
Haresh S. Bhatt, Dharmesh Bhansali, Sonal Shah, P R Patel, VH Patel, Arup Dasgupta
GANGA: Grid Application iNformation Gathering and Accessing framework

GANGA: Grid Application iNformation Gathering
and Accessing framework

Haresh S. Bhatt1, Dharmesh Bhansali1, Sonal Shah1, P R Patel1, VH Patel1, Arup
Dasgupta2

1SATCOM and IT Applications Area

Space Applications Centre
Indian Space Research Organisation

Satellite Road
Ahmedabad – 380 015, INDIA

2Dharamsi Desai Institute of Technology

Dharamsi Desai University
College Road

Nadiad

{haresh, dharmesh, sonal, praful, vhpatel}@sac.isro.gov.in
arup@ieee.org

Abstract

Future generation Grid technology aims to provide transparent and easy access of remote
resources to end-users. Parallel and distributed computing environments like Condor,
PBS, WebDedip, load leveller, etc are now becoming Grid compliant. These
environments address interoperability issues to certain extent by extending Resource
Specification Language (RSL) as per their requirements. In fact, such an extension in fact
restricts interoperability. In this paper, we propose an alternative mechanism that
addresses the interoperability issues.

I. Introduction

The term “the Grid” was coined in the mid 1990s to denote a proposed distributed
computing infrastructure for advanced science and engineering [43]. Since then, it is
expanding its horizons in multi dimensions. Various protocols, standards, architectures,
infrastructures and toolkits are being worked out. Ian Foster et. al. has defined its
anatomy [1], physiology and architecture [2]. Number of computing environments like
Condor-G [40], IBM Load Leveller [9], PBS [8,44,23], Nimrod-G [4], WebDedip [18],
GANESH [27], Mauvi & Silver [41], Ninf [22], Javelin [35] are becoming Grid enabled.
However, the applications configured on any of the above environments can only be
executed on that particular environment [38]. Ninf and Netsolve have tried to make their
environment interoperable. The inter-operability between the execution environments is
essential to port the applications from one environment to another. It will also benefit

58

mailto:vhpatel}@sac.isro.gov.in

International Journal of Information Technology, Vol. 11 No. 4

the application developer, who wants to use the additional features of the other execution
environments. This paper presents a framework to provide the inter-operability among
execution environments.

The applications archived in a standardized manner will provide the feature of universal
access that will enable generalization and interoperability among execution environments.
This will provide the flexibility to configure the applications only one time and execute it
on various environments any time and many times. It will also help the operation
institutes in carrying out systematic execution of various applications (as a part of
periodic operations) through operators as requested by application designers or end users.

Globus toolkit [3] and CogKits [11] provides various tools for grid computing. GRAM [7]
addresses five major challenges of site autonomy, heterogeneous substrate, policy
extendibility, co-allocation and online control. Grid Resource Information Protocol [32],
Grid Resource Registration Protocol [21] and Grid Resource and Information Service [36]
provide mechanism for resource information management. They have not addressed
application information management.

GASS [6] is very useful in staging executable on remote machines for execution while
RSL [13] is the language used by the clients to submit a job. All job submission requests
are described in RSL, including the executable file and condition on which it must be
executed. RSL defines a bare minimum parameter required for application invocation in a
right manner. RSL is an extendible language to support additional parameters.

Though Globus toolkits have tried to address certain issues related to interoperability,
there are several issues still unresolved. RSL defines a set of primitive parameters but
they are not sufficient to address all the requirements of individual environments.
Condor-G, PBS, GANESH, Nirmod-G, etc have used extendibility of RSL to incorporate
their requirement. But in doing so, their interoperability is very much restricted to few
parameters supported by RSL.

Each environment have plenty of parameters to address various issues related to
scheduling, match making, resource management, fault tolerance, monitoring, etc.
Condor has about 36 machine resource attributes and 46 job attributes. Condor depends
on DAGMan [12] for handling job interdependency. Load leveller has about 38
parameters. Moavi has more then 200 parameters. WebDEDIP and GANESH have about
20 parameters, which include job interdependency information too. Each environment
addresses various issues differently and many a times gives different parameter names for
similar work or vice versa. For example, Condor accepts single Job while DEDIP accepts
Application consisting of several processes (Jobs), and Load Leveller accepts Job that
contains different steps. Similarly, Condor uses term JobPrio while Load Leveller uses
User_Priority whereas DEDIP uses only Priority. Thus extending RSL for making an
environment Grid Complaint do not serve the purpose and none of them can be
interoperable.

59

Haresh S. Bhatt, Dharmesh Bhansali, Sonal Shah, P R Patel, VH Patel, Arup Dasgupta
GANGA: Grid Application iNformation Gathering and Accessing framework

Normalizing all these parameters to common platform is a challenging job. Decision for
parameter conversion among the different environment is a very difficult task.

