
International Journal of Information Technology, Vol. 11 No. 4

Zhonghua Yang and Rajbabu Gunasheelan

An SNAP-based Resource Management System
for Grid Environments

Information Communication Institute of Singapore (ICIS)
School of Electrical and Electronics Engineering

Nanyang Technological University, Singapore 639798

ezhyang@ntu.edu.sg

Abstract

Resource management is a fundamental issue in grid computing environments. In a typical grid
environment involving several virtual organizations (VOs), the resource management requires
negotiation among application and resources to discover, reserve, acquire, configure, and monitor
resources. The existing resource management approaches tend to specialize for specific resource
classes, and address coordination across resources only in a limited fashion. SNAP is a resource
management model that provides Service Level Agreements (SLA)s, formalizing agreements to
deliver capability, perform activities, and bind activities to capabilities respectively. This paper
presents a working resource management system based on SNAP. The system is implemented using
Java RMI. The design and construction of the system is described and the effectiveness of the
system is evaluated.

Keyword: Grid, Resource management, SNAP, Agreement-based, Service-level agreement

I. Introduction

A Grid is an infrastructure for coordinated resource sharing and problem solving in dynamic, multi-
institutional virtual organizations (VOs) [5]. A resource is defined as any capability that may be
shared and exploited in a networked environment, including computational resources (CPU or
memory), storage, network bandwidth, even applications (virtualized as “services” for sharing).
Resource management is concerned with how, when and in what way the resource is to be utilized
rather than its core capability (what it does for client). Resource management is much more
complicated in Grid environments due to the fact that the resources are under different
administrative domains which enforce difference policies including security measures. Very often,
Grid applications require the concurrent allocation of multiple resources which further complicated
the matter [4, 3]. The issues addressed by the resource management in the Grid environment include:
the mechanisms for job submission which describe the resource requirements, workload
management (scheduling) for effective utilization of resources, advance reservations to make
resource capability available at a specified point in time or for a specified duration, and co-
scheduling for making a set of resources available simultaneously.

A resource management system acts as a broker between the client and resources. The resource
management in a Grid must therefore resolve the conflict requirements between the resource clients

23

Zhonghua Yang, Rajbabu Gunasheelan
An SNAP-based Resource Management System for Grid Environments

and owners. The client often requires some degree of guarantee on quality of service being provided
by the resource which is however under the owner’s local control based on usage policy. The owner
tends to maintain discretion over how the resource can be used and how much service information is
exposed to clients. The common approach to reconciling this is to negotiate and reach agreement.
SNAP is a well-known protocol for agreement-based resource management in distributed
environments and is being adopted by the Grid community as a base for resource management [2].
In this paper, we present a resource management system based on SNAP protocol and its design. The
proposed SNAP-based architecture is a 3-tier resource management model consisting of an
interactive Java based client, RMI based resource broker and local resource managers or the actual
resource. The resource broker implements the SNAP protocol in order to mediate access to the
resources. The resources are virtualized as heterogeneous RMI services running in the various
hosting platform thereby simulating a distributed environment.

In this resource management system, a security framework has also been proposed for this SNAP
protocol (DES /AES) algorithm using the J2SE 1.4 Java Authentication and Authorization Service
(JAAS), Java Cryptography Extension (JCE), Java Secure Socket Extension (JSSE). This security
framework has been incorporated in order to provide a secure resource negotiation between the
client and the broker. The implementation is based on Globus Toolkit (GT3) which supports
resource discovery by providing hierarchical resource information using the Lightweight Directory
Access Protocol (LDAP). However, we do not use the Globus Security Infrastructure (GSI) service
of GT3.

This paper is organized as follows. The related work on resource management in Grid environments
is discussed in Section2, followed by our proposed system based on SNAP approach, the Java-based
implementation model is presented. The APIs for client to access the resource management system is
presented in Section 4. The experimental evaluation is described in Section 5, and Section 6
concludes the paper.

II. Related Work

The resource management is fundamental and crucial for the Grid environments, and it has attract
extensive research efforts in the last decade. There appears a huge volume that provides an extensive
coverage of the state of the art in Grid resource management [6]. In a nutshell, the key to the
resource management is to develop a range of management abstractions and corresponding
interfaces to the different classes of resources that need to be managed.

