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Abstract 
 
Efficient and dynamic resources scheduling algorithms are needed to harness the hidden power of a 
Grid System. In this work, a few economic scheduling algorithms have been proposed. First, Grid 
system is modeled using a vector space approach. Then, a cost function for the operation has been 
defined. Using the model and cost function defined, a few new economic scheduling algorithms have 
been proposed as an improved extension to many conventional Grid scheduling algorithms. In 
addition, the algorithms proposed are also address the problem of deadline scheduling as well. The 
concept proposed has then been evaluated using a simulation. The results show that the scheduling 
algorithms proposed perform better than the traditional algorithms. The results and approach 
presented here can be applied to improve Grid level scheduler system. 
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I. Introduction and Related Work 
 
Grid technology [1, 2] is a technology that allows the use of geographically distributed computing 
systems belonging to multiple-organizations as a single system. Grid system is usually built using 
Grid middleware such as Globus [3] to form a secure, distributed infrastructure. However, Globus 
provides only a basic mechanism such as security services, remote execution services, and data 
transfer services. Although these mechanisms can be used as a basis for the construction of the Grid, 
the task of discovering and allocating a set of optimal resources is left to higher level software. 
Therefore, it is important to have a smart resources scheduler that selects the optimal set of resources 
for the users. 
 
There are a large number of literature that address the problem of mapping sets of tasks onto sets of 
processors in a view of minimizing overall execution time. Many of these works address the case 
where tasks are independent. For example, [4] proposed both on-line mode and batch mode 
scheduling heuristics: MinMin, MaxMin and Sufferage. [5] analyzed the same problem using 
stochastic model and proposed load balancing scheme using second order moments as well as first 
order moments. This scheme is verified to improve both in static and dynamic scheduling. In [6], 
XSufferage scheduling heuristic in batch mode has been proposed comparing to the original one. 
XSufferage is a modification of Sufferage to reuse already existing input file in some resources 
assuming that each computing system (cluster) has it own shared file system (NFS, IBP, GFS, AFS, 
PVFS or etc.). However, this heuristic does not take care of the economic model and only improve 
performance of this kind of application that input files could be reused by other tasks. A scheduling 
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algorithm called “Placeholder scheduling” is proposed in [7]. The purpose is efficiently schedule 
general tasks to multiple remote queues relying on user-level meta-queue design. This methodology 
does not run on top of Grid but actually runs on a set of scripts for querying and submitting on PBS 
or SGE. Placeholder software is a script that fetches tasks from the pool and run it using existing 
tools (e.g. ssh and rcp). The problem of economic scheduling is left unaddressed as well in this work. 
For all these scheduling algorithms, simulation has been a major way to study the performance of 
each propose scheme. Effect of accuracy of the simulation is studied in [8] using simulation based 
on trace from NCSA mainly for parallel tasks. The result shows that increasing accuracy of 
submitted execution time helps improving performance of the system by fitting the task in backfill 
policy. 
 
One of the major issues in the design of an efficient scheduler is the organization of Grid scheduling 
structure. Infrastructure classification is studied extensively in [9]. Subramani et al. [10] has 
classified the Grid scheduling structure into 3 categories [10] namely, Centralized, Hierarchical, and 
Distributed structure. First, the centralized scheduling structure consists of only one scheduler and 
one queue for all distributed resources. Most of the existing schedulers such as Nimrod/G [11], 
GrADS [12], and AppLeS [13]), belong to this category. Second, hierarchical scheduling structure 
leaves the final decision of selecting resources to local job manager of each organization. Finally, in 
a distributed scheduling structure, there are many interacted Grid-level scheduler that communicates 
with in order to make a scheduling decision. Subramani et al. [10] also proposed 2 scheduling 
heuristics that can improve the performance of a distributed infrastructure by limiting amount of 
knowledge of current status. However, the work is only focused on the problem to schedule parallel 
task on multiple computing resources. Economic scheduling for Grid system is also addressed in [14] 
for the same problem but the target of the work changes to the minimization of average wait time 
and average response time. 
 
In this paper, three new scheduling heuristics are proposed to satisfy 2 goals; minimizing turnaround 
time, and minimizing rental cost of scheduling independent tasks. This is very important for the 
practical use of grid infrastructure since each organization on Grid may needs to charge for resource 
usage. A way to model this problem in order to make it easy and straight forward to solve are needed.  

