
International Journal of Information Technology, Vol. 11 No. 4

Sugree Phatanapherom and Putchong Uthayopas

Unified Economic Deadline Scheduling Algorithm for
Computational Grid

 HPCNC, Faculty of Engineering, Kasetsart University,

Bangkok, 10900 Thailand

 sugree@hpcnc.cpe.ku.ac.th and pu@ku.ac.th

Abstract

Efficient and dynamic resources scheduling algorithms are needed to harness the hidden power of a
Grid System. In this work, a few economic scheduling algorithms have been proposed. First, Grid
system is modeled using a vector space approach. Then, a cost function for the operation has been
defined. Using the model and cost function defined, a few new economic scheduling algorithms have
been proposed as an improved extension to many conventional Grid scheduling algorithms. In
addition, the algorithms proposed are also address the problem of deadline scheduling as well. The
concept proposed has then been evaluated using a simulation. The results show that the scheduling
algorithms proposed perform better than the traditional algorithms. The results and approach
presented here can be applied to improve Grid level scheduler system.

Keyword: Grid, Scheduling Algorithm, Heuristic, Deadline, Economic, Scheduler

I. Introduction and Related Work

Grid technology [1, 2] is a technology that allows the use of geographically distributed computing
systems belonging to multiple-organizations as a single system. Grid system is usually built using
Grid middleware such as Globus [3] to form a secure, distributed infrastructure. However, Globus
provides only a basic mechanism such as security services, remote execution services, and data
transfer services. Although these mechanisms can be used as a basis for the construction of the Grid,
the task of discovering and allocating a set of optimal resources is left to higher level software.
Therefore, it is important to have a smart resources scheduler that selects the optimal set of resources
for the users.

There are a large number of literature that address the problem of mapping sets of tasks onto sets of
processors in a view of minimizing overall execution time. Many of these works address the case
where tasks are independent. For example, [4] proposed both on-line mode and batch mode
scheduling heuristics: MinMin, MaxMin and Sufferage. [5] analyzed the same problem using
stochastic model and proposed load balancing scheme using second order moments as well as first
order moments. This scheme is verified to improve both in static and dynamic scheduling. In [6],
XSufferage scheduling heuristic in batch mode has been proposed comparing to the original one.
XSufferage is a modification of Sufferage to reuse already existing input file in some resources
assuming that each computing system (cluster) has it own shared file system (NFS, IBP, GFS, AFS,
PVFS or etc.). However, this heuristic does not take care of the economic model and only improve
performance of this kind of application that input files could be reused by other tasks. A scheduling

13

Sugree Phatanapherom, Putchong Uthayopas
Unified Economic Deadline Scheduling Algorithm for Computational Grid

algorithm called “Placeholder scheduling” is proposed in [7]. The purpose is efficiently schedule
general tasks to multiple remote queues relying on user-level meta-queue design. This methodology
does not run on top of Grid but actually runs on a set of scripts for querying and submitting on PBS
or SGE. Placeholder software is a script that fetches tasks from the pool and run it using existing
tools (e.g. ssh and rcp). The problem of economic scheduling is left unaddressed as well in this work.
For all these scheduling algorithms, simulation has been a major way to study the performance of
each propose scheme. Effect of accuracy of the simulation is studied in [8] using simulation based
on trace from NCSA mainly for parallel tasks. The result shows that increasing accuracy of
submitted execution time helps improving performance of the system by fitting the task in backfill
policy.

One of the major issues in the design of an efficient scheduler is the organization of Grid scheduling
structure. Infrastructure classification is studied extensively in [9]. Subramani et al. [10] has
classified the Grid scheduling structure into 3 categories [10] namely, Centralized, Hierarchical, and
Distributed structure. First, the centralized scheduling structure consists of only one scheduler and
one queue for all distributed resources. Most of the existing schedulers such as Nimrod/G [11],
GrADS [12], and AppLeS [13]), belong to this category. Second, hierarchical scheduling structure
leaves the final decision of selecting resources to local job manager of each organization. Finally, in
a distributed scheduling structure, there are many interacted Grid-level scheduler that communicates
with in order to make a scheduling decision. Subramani et al. [10] also proposed 2 scheduling
heuristics that can improve the performance of a distributed infrastructure by limiting amount of
knowledge of current status. However, the work is only focused on the problem to schedule parallel
task on multiple computing resources. Economic scheduling for Grid system is also addressed in [14]
for the same problem but the target of the work changes to the minimization of average wait time
and average response time.