Much of the early efforts were focused on managing/scheduling computational resources, for
example, Condor and its Preemptive resume scheduling [10], Grid resource allocation manager
(GRAM) specialized for computational resources [1], and storage resource manager (SRM)
unctions specifically for storage [11]. In Legion, resource management and scheduling are
considered as placing objects on processors, and objects can be any resources required by the
scheduled job (e.g., files, directories,or applications), thus the resource management becomes
resource/object placement and multiple placement algorithms are supported in Legion [7]. The early
resource management also addresses the heterogeneity in the way that similar resources are
configured and administered through the definition of standard resource management protocols [3, 1]
and standard mechanisms for expressing resource and task requirements [9].

The recent efforts is to make broadly applicable basic management functions that can be applied to a
range of resources and services in a uniform fashion. Every thing that can be scheduled is considered
a resource, potentially for sharing. It is now widely acknowledged that Grid-based resource

24

International Journal of Information Technology, Vol. 11 No. 4

management systems generally require cooperation from the resource being managed, particularly
when a resource is not dedicated to a specific user community, or virtual organization (VO), but
rather is shared across VOs or, as is often the case, between Grid and non-Grid users [4]. The
negotiation and agreement /contracting are the essential elements in Grid resource management. The
agreement-based resource management is the state of the art approach to Grid resource management.
In the future, the resource management will take the form of provisioning as a fundamental
capability of the Grid infrastructure, as being similar to the case in networks [8].

The work presented in this paper takes an agreement-based approach based on SNAP protocol [2].

III. Proposed Model

The proposed resource management model is a broker-based architecture that runs an SNAP
protocol daemon to negotiate the resource requirement of the clients. The requirements of the client
are given as an RSL (Resource Specification Language) specification that is validated and refined by
the resource broker. Many resources have parameterized attributes, i.e. a metric describing a
particular property of the resource such as bandwidth, latency, or space [2]. Client desires access to a
resource with the specified qualities. The resource brokers handles the mapping of the high level
application requests to the resources through the local resource managers (e.g., Sun’s Grid Engine or
Platform’s Load Sharing Facility) or Grid resource allocation manager (GRAM). The direct
interaction between the broker and resources is also possible (Figure 1).

Figure 1: Proposed Model

An example of an RSL specification used by the proposed SNAP is as follows:

& (executable = exec.bat)
(directory = ./)
(count = 1)

where executable refers to the remote executable file that has to be executed and the directory refers
to the location of the executable and count refers to the number of processors required for execution.
Since the testing environment is a single processor environment the value of count is specified as 1
[2].

A security framework to be integrated along with the protocol to provide a secure negotiation
between the client and the broker. The choice of the encryption algorithm to be followed is either the
Data Encryption Standard (DES) or the Advanced Encryption Standard (AES). A similar testbeds
shown in Figure 2 was used to deploy and test the SNAP protocol.

25

Zhonghua Yang, Rajbabu Gunasheelan
An SNAP-based Resource Management System for Grid Environments

A. Assumptions in SNAP implementation

The following are the assumptions in the implementation of the SNAP protocol.
– The resource broker runs the SNAP protocol to manage the access to the RMI based

services running in the globus environment.
– The various entities considered in the current resource management architecture are the

client (that request the resource), the resource broker that manages the access to the
resource and the resource itself.

– The SNAP protocol implementation has been done using the Java Remote Method
Invocation (RMI) technique. The SNAP is provided with various interfaces for accessing
the services available in GT3, especially for accessing the GRAM service.

– The client must enter into an SLA agreement with the resource broker before gaining
access to the resource.

o If the agreement is successful then the client can access the resource.
o If the agreement is not successful then the client request is made to wait in the

queue.
– The SLA states, the information pertaining the SLA agreements are stored in a Java

based Hashtable described later.

B. Description of SNAP implementation

In this section, we describe a prototyping system of resource management based on the
model above and the SNAP protocol. The system allows for managing the process of
negotiating access to, and use of, resources in a distributed systems. In contrast to other
architectures that focus on managing particular types of resources (e.g. CPUs or network
bandwidth), the SNAP defines a general framework within which reservation, acquisition,
task submission, and binding of tasks to resources can be expressed for any resource in a
uniform fashion. The SNAP protocol maintains a set of manager-side SLAs using the client-
initiated messages. All SLAs contain an SLA identifier I, the client c with whom the SLA is
made, and an expiration time tdead until which the SLA is alive as well as a specific SLA
description d [2].

SLA ⇒< I, c, tdead, d >

The identifier, I, is valid and live for time duration defined by tdead . There are four stages in
the operation of the SNAP protocol viz:

– Allocate identifier operation
– Agreement operation
– Set termination operation
– SLA change operation

and they are described below. Reader is also referred to [2] for a more formal discussion on
the
SNAP protocol design.