II. Modeling the Grid 
 
Assuming that Grid consists of n  nodes and each node has m  resources. Let  be the node 
vector that represents the amount of each resource in a node (Eq. 1) and  be the Grid vector that 
represents global Grid system as vector of nodes (Eq.2). For each processor, an execution rate is 
used to represent its speed. An interconnection network is modeled using point-to-point bandwidth.  
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For each machine a set of charging rate corresponding to resource cost is represented by as a vector, 
says for machine . For the task, Let task vector jR

v
j iT

v
 represents the Resource Vector of task . i
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As a result, rental cost of running task  on machine i j is computed by dot product of vector iT
v

 and 
vector  (see Eq. 3 and Eq. 4). jR

v

 
An organization is responsible for specifying the charging rate of each resource under its 
administrative domain. For instance, Eq. 4 represents all possible costs when assigned the task to 
each compute node. Scheduler chooses the appropriate one based on turn-around times and these 
costs. 
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An application is represented by a set of parameter to reflect its behavior. The essential one is 
workload in the unit matching to the execution rate defined above. It is not enough in some case that 
an application needs a large input files, produces big output files, or needs to be staged to the target 
machine before running. In this case, staging time is computed by file size and available bandwidth 
during transfer. However, if staging time is so small comparing to execution time, it is not necessary 
to include staging in the model. Unfortunately, most scientific applications need large data file and 
produces large output file. 
 
For example, in case of a task is represented by amount of workload denoted by ω  so a machine 
must define an execution rate, λ . Execution time, φ , of running this task on this machine is 
obtained by λω / . Network can also model in the same manner by defining amount of data to 
transfer through the network as σ  and bandwidth between them as B . Transfer time η  is obtained 
by B/σ . In this paper, staging time and execution time have been combined to simplify the model 
so final execution time in this paper is defined in Eq. 5. 

outputexecutableinputijije ηηηφ +++=  (5)

III. Grid Resource Scheduling 
 
There are many well-known and well-perform heuristics for traditional computing platform like 
Network of Workstation or cluster, for example, MinMin, MaxMin, and Sufferage. Their original 
goal is to minimize makespan [15] of the whole heterogeneous computing system. However, it is not 
good enough for real-world application where resources must be charged. The new goal is to 
optimize 2 parameters; makespan and rental cost of running. To satisfy these goals, new heuristics 
are proposed based on models defined in previous section. Since these heuristics used different 
techniques and parameters, it is named “Unified Economic Deadline Scheduling Algorithm” to 
identify its class clearer. 
 

A. Unified Economic Deadline Scheduling Algorithm 
Proposed heuristics are named CMinMin, CMaxMin, and CSufferage. Assuming that all 
tasks and all available machines are listed in  and vM m , respectively. Instead of 
determining only completion time, these heuristics define another criteria, Priority Index, 
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denoted by .  (See Eq. 6) is a function of execution time  (see Eq. 5), ready time 
, cost , accumulative cost , and time period between completion time and deadline 
. All variables have their own factor, , , , , , respectively. The general 

objectives in resource owner view are to minimize time, minimize cost, and minimize over-
deadline tasks. To minimize over-deadline tasks, it is necessary to schedule tasks early on 
machine that might finish them in time. However, it is worth to wait for other faster machines 
that also finish them in time. 

ijp ijp ije

jr ijC jc
d 1w 2w 3w 4w 5w

dwcwCwrwewp jijjijij 54321 +−−+=  (6)

At the beginning,  will be pre-computed for later use in each algorithm and are 
recomputed again to match machines status for next task assignment.  

ijp

recompute(r,c,d,p) 
while count(task_list) > 0: 
    t,m = choose(p,task_list) 
    if t and m: 
        assign(t,m) 
        delete(task_list,t) 
    recompute(r,c,d,p) 

Unified algorithm is shown above. First of all, priority indexes are computed for use in main 
loop. The main loop will run until all tasks in task list are assigned to machines. In the loop, 
the priority indexes and task list are considered to choose a task and its correspondent 
machine to run on. The task then is deleted from task list and p is recomputed. 
 

B. Applying the Model to Traditional Algorithm 
 

Generally, UED is a generic scheduling framework that is backward compatible with 
previous algorithms by adjustment of factors. For example, if 121 == ww , 

then priority index is representing completion time as usual. Other 
adjustments are shown in Table 1. 