In this paper, three new scheduling heuristics are proposed to satisfy 2 goals; minimizing turnaround
time, and minimizing rental cost of scheduling independent tasks. This is very important for the
practical use of grid infrastructure since each organization on Grid may needs to charge for resource
usage. A way to model this problem in order to make it easy and straight forward to solve are needed.

II. Modeling the Grid

Assuming that Grid consists of n nodes and each node has m resources. Let be the node
vector that represents the amount of each resource in a node (Eq. 1) and be the Grid vector that
represents global Grid system as vector of nodes (Eq.2). For each processor, an execution rate is
used to represent its speed. An interconnection network is modeled using point-to-point bandwidth.

N
r

G
v

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

m

i

R

R
R
R

N
M

v
3

2

1

(1)

[]nNNNNG
v

L
vvvv

321= (2)

For each machine a set of charging rate corresponding to resource cost is represented by as a vector,
says for machine . For the task, Let task vector jR

v
j iT

v
 represents the Resource Vector of task . i

14

International Journal of Information Technology, Vol. 11 No. 4

As a result, rental cost of running task on machine i j is computed by dot product of vector iT
v

 and
vector (see Eq. 3 and Eq. 4). jR

v

An organization is responsible for specifying the charging rate of each resource under its
administrative domain. For instance, Eq. 4 represents all possible costs when assigned the task to
each compute node. Scheduler chooses the appropriate one based on turn-around times and these
costs.

jiij RTC
vv

•= (3)

[]

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

•=

jm

j

j

j

imiiiij

R

R
R
R

RRRRC
M

L 3

2

1

321

(4)

An application is represented by a set of parameter to reflect its behavior. The essential one is
workload in the unit matching to the execution rate defined above. It is not enough in some case that
an application needs a large input files, produces big output files, or needs to be staged to the target
machine before running. In this case, staging time is computed by file size and available bandwidth
during transfer. However, if staging time is so small comparing to execution time, it is not necessary
to include staging in the model. Unfortunately, most scientific applications need large data file and
produces large output file.

For example, in case of a task is represented by amount of workload denoted by ω so a machine
must define an execution rate, λ . Execution time, φ , of running this task on this machine is
obtained by λω / . Network can also model in the same manner by defining amount of data to
transfer through the network as σ and bandwidth between them as B . Transfer time η is obtained
by B/σ . In this paper, staging time and execution time have been combined to simplify the model
so final execution time in this paper is defined in Eq. 5.

outputexecutableinputijije ηηηφ +++= (5)

III. Grid Resource Scheduling

There are many well-known and well-perform heuristics for traditional computing platform like
Network of Workstation or cluster, for example, MinMin, MaxMin, and Sufferage. Their original
goal is to minimize makespan [15] of the whole heterogeneous computing system. However, it is not
good enough for real-world application where resources must be charged. The new goal is to
optimize 2 parameters; makespan and rental cost of running. To satisfy these goals, new heuristics
are proposed based on models defined in previous section. Since these heuristics used different
techniques and parameters, it is named “Unified Economic Deadline Scheduling Algorithm” to
identify its class clearer.

A. Unified Economic Deadline Scheduling Algorithm
Proposed heuristics are named CMinMin, CMaxMin, and CSufferage. Assuming that all
tasks and all available machines are listed in and vM m , respectively. Instead of
determining only completion time, these heuristics define another criteria, Priority Index,

15

Sugree Phatanapherom, Putchong Uthayopas
Unified Economic Deadline Scheduling Algorithm for Computational Grid

denoted by . (See Eq. 6) is a function of execution time (see Eq. 5), ready time
, cost , accumulative cost , and time period between completion time and deadline
. All variables have their own factor, , , , , , respectively. The general

objectives in resource owner view are to minimize time, minimize cost, and minimize over-
deadline tasks. To minimize over-deadline tasks, it is necessary to schedule tasks early on
machine that might finish them in time. However, it is worth to wait for other faster machines
that also finish them in time.