Allocate identifier Operation

The initial step in the negotiation of resources is to get allocated with an identifier that is
valid by the time defined by tdead. The client can either explicitly specify the value of tdead
or else a default value is assigned by the resource broker. The client sends:

getIdent(tdead)

26

International Journal of Information Technology, Vol. 11 No. 4

asking the resource broker to allocate a new identifier that will be valid until time tdead . On
success, the broker will respond with:

useIdent(I, tdead)

and the client can use this identifier to negotiate, reserve or acquire access to the resource [2].

Agreement Operation

After obtaining a valid identifier, the client can negotiate for an SLA using the valid
identifier obtained. The client issues an SLA protocol message with the arguments expressed
in the agreement language

request(I, c, tdead, a)

The SLA description, a, captures all the requirements of the client for the resources. On
success, the resource broker will respond with the message of the form:

�agree(I, c, tdead, a)

�where a ⊆ a. In other words, the resource broker agrees to the SLA description a’, and this

SLA as said earlier will terminate at time tdead unless or until the client performs a setdeath(I,
t) operation to change the scheduled lifetime.

Also due to the existence of a unique identifier for each SLA agreement between the client
and the resource broker, the client is free to re-issue requests after a successful agreement.
Under such circumstances the broker is supposed to treat these requests for acknowledgment
on the existing agreement [2].

Set Termination Operation

As said earlier, each SLA has a termination time defined by tdead. With this operation, a
client can now define its new termination time for the specified identifier. The client changes
the lifetime by sending a message of the form:

setdeath(I, tnewdead)

here tnewdead is the new termination time of the SLA denoted by I. On success the broker
will respond with the new termination time:

willdie(I, tnewdead)

Obviously, it is a negotiation process and the broker can reject the request. The client may
reissue the setdeath () message with the new expiration time if there is a response failure
from the broker. Agreements can be abandoned with the simple request of the setdeath (I, 0)
that forces the expiration of the agreement [2].

27

Zhonghua Yang, Rajbabu Gunasheelan
An SNAP-based Resource Management System for Grid Environments

SLA Change Operation

The protocol also includes a common prototype of atomic change by allowing client to
resend the request with the same SLA identifier, but with modified requirement content. The
service will respond as for an initial request, or with an error if the given change is not
possible from the existing SLA state [2]. When the response indicates a successful SLA, the
client knows that any preceding agreement named by I has been replaced by the new one
depicted in the response. When the response indicates failure, the client knows that the state
is unchanged from before the request. Currently the only change operation supported by the
protocol is the tdead value of the SLA.

The purpose of the change SLA operation is to preserve the state in the underlying resource
behavior, e.g. a change in the bandwidth requirement of a job may provide a better QoS
guarantees. Whether such a change in the resource specification is possible depends on the
resource type, implementation, and local policy [2]. The SNAP protocol handshake messages
are shown in Figure 2. Messages SLAstate and SLAstatus are newly included to get the
current status of the SLA. The possible states of the SLA are S0 (initial state) , S3 (Active)
and finally dead (when t > tdead).

IV. SNAP implementation semantics

The core of the SNAP architecture is a client-broker interaction used to negotiate SLAs. Each
interaction is a unidirectional message sent from client to broker or broker to client. For a
negotiation to be succssful and both the client and the broker enter the agreement, the broker needs
to consult with the local resource manager who actual control the resource or Grid resource
allocation manager. The interactions between the broker and local managers are not covered in this
paper.

All of these operations follow a client-server remote method invocation technique. The underlying
transport protocol is the TCP. One way of interpreting the protocol handshake described in Figure 2
is that the client to service message corresponds to the remote procedure call, and the return
messages represent the possible result values of the call [2].

Figure 2: SNAP resource management Protocol messages

28

International Journal of Information Technology, Vol. 11 No. 4

The SNAP protocol works as follows:

1. The client initiates the handshake for getting a unique job-identifier from the broker and the
resource broker issues a unique identifier (I) that is active for a time duration (tdead).

2. The client I uses the identifier (I) issued by the broker to make SLA requests.
3. If the broker approves the SLA request by responding with an agree message then the client

can submit the job and acquire the access to the requested resource.
4. The broker keeps track of all the current SLAs and their tdead values and decrements it every

5 seconds. If tdead value of any SLA reaches 0, then the SLA is considered to be dead and
inactive.

