2 sec

(a) Dropped packet rate (cache size: 16 packets) (b) Dropped packet rate (cache size: 32 packets)

Figure 9: Average dropped packet rate

VI. Conclusion

Most ad hoc networks do not employ any network access control, leaving them vulnerable to
resource consumption attacks. In ad hoc networks, users need to assure the party who supposedly
sent a message to another party is indeed the legitimate party. Otherwise, a malicious node could
tamper a network with falsified data. These attacks can result in degraded performance of networks,
interference of resource reservation, and unauthorized use of resources. To deal with these attacks,
an authentication protocol needs to be in place to ensure that a packet is sent by an authentic and
legitimate node.

In this paper, we have proposed a lightweight authentication protocol that effectively and efficiently
provides security properties such as authenticity and integrity for communicating neighbor nodes in
MANETs. The protocol utilizes one-way hash chains to compute authentication keys, which not
only eliminates the high performance overhead imposed by asymmetric cryptography (such as digital
signatures), but also avoids the difficulty of key management introduced by secret paired symmetric
key. Our protocol also used delayed key disclosure to prevent a malicious entity from forging
packets with Message Authentication Codes (MACs) with an already released key.

The authentication protocol is lightweight, scalable and tolerant of packet loss. The performance
analysis showed that the protocol incurs low overhead penalty and also achieves a tradeoff between
security and performance. The delayed key disclosure approach can achieve an extremely low
dropped packet rate if the data packets are cached in a fair size buffer before being authenticated.

134

International Journal of Information Technology Vol. 11 No. 2

References

[1] A. Perrig, R. Canetti, J. Tygar, D. Song. “Efficient authentication and signing of multicast
streams over lossy channels”. In Proc. of IEEE Symposium on Security and Privacy. May
2000.

[2] S. Zhu, S. Xu, S. Setia, and S. Jajodia. “LHAP: A Lightweight Hop-by-Hop Authentication
Protocol for Ad-Hoc Networks”. In ICDCS 2003 International Workshop on Mobile and
Wireless Network (MWN 2003), Providence, Rodhe Island, May 2003.

[3] Y. Hu, D. Johnson, A. Perrig. “SEAD: Secure Efficient Distance Vector Routing for
Mobile Wireless Ad Hoc Networks”. In Proc. of the 4th IEEE Workshop on Mobile
Computing Systems & Applications (WMCSA 2002), IEEE, Calicoon, NY, June 2002.

[4] A. Perrig, R. Szewczyk, V. Wen, D. Culler, J. D. Tygar, “SPINS: security protocols for
sensor networks”, In Proceedings of the 7th annual international conference on Mobile
computing and networking, July 2001.

[5] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321, April 1992.
[6] NIST, FIPS PUB 180-1: “Secure Hash Standard”, April 1995.
[7] H. Dobbertin, "The Status of MD5 After a Recent Attack", RSA Labs' CryptoBytes, Vol. 2

No. 2, Summer 1996.
[8] H. Krawczyk, M. Bellare and R. Canetti, “HMAC: Keyed-Hashing for Message

Authentication”, RFC 2104, February 1997.
[9] M. Brown, D. Cheung, D. Hankerson, J. Hernandez, M. Kirkup, and A. Menezes. “PGP in

Constrained Wireless Devices”. In 9th USENIX Security Symposium. August 2000.
[10] The network simulator - ns-2, http://www.isi.edu/nsnam/ns/.

Bin Lu is a Ph.D. candidate in the Department of Computer Science at
Texas A&M University. She obtained her B.S. (1996) and M.S. (1998)
degrees in computer science from Harbin Institute of Technology,
China. She will be joining West Chester University in Pennsylvania as
an Assistant Professor in Computer Science in August 2005. Her
research interests are Network Security, Quality of Service and Mobile
Ad Hoc Networks.

Udo W. Pooch, P.E., is the E-Systems Professor of Computer
Science at Texas A&M University. He received his Ph.D. in
theoretical physics from the University of Notre Dame. Dr. Pooch has
authored numerous articles and books. His research interests include
network simulation, network security, and fault-tolerant distributed
environments.

135