ijp ijp ije

jr ijC jc
d 1w 2w 3w 4w 5w

dwcwCwrwewp jijjijij 54321 +−−+= (6)

At the beginning, will be pre-computed for later use in each algorithm and are
recomputed again to match machines status for next task assignment.

ijp

recompute(r,c,d,p)
while count(task_list) > 0:
 t,m = choose(p,task_list)
 if t and m:
 assign(t,m)
 delete(task_list,t)
 recompute(r,c,d,p)

Unified algorithm is shown above. First of all, priority indexes are computed for use in main
loop. The main loop will run until all tasks in task list are assigned to machines. In the loop,
the priority indexes and task list are considered to choose a task and its correspondent
machine to run on. The task then is deleted from task list and p is recomputed.

B. Applying the Model to Traditional Algorithm

Generally, UED is a generic scheduling framework that is backward compatible with
previous algorithms by adjustment of factors. For example, if 121 == ww ,

then priority index is representing completion time as usual. Other
adjustments are shown in Table 1.

0543 === www

Table 1. Several factors of Unified Economic Deadline scheduling algorithm when applying to existing
algorithms and proposed algorithms.

 1w 2w 3w 4w 5w
MCT 1 1 0 0 0
MET 0 1 0 0 0
MinMin 1 1 0 0 0
MaxMin 1 1 0 0 0
Sufferage 1 1 0 0 0
CMinMin x x x x x
CMaxMin x x x x x
CSufferage x x x x x

With UED, CMinMin, CMaxMin and Csufferage are able to handle circumstances that
original heuristics cannot handle. For example, assuming there are 4 tasks in a batch and 2
machines, says A and B, with attributes in Table 2. In this situation, MinMin assigns task T1
to A, T2 to A, T3 to B, and T4 to A. As a result, machine A took time 15 units and cost 18
units while machine B took time 18 units and cost 9 units. In contrast, MinMin gave
makespan 18 units and rental cost 27 units. However, CMinMin with UED assigns task T1 to

16

International Journal of Information Technology, Vol. 11 No. 4

A, T2 to B, T3 to B, and T4 to A. It turned out that CMinMin gave makespan 27 and rental
cost 21.

Table 2. A sample batch consists of 4 tasks and 2 machines, A and B. Each task represented by corresponding
executime time, cost and priority index obtained from Eq. 6.

 Executime
time

Cost P

T A B A B A B
1 2 4 4 2 6 6
2 5 8 10 4 15 12
3 10 18 20 9 30 27
4 8 12 4 6 12 18

IV. Experimental Results

There are many kinds of simulation process and simulation model. These experiments in this section
are based on HyperSim [16] which run on Event Graph Modeling. The defining feature of DES
models is that they have state variables whose transits in simulated time are piecewise constant. State
transitions only occur at discrete time epochs, which are designated as events. The Event List is
responsible for determining which events occur and that the appropriate state transitions are
executed. The occurrence of an event may trigger the occurrence of other events at later times. These
future occurrences of events are implemented in a DES model by placing the appropriate scheduled
events on the Event List. The Event List algorithm sorts the events in ascending temporal order and
executed the simulation by always.

Table 3. Parameter of KU Grid and Thai Grid

Name Processors Execution Rate Bandwidth (Mbps) Grid
AMATA 15 1000 10 KU/Thai
GASS 12 1800 18 KU/Thai
MAEKA 16 1400 80 KU/Thai
MAGI 4 2200 100 KU/Thai
Optima 8 1000 0.7 Thai
CAMETA 16 1800 1 Thai
Palm 8 1000 1 Thai
Algorithm 12 1000 1 Thai