5. The broker maintains a set of hash tables with the identifier I as the hash-key to store the
following information viz (Table 1):
– The first hash table maintains the identifier and the client information that access the

resources whereas the third hash table maintains the identifier and the job description
information.

– The second hash table that contains the tdead which is accessed every 5 seconds and
decremented by 5. If any of the value reaches zero then the identifier I is considered
inactive and removed from the hash table and cannot be used by the clients to access the
resource.

– The final hash table 4 is used to keep track of all the SLAs and their current state,
whether “Active” or “Dead”. Once the tdead value of any identifier I reach 0, the state of
the identifier in the hash table 4 is updated to “Dead”.

 Hash Table Description

1 Hash table 1 SLA identifier (I), client c information
2 Hash table 2 SLA identifier (I), SLA duration (tdead)
3 Hash table 3 SLA identifier (I), Job description (a)
4 Hash table 3 SLA identifier (I), state

Table 1: Java Hash-tables maintained by the broker

The resource broker follows the SNAP protocol by executing the following algorithm:

A. Algorithm for Resource broker

1. Initialize the hash tables 1, 2, 3 and 4 to null
2. When there is an incoming request for a new job identifier, respond with a unique

identifier I (the duration of the SLA is specified along with the request).
3. Insert the details into the hash tables 2 and 4 as follows

a. Hash table 2: Job Identifier, SLA duration (tdead)
b. Hash table 4: Job Identifier, SLA state (S0)

4. If the client initiates an SLA request using the issued identifier I, the broker checks
whether the requested resource specification using RSL, r, can be serviced.

5. If the request can be serviced issue a “agree” message.
6. If the request cannot be serviced issue a “disagree” message

a. The client can re-negotiate with the resource broker with a relatively less resource
�value r’, i.e. r < r.

b. If r’ can be serviced by the broker then perform step 5 else perform step 6 and update
the corresponding job identifier state to S3 in the hash table 4.

7. Insert the details into the hash tables 1 and 3 as follows
a. Hash table 1: Job Identifier, client

29

Zhonghua Yang, Rajbabu Gunasheelan
An SNAP-based Resource Management System for Grid Environments

b. Hash table 3: Job Identifier, Job description
8. Update the hash table every 5 seconds. If any of the identifier tdead value reaches zero,

remove the entry from the hash table 1,2 and update the SLA state in the hash table 4 to
“dead”.

9. Schedule the remote job requested by the client and returns the results.
10. If the client requests for the change of SLA duration tnewdead, the new SLA duration is

updated in the hash table 2 and an acknowledge message is send back to the client.

The client follows the SNAP protocol by executing the following algorithm:

B. Algorithm for Client

1. Obtain a unique job identifier for negotiating SLAs with the broker.
2. Request an SLA for the resource request with the job identifier, SLA duration and the

resource specification r, using the RSL
a. If the response is “agree” then the client can proceed to submit the job request to the

broker.
b. If the response is “disagree” then the client has to re-negotiate the resource request,

�i.e. r < r.
3. The client has to loop in step 2 until the broker responds with the “agree” message.
4. Once the “agree” message is obtained the client can now submit the job request to the

resource broker.

V. SNAP Application Programming Interface

The client should initially obtain a remote object handle from the SNAP Server using the lookup
service of RMI to negotiate the resource requirements with the broker. The client uses the
“snap.ini” file to identify the host machine where the SNAP service is running. The entry specified
in the snap.ini file specifies the IP address of the host in which the service is running. The end user
is supposed to configure the snap.ini file initially.

snapServer = remoteAddress
ObjectHandle objH = (snap)Naming.lookup(‘‘rmi://’’ + host + ‘‘/snapService’’)

Once the client obtains the remote object handle , the object handle can be used to invoke the API’s
on the server to initiate the SLA negotiations with the resource broker. As per the SNAP handshake
model, obtain a unique identifier from the broker using

JOBID = objH.getIdent(tdead)

After obtaining the identifier using the above API , initiate the requestSLA using the obtained OBID.
The response from the broker will be either “agree” or “disagree” message. If the response s “agree”
the client can proceed to submit the job. The API errMsg is used to return the error essages that
occur in the process of negotiations. The error message pertaining to the JOBID s returned to the
client. The setDeath API can be used to update the tdead value of the existing OBID in hash table 2
(from Table 4). If the tnewdead value is 0 then the corresponding JOBID s removed from the hash
table 2 and the status is updated in hash table 4 as “dead”. The code nippet is as follows:

objH.requestSLA(JOBID, hostname, tdead , desc);
response = objH.responseSLA(JOBID, hostname , tdead ,desc);