0543 === www

Table 1. Several factors of Unified Economic Deadline scheduling algorithm when applying to existing 
algorithms and proposed algorithms. 

 1w 2w 3w 4w 5w
MCT 1 1 0 0 0 
MET 0 1 0 0 0 
MinMin 1 1 0 0 0 
MaxMin 1 1 0 0 0 
Sufferage 1 1 0 0 0 
CMinMin x x x x x 
CMaxMin x x x x x 
CSufferage x x x x x 

 
With UED, CMinMin, CMaxMin and Csufferage are able to handle circumstances that 
original heuristics cannot handle. For example, assuming there are 4 tasks in a batch and 2 
machines, says A and B, with attributes in Table 2. In this situation, MinMin assigns task T1 
to A, T2 to A, T3 to B, and T4 to A. As a result, machine A took time 15 units and cost 18 
units while machine B took time 18 units and cost 9 units. In contrast, MinMin gave 
makespan 18 units and rental cost 27 units. However, CMinMin with UED assigns task T1 to 
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A, T2 to B, T3 to B, and T4 to A. It turned out that CMinMin gave makespan 27 and rental 
cost 21. 

Table 2. A sample batch consists of 4 tasks and 2 machines, A and B. Each task represented by corresponding 
executime time, cost and priority index obtained from Eq. 6. 

 Executime 
time 

Cost P 

T A B A B A B 
1 2 4 4 2 6 6 
2 5 8 10 4 15 12 
3 10 18 20 9 30 27 
4 8 12 4 6 12 18 

 
IV. Experimental Results 
 
There are many kinds of simulation process and simulation model. These experiments in this section 
are based on HyperSim [16] which run on Event Graph Modeling. The defining feature of DES 
models is that they have state variables whose transits in simulated time are piecewise constant. State 
transitions only occur at discrete time epochs, which are designated as events. The Event List is 
responsible for determining which events occur and that the appropriate state transitions are 
executed. The occurrence of an event may trigger the occurrence of other events at later times. These 
future occurrences of events are implemented in a DES model by placing the appropriate scheduled 
events on the Event List. The Event List algorithm sorts the events in ascending temporal order and 
executed the simulation by always. 

Table 3. Parameter of KU Grid and Thai Grid 

Name Processors Execution Rate Bandwidth (Mbps) Grid 
AMATA 15 1000 10 KU/Thai 
GASS 12 1800 18 KU/Thai 
MAEKA 16 1400 80 KU/Thai 
MAGI 4 2200 100 KU/Thai 
Optima 8 1000 0.7 Thai 
CAMETA 16 1800 1 Thai 
Palm 8 1000 1 Thai 
Algorithm 12 1000 1 Thai 

 
First experimental is to study characteristics of each heuristic in terms of relation between makespan 
and cost. Grid system is derived from KU Grid and Thai Grid [17] as shown in Table 1. All 
machines are initially no loads. These Grids are assumed that (1) faster machines might be more 
expensive; (2) each cluster has their own scheduler with MaxMin heuristic because MaxMin gives 
better results for common task pattern (exponential distribution). 
The experimental is to randomly submit 10,000 tasks and schedule them to the specific cluster based 
on each heuristic. Inter-arrival time of each task is determined randomly in exponential distribution 
with mean of 50 seconds. Workloads are also in exponential distribution with mean of 30,000 
million instructions. Each heuristic are reputably ran 1,000 times with different seeds. These 
experimental configurations are to bring up performance of the heuristics as many as possible. 
Interesting variables are recorded and plot average results in Fig. 1, Fig. 2, and Fig. 3 for makespan, 
cost, and cost-time ratio, respectively. Note that all tasks are finished within their deadline.  
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Fig. 1. Cost of KU Grid and Thai Grid 

138.800

138.850

138.900

138.950

139.000

139.050

139.100

139.150

KU Grid Thai Grid

M
ak

es
pa

n 
(h

ou
rs

)

rr olb mct met minmin

maxmin sufferage cminmin cmaxmin csufferage
 

Fig. 2. Makespan of KU Grid and Thai Grid 
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Fig. 3. Cost-Time Ratios of KU Grid and Thai Grid 