First experimental is to study characteristics of each heuristic in terms of relation between makespan
and cost. Grid system is derived from KU Grid and Thai Grid [17] as shown in Table 1. All
machines are initially no loads. These Grids are assumed that (1) faster machines might be more
expensive; (2) each cluster has their own scheduler with MaxMin heuristic because MaxMin gives
better results for common task pattern (exponential distribution).
The experimental is to randomly submit 10,000 tasks and schedule them to the specific cluster based
on each heuristic. Inter-arrival time of each task is determined randomly in exponential distribution
with mean of 50 seconds. Workloads are also in exponential distribution with mean of 30,000
million instructions. Each heuristic are reputably ran 1,000 times with different seeds. These
experimental configurations are to bring up performance of the heuristics as many as possible.
Interesting variables are recorded and plot average results in Fig. 1, Fig. 2, and Fig. 3 for makespan,
cost, and cost-time ratio, respectively. Note that all tasks are finished within their deadline.

17

Sugree Phatanapherom, Putchong Uthayopas
Unified Economic Deadline Scheduling Algorithm for Computational Grid

0
500

1000
1500
2000
2500
3000
3500
4000
4500

KU Grid Thai Grid

Th
ou

sa
nd

s

C
os

t (
$)

rr olb mct met minmin

maxmin sufferage cminmin cmaxmin csufferage

Fig. 1. Cost of KU Grid and Thai Grid

138.800

138.850

138.900

138.950

139.000

139.050

139.100

139.150

KU Grid Thai Grid

M
ak

es
pa

n
(h

ou
rs

)

rr olb mct met minmin

maxmin sufferage cminmin cmaxmin csufferage

Fig. 2. Makespan of KU Grid and Thai Grid

0

5000

10000

15000

20000

25000

30000

KU Grid Thai Grid

C
os

t-T
im

e
R

at
io

 ($
/h

)

rr olb mct met minmin

maxmin sufferage cminmin cmaxmin csufferage

Fig. 3. Cost-Time Ratios of KU Grid and Thai Grid

Fig. 1 clearly shows that CMinMin, CMaxMin, and CSufferage scheduled all tasks to complete using
cheaper cost comparing to all others algorithms including on-line scheduling algorithms. However,
these schedules take slightly longer makespan (see Fig. 2) comparing to others because they usually
try to minimize positive time between deadlines and finish time. Generally, a task might be

18

International Journal of Information Technology, Vol. 11 No. 4

scheduled to finish at deadline while another task is scheduled to finish at its deadline before
previous task. However, cost-time ratio in Fig. 3 shows the clear result. Proposed algorithms are
outperforming comparing to other algorithms both on-line and batch.
In term of scalability, all algorithms perform well to take shorter time to finish all tasks when more
machines are available.

0

5000

10000

15000

20000

25000

rr
mct met olb

minm
in

max
min

su
ffe

ra
ge

cm
inm

in

cm
ax

min

cs
uff

era
ge

Th
ou

sa
nd

s

Algorithms

C
os

t (
$)

0 20 40 60 80 100

Fig. 4. Cost of different prediction error

According to all algorithms described in this paper, they are relying heavily on estimated execution
time to predict completion time at every step. Generally, higher prediction error intends to bring
lower performance because execution time and completion time are considered as a major parameter
to match and to map each task on each machine. If inaccurate parameters have been obtained, these
values will be propagated to next step forever.
Fig. 4 shows cost of running longer tasks on KU Grid with different level of prediction error, says
0% to +/-100%, in exponential distribution.

0
10
20
30
40
50
60

rr mct
met olb

minm
in

max
min

su
ffe

ra
ge

cm
inm

in

cm
ax

min

cs
uff

era
ge

Algorithms

M
ak

es
pa

n
(h

ou
rs

)

0 20 40 60 80 100

Fig. 5. Makespan of different prediction error

As a result, the prediction error only slightly effects to RR, MCT, OLB, MinMin, MaxMin, and
Sufferage but increases rental cost for MET, CMinMin, CMaxMin, and CSufferage. The reason is 4
folds. Firstly, the first group of heuristics, says RR, does not consider any time related parameters so
there is no effect at all. Secondly, the second group, e.g. MCT, makes decision based on completion
time which error is easily propagated until simulation finished. However, their objective is mainly to
minimize makespan so these costs are just uncontrollable variable. Fig. 5 shows their makespans are

19

Sugree Phatanapherom, Putchong Uthayopas
Unified Economic Deadline Scheduling Algorithm for Computational Grid

slightly increased due to prediction error. Thirdly, MET only determines execution time so it heavily
rely on accurate prediction. In this case, makespan is increased until 40% and fall down because the
error function is generated by exponential distribution. Higher percentage intends to give more stable
prediction that parallel with correct values. Lastly, proposed algorithms reflect normal behavior that
cost increases if error is increased. However, the final results shown in Fig. 6 clearly shows that
proposed algorithms with proposed model outperform other algorithms even on high prediction error
environment.