30

International Journal of Information Technology, Vol. 11 No. 4

errresponse = objH.errMsg(JOBID, errmsg);
objH.setDeath(JOBID, tnewdead);
response = objH.submitJob(JOBID , no of threads);

On the other hand, the type of resource managed by the broker is a heterogeneous collection of RMI
services scattered across the various nodes in the network. The broker with the help of an ini file
namely broker.ini accomplishes the resource discovery and mapping. The number of entries in the
file is proportional to the number of services managed by the SNAP . The entries specified in the file
are, for example,

Start
GRAMService = remoteAddress1
TimeService = remoteAddress2
End

SNAP also provides API’s for accessing the Globus services.

VI. Evaluation

The SNAP protocol was deployed on a Windows machine. The protocol has interfaces that can
communicate with the GT3 services that are running on a Linux platform. A Java-based client is
used to connect to the SNAP host machine. Once connected, the time elapsed for the series of
handshakes between the client and the broker are measured and tabulated below for various
number of runs (Table 2). The jobs that are triggered by the remote clients are computation
intensive multi-threaded Java programs and hence the time taken to completion is in the range
(66.418 , 68.252) sec. The time taken for completion of these jobs varies proportionally with the
number of concurrently running jobs.

Handshake messages Elapsed Time for Handshake
 Run 1 (sec.) Run 2 (sec.) Run 3 (sec.)
getIdent 0.047 0.047 0.087
RequestSLA 0.375 0.079 0.153
SubmitJob 66.418 66.729 68.252
hline SetDeath 0.042 0.047 0.042

Table 2: Elapsed Time for Handshake messages

N=4 Job 1 (Kb) Job 2 (Kb) Job 3 (Kb) Job 4 (Kb)
1 854.7422 645.52344 655.9766 749.5703
2 703.1797 559.5078 606.2188 663.2344
3 653.0547 746.5703 793.3281 886.9219
4 840.08594 970.2578 1017.016 627.8672
5 581.03125 674.625 757.9609 851.5547
6 804.7969 898.3125 981.6484 697.3438
7 1033.1797 632.53906 693.9375 838.6719
8 791.83594 885.4297 946.75 1040.336
9 1030.0781 603.64844 583.9609 687.7422
10 667.375 734.5 791.5 791.5
11 677.5625 744.66406 801.6641 822.1172

 Table 3: Memory used by Jobs when N=4

31

Zhonghua Yang, Rajbabu Gunasheelan
An SNAP-based Resource Management System for Grid Environments

N=5 Job 1 (Kb) Job 2 (Kb) Job 3 (Kb) Job 4 (Kb) Job 5 (Kb)
1 666.10156 824.0469 915.4453 611.6484 667.8047
2 555.5703 751.9453 825.2734 891.4922 947.375
3 845.46875 1004.0547 582.6875 648.75 704.6172
4 602.8047 760.5 862.0469 928.125 965.8594
5 872.2422 1044.5391 632.7188 734.6953 773.0703
6 679.33594 861.02344 953.7344 1002 1039
7 973.65625 669.3594 725.2422 687.4453 735.375
8 724.4531 938.125 994.0078 1059.828 1116.117
9 1105.8594 761.91406 562.3047 618.1875 694.4141
10 674.0625 796.0781 816.5313 882.6719 903.0391
11 684.25 806.27344 826.7969 892.8594 913.3125

 Table 4: Memory used by Jobs when N=5

The computation intensive Java programs that are triggered by the client are locally managed Jobs
by the resource broker. Since these jobs are multi-thread Java programs they share the CPU
execution time and the memory space provided by the Java Virtual Machine (JVM) in a time sliced
pre-emptive manner. The SNAP protocol is capable of keeping track of the memory used by these
jobs at any instant of time. The memory used by 4 and 5 concurrently executing threads (N) are
determined separately (Table 4 and 5 and Figure 3 and 4).