Fig. 1 clearly shows that CMinMin, CMaxMin, and CSufferage scheduled all tasks to complete using 
cheaper cost comparing to all others algorithms including on-line scheduling algorithms. However, 
these schedules take slightly longer makespan (see Fig. 2) comparing to others because they usually 
try to minimize positive time between deadlines and finish time. Generally, a task might be 
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scheduled to finish at deadline while another task is scheduled to finish at its deadline before 
previous task. However, cost-time ratio in Fig. 3 shows the clear result. Proposed algorithms are 
outperforming comparing to other algorithms both on-line and batch. 
In term of scalability, all algorithms perform well to take shorter time to finish all tasks when more 
machines are available. 
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Fig. 4. Cost of different prediction error 

According to all algorithms described in this paper, they are relying heavily on estimated execution 
time to predict completion time at every step. Generally, higher prediction error intends to bring 
lower performance because execution time and completion time are considered as a major parameter 
to match and to map each task on each machine. If inaccurate parameters have been obtained, these 
values will be propagated to next step forever. 
Fig. 4 shows cost of running longer tasks on KU Grid with different level of prediction error, says 
0% to +/-100%, in exponential distribution. 
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Fig. 5. Makespan of different prediction error 

As a result, the prediction error only slightly effects to RR, MCT, OLB, MinMin, MaxMin, and 
Sufferage but increases rental cost for MET, CMinMin, CMaxMin, and CSufferage. The reason is 4 
folds. Firstly, the first group of heuristics, says RR, does not consider any time related parameters so 
there is no effect at all. Secondly, the second group, e.g. MCT, makes decision based on completion 
time which error is easily propagated until simulation finished. However, their objective is mainly to 
minimize makespan so these costs are just uncontrollable variable. Fig. 5 shows their makespans are 
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slightly increased due to prediction error. Thirdly, MET only determines execution time so it heavily 
rely on accurate prediction. In this case, makespan is increased until 40% and fall down because the 
error function is generated by exponential distribution. Higher percentage intends to give more stable 
prediction that parallel with correct values. Lastly, proposed algorithms reflect normal behavior that 
cost increases if error is increased. However, the final results shown in Fig. 6 clearly shows that 
proposed algorithms with proposed model outperform other algorithms even on high prediction error 
environment. 
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Fig. 6. Cost-time ratio of different prediction error 

V. Conclusions 
 
Grid is going to be next generation standard of internet protocol like TCP/IP today. It is widely used 
in many areas that resources are shared geographically distributed across administrative domain. To 
utilize Grid efficiently, one or more Grid scheduler is required somewhere to serve end-user like a 
single machine do in the traditional system. This infrastructure gives functionality to provide on-
demand resources automatically. However, nothing is free of charge in the real world. Most 
scheduling heuristics today are designed to minimize makespan that usually intends to rapidly 
increased rental cost (a fast machine is more expensive than slower one). 
 
This paper proposed an extensible performance model of resources scheduling problem for large-
scale Grid system. The proposed model consists of time, cost, and deadline. Basic idea of basic win-
win heuristic is to minimize both time and cost so that task owner gets results back as fast as 
possible with minimum price. However, time might increase when decreases cost and in contrast, 
cost might increase when time decreases. Deadline is the third factor to balance time and cost. In 
addition, three modified heuristics are proposed to show usage of the model. 
 
Since computational Grid is uncontrollable infrastructure, proposed heuristics and other well-known 
heuristics are evaluated in HyperSim, discrete event simulation library. The experimental results 
clearly show that (1) the three modified heuristics using proposed model outperform their original 
heuristics and other heuristics in term of lower price per unit of time (cost-time ratios). (2) All 
heuristics including proposed ones perform better on larger system because more tasks executed 
simultaneously before their deadline. (3) Prediction accuracy of execution time takes slightly effect 
to performance for short-time applications. 
 
Other interesting topics are to study effect of inaccurate measurement of other many parameters, e.g. 
network bandwidth, network latency, and so on. Moreover, data staging could be performed during 
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other task is being run to save lots of time. However, the run task might be slower than usual 
especially accessing storage. To model this behavior correct, it is necessary to model data access of 
the application. In this paper, there is only one application type. In realistic, many kinds of 
application are submitted to the scheduler at the same time. Quality of Service can be added to 
prioritize each task based on end-user. 
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