0

500

1000

1500

2000

2500

rr
mct met olb

minm
in

max
min

su
ffe

ra
ge

cm
inm

in

cm
ax

min

cs
uff

era
ge

Algorithms

C
os

t-T
im

e
R

at
io

 ($
/h

)

0 20 40 60 80 100

Fig. 6. Cost-time ratio of different prediction error

V. Conclusions

Grid is going to be next generation standard of internet protocol like TCP/IP today. It is widely used
in many areas that resources are shared geographically distributed across administrative domain. To
utilize Grid efficiently, one or more Grid scheduler is required somewhere to serve end-user like a
single machine do in the traditional system. This infrastructure gives functionality to provide on-
demand resources automatically. However, nothing is free of charge in the real world. Most
scheduling heuristics today are designed to minimize makespan that usually intends to rapidly
increased rental cost (a fast machine is more expensive than slower one).

This paper proposed an extensible performance model of resources scheduling problem for large-
scale Grid system. The proposed model consists of time, cost, and deadline. Basic idea of basic win-
win heuristic is to minimize both time and cost so that task owner gets results back as fast as
possible with minimum price. However, time might increase when decreases cost and in contrast,
cost might increase when time decreases. Deadline is the third factor to balance time and cost. In
addition, three modified heuristics are proposed to show usage of the model.

Since computational Grid is uncontrollable infrastructure, proposed heuristics and other well-known
heuristics are evaluated in HyperSim, discrete event simulation library. The experimental results
clearly show that (1) the three modified heuristics using proposed model outperform their original
heuristics and other heuristics in term of lower price per unit of time (cost-time ratios). (2) All
heuristics including proposed ones perform better on larger system because more tasks executed
simultaneously before their deadline. (3) Prediction accuracy of execution time takes slightly effect
to performance for short-time applications.

Other interesting topics are to study effect of inaccurate measurement of other many parameters, e.g.
network bandwidth, network latency, and so on. Moreover, data staging could be performed during

20

International Journal of Information Technology, Vol. 11 No. 4

other task is being run to save lots of time. However, the run task might be slower than usual
especially accessing storage. To model this behavior correct, it is necessary to model data access of
the application. In this paper, there is only one application type. In realistic, many kinds of
application are submitted to the scheduler at the same time. Quality of Service can be added to
prioritize each task based on end-user.

References

[1] I. Foster, C. Kesselman, and S. Tuecke, "The Anatomy of the Grid: Enabling Scalable Virtual

Organizations," International Journal Supercomputer Applications, vol. 15, pp. 200-222,
2001.

[2] I. Foster and C. Kesselman, The Grid: Blueprint for a Future Computing Infrastructure:
Morgan Kaufmann, 1998.

[3] I. Foster and C. Kesselman, "Globus: A Toolkit-Based Grid Architecture," in The Grid:
Blueprint for a Future Computing Infrastructure, I. Foster and C. Kesselman, Eds.: Morgan
Kaufmann, 1998, pp. 259-278.

[4] M. Muthucumaru, A. Shoukat, S. Howard Jay, H. Debra, and F. F. Richard, "Dynamic
Matching and Scheduling of a Class of Independent Tasks onto Heterogeneous Computing
Systems," in Proceedings of the 8th Heterogeneous Computing Workshop. San Juan, Puerto
Rico: IEEE Computer Society, 1999.

[5] S. Y. Lee and C. H. Cho, "Load Balancing for Minimizing Execution Time of a Target Job
on a Network of Heterogeneous Workstations," in Proceedings of the 6th Workshop on Job
Scheduling Strategies for Parallel Processing. Cancun, Mexico: Springer-Verlag, 2000.