Figure 3: Memory used by 4 concurrent jobs

Figure 4: Memory used by 5 concurrent jobs

32

International Journal of Information Technology, Vol. 11 No. 4

VII. Conclusion

The Grid resource management is advancing towards agreement-based approach. In this paper, we
presented an implementation of a Grid resource management system based on SNAP’s design in a
GT3 environment. A layered implementation model is proposed to provide a service for a virtualized
resource. The resource is then accessed a service via well-defined interface. The Java RMI based
SNAP protocol developed thus provides a mechanism for negotiating the resource requirements with
the broker. In our prototyping, the SNAP is capable of supporting any number of services provided
they have an entry specified in the “broker.ini” file, in this way they will be able to perform an
efficient resource discovery. The memory tracking for the locally managed jobs is an added feature
of the prototyping of SNAP. The proposed security framework for SNAP using the Java
Cryptography Extension (JCE) is an efficient substitute for the GSI that provides service
authentication and authorization. Once the SNAP protocol is integrated with the GSI feature of GT3
the proposed security framework may become obsolete.

References

[1] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and S. Tuecke. A

Resource Management Architecture for Metacomputing Systems. In Proc. IPPS/SPDP ’98
Workshop on Job Scheduling Strategies for Parallel Processing, pages 62–82, 1998.

[2] K. Czajkowski, I. Foster, C. Kesselman, V. Sander, and S. Tuecke. SNAP: A Protocol for
Negotiating Service Level Agreements and Coordinating ResourceManagement in
Distributed Systems. In JSSPP-2002, Lecture Notes in Computer Science 2537, pages 153–
183. Springer-Verlag, 2002.

[3] Karl Czajkowski, Ian Foster, and Carl Kesselman. Co-allocation services for computational
grids. In 8th Proc. IEEE In. Symp. High Performance Distributed Computing, 1999.

[4] Karl Czajkowski, Ian Foster, and Carl Kesselman. Agreement-Based Resource Management.
PROCEEDINGS OF THE IEEE, 93(3):631–643, March 2005.

[5] S. Tuecke I. Foster, C. Kesselman. The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. International J. Supercomputer Applications, 15(3), 2001.

[6] Jarek Nabrzyski, Jennifer M. Schopf, and Jan Weglarz, editors. Grid Resource Management.
Kluwer Academic Publishers, 2003.

[7] Anand Natrajan, Marty A. Humphrey, and Andrew S. Grimshaw. Grid Resource
Management in Legion. In Jarek Nabrzyski, Jennifer M. Schopf, and Jan Weglarz, editors,
Grid Resource Management, chapter 9, pages 145–160. Kluwer Academic Publishers, 2004.

[8] K. Nichols, V. Jacobson, and L. Zhang. A Two Bit Differentiated Services Architecture for
the Internet. IETF RFC 2638, July 1999.

[9] Rajesh Raman, Miron Livny, and Marvin Solomon. Matchmaking: Distributed Resource
Management for High Throughput Computing . In Proc. 7th IEEE Int. Symp. High
Performance Distributed Computing,, 1998.

[10] Alain Roy and Miron Livny. Condor and Preemptive Resume Scheduling. In Jarek
Nabrzyski, Jennifer M. Schopf, and Jan Weglarz, editors, Grid Resource Management,
chapter 9, pages 135–144. Kluwer Academic Publishers, 2004.

[11] Arie Shoshani, Alexander Sim, and Junmin Gu. Storage Resource Managers. In Jarek
Nabrzyski, Jennifer M. Schopf, and Jan Weglarz, editors, Grid Resource Management,
chapter 20, pages 321–340. Kluwer Academic Publishers, 2004.

33

Zhonghua Yang, Rajbabu Gunasheelan
An SNAP-based Resource Management System for Grid Environments

Dr. Yang, Zhonghua is currently an associate professor at Information
Communication Institute of Singapore, School of Electrical and
Electronic Engineering, Nanyang Technological University, Singapore.
He has research interests in various aspects of Grid computing,
Semantic Web and Semantic Grid, Autonomic and service-oriented
computing, and software agents. He is a Programme Director (Grid
Computing) in the School. Dr. Yang is involved primarily in teaching
Web Services, Data Structures and Algorithms, Software Engineering,
Software Systems and their development, and Distributed Computing.

Prior to the current appointment, Dr Yang had an extensive university
and industry career which includes at Griffith University (Australia),
University of Alberta (Canada), and Imperial College (London, UK),
Distributed Systems Technology Center (DSTC), University of
Queensland, Australia, Singapore Institute of Manufacturing
Technology (SIMTech). Dr. Yang spent a significant part of his
professional life with the Ministry of Aerospace of China, serving in
various senior positions.

 Rajbabu Gunasheelan’s photo and his bio are not available at the time of

the publication

34