[6] C. Henri, Z. Dmitrii, B. Francine, and L. Arnaud, "Heuristics for Scheduling Parameter
Sweep Applications in Grid Environments," in Proceedings of the 9th Heterogeneous
Computing Workshop. Cancun, Mexico: IEEE Computer Society, 2000.

[7] P. Christopher, L. Paul, and G. Mark, "Practical Heterogeneous Placeholder Scheduling in
Overlay Metacomputers: Early Experiences," in Revised Papers from the 8th International
Workshop on Job Scheduling Strategies for Parallel Processing. Edinburgh, Scotland:
Springer-Verlag, 2002.

[8] C. Su-Hui, C. A.-D. Andrea, and K. V. Mary, "The Impact of More Accurate Requested
Runtimes on Production Job Scheduling Performance," in Revised Papers from the 8th
International Workshop on Job Scheduling Strategies for Parallel Processing. Edinburgh,
Scotland: Springer-Verlag, 2002.

[9] I. D. B. Anca and H. J. E. Dick, "Local versus Global Schedulers with Processor Co-
allocation in Multicluster Systems," in Revised Papers from the 8th International Workshop
on Job Scheduling Strategies for Parallel Processing: Springer-Verlag, 2002.

[10] S. Vijay, K. Rajkumar, S. Srividya, and P. Sadayappan, "Distributed Job Scheduling on
Computational Grids Using Multiple Simultaneous Requests," in Proceedings of the 11 th
IEEE International Symposium on High Performance Distributed Computing HPDC-11
20002 (HPDC'02): IEEE Computer Society, 2002.

[11] D. Abramson, J. Giddy, and L. Kotler, "High Performance Modeling with Nimrod/G: Killer
application for the global Grid," in Proceeding of the International Parallel and Distributed
Processing Symposium. Cancun, Mexico: IEEE Computer Society Press, 2000.

[12] S. V. Sathish and J. D. Jack, "A Metascheduler For The Grid," in Proceedings of the 11 th
IEEE International Symposium on High Performance Distributed Computing HPDC-11
20002 (HPDC'02): IEEE Computer Society, 2002.

[13] C. Henri, O. Graziano, B. Francine, and W. Rich, "The AppLeS parameter sweep template:
user-level middleware for the grid," in Proceedings of the 2000 ACM/IEEE conference on
Supercomputing (CDROM). Dallas, Texas, United States: IEEE Computer Society, 2000.

21

Sugree Phatanapherom, Putchong Uthayopas
Unified Economic Deadline Scheduling Algorithm for Computational Grid

[14] E. Carsten, H. Volker, and Y. Ramin, "Economic Scheduling in Grid Computing," in Revised
Papers from the 8th International Workshop on Job Scheduling Strategies for Parallel
Processing. Edinburgh, Scotland: Springer-Verlag, 2002.

[15] M. Pinedo, Scheduling: Theory, Algorithms, and Systems. Englewood Cliffs, NJ: Prentice
Hall, 1995.

[16] S. Phatanapherom, P. Uthayopas, and V. Kachitvichyanukul, "Fast Simulation Model for
Grid Scheduling using HyperSim," in Proceedings of Winter Simulation Conference 2003.
New Orlean, 2003.

[17] V. Varavithya and P. Uthayopas, "ThaiGrid: Architecture and Overview," in Proceeding of
South East Asia High Performance Computing 2001. Kasetsart University, Bangkok,
Thailand, 2001.

 SUGREE PHATANAPHEROM is a research assistant in HPCNC

at Kasetsart University, Thailand. He received his M.Eng in
Computing Engineering from Kasetsart University. His recent work
has involved Grid resource scheduler, simulator, and algorithms. His
email address is <sugree@hpcnc.cpe.ku.ac.th>.

Photo

Photo PUTCHONG UTHAYOPAS is an Assistant Professor in
Department of Computer Engineering, Faculty of Engineering,
Kasetsart University, Thailand. He is also being the core member of
ApGrid organization and participating actively in the construction of
Asia Pacific grid testbed. His email address is <pu@ku.ac.th>.

22