Several working groups like jsdl-wg [45], wfm-wg [46], etc. are putting collaborative
efforts in standardizing such interoperable interface, but are in draft stage, and will take
several iterations to reach a mature stage. To make a framework that complies with
rapidly changing standards is also a difficult job.

JSDL [29] has emerged as a result of the collaborative efforts in working out the common
most usable parameter along with its XML schemas. It is currently in premature stage.
Our framework is XML based and can be easily made JSDL compliant in future.
Furthermore, JSDL doesn’t address issues like how to include the Direct Acyclic Graph
(DAG) information? Our framework addresses all such requirements of various
environments like DAGMan, WebDedip, GridAnt [28], [47] and GANESH. It supports
repetitive jobs to certain extent. DAGMan and WebDEDIP store their Direct Acyclic
Graph information in text format. DAGs are widely spread due to their simple structure.
Unicore [24] also uses DAGs. DAG is acyclic, so it is not feasible to explicitly define
loops without additional language elements that are not related to the graph
representation. GridAnt uses Ant [34] for handling its repetitive workflow requirement
and uses its own proprietary XML representation. Ref [47] is based on Petry Nets [20]
and also uses its proprietary XML representation [37]. GANESH extends WebDedip to
address a set of workflow requirements like GridAnt. GANESH uses GANGA registry.

Our model also provides a repository that not only supports services for archival and
retrieval of application information of individual environments, but also provides services
for conversion from one environment to another.

GANGA is a name of a sacred river in India. It is scientifically proven that its water is
pure, remains pure for a pretty long time and is capable of removing impurities of water
added from any other source. We have used the name aiming at such a framework which
not only provide pure interoperability, but also has the capability to remove impurities
which may come while normalizing other environments from time to time.

60

International Journal of Information Technology, Vol. 11 No. 4

II. Goal and Objectives

GANGA’s soul vision is to have a standard format for storing application specific
information, so that there can be interoperability between different grid environments
including meta-schedulers supporting DAGs. Its framework presents the way of
specifying application specific information with the set of abstract classes. The
primitive services are defined for the same. The abstract classes and services are
implemented to make GANESH to interoperate with DAGMan and Condor. Its
registry will also be very useful for virtualization that Grid computing offers wherein
end-users view large number of applications that are seamlessly executed on multiple
resources under different environments, as operational under single umbrella.

II. GANGA Model

This paper presents GANGA framework along with an architecture that uses the
framework to address interoperability issues.

A. GANGA framework

Generic API

Environment
Specific API Mapper

Application
Information in

GXML
ManagesDOM

API

 Uses

Uses

 Uses Uses

Map parameter
names

Man ific
P
ages Spec
arameters

Converter

Abstract Classes

Fig 1: GANGA Framework

GANGA framework is shown in Fig 1. A set of abstract classes are developed as
part of its framework after study of Condor [10], Condor-G, PBS, GANESH,
Load Leveller, Nirmod-G, DEDIP [17], DAGMan, WebDedip, WebDedip load
balancer [19], Mouvi & Silver [41] and JSDL. To implement each and every
requirements for all the environments is a difficult task and not possible by a
single person. We have generated General API base extending abstract classes for
DAGMan, Condor, WebDedip, WebDedip load balancer and GANESH.

Although we emphasize to address all the issues in generic API, there are set of
requirements that are specific to a particular environment and not needed in other

61

Haresh S. Bhatt, Dharmesh Bhansali, Sonal Shah, P R Patel, VH Patel, Arup Dasgupta
GANGA: Grid Application iNformation Gathering and Accessing framework

environment. For example WebDedip needs to store matrix information to show
its DAG in its web based GUI. Such requirements should be implemented in
Environment specific API of GANGA frame work so that it can be monitored and
can be generalized whenever any other environment come across similar
requirements. Mapper maps environment specific parameters to the GXML
through generic API while Converter converts current configuration files into
GXML database.

B. GXML

XML is used to work out GXML for defining application information. The idea
of using JSDL instead of GXML was dropped as JSDL was in premature stage
without any schema at that time. However, our GXML implementation can easily
be JSDL compliant on its maturity. Document Object Model (DOM) [49] is
used to have ease of use in working with XML. GXML also incorporates the job
interdependency information typically shown in Fig 2. It’s GXML schema is
shown in Fig 3. The repetitive jobs are also handled. A simple case is shown in
Fig 4. It’s GXML is shown in Fig 5. The application designer has the freedom to
run number of iterations. Two successful codes are defined for Job-C. If it is
normal successful, the next child job(s) will be scheduled. If it returns
“LoopBack”, Job-B will be rescheduled. Meta scheduler of Ganesh takes care
of the scheduling as well as data transfer accordingly. GANESH has another
simpler way to handle repetition for set of applications where user enters fixed
number (N) of iterations required in its GUI. GXML presents the similar case as
shown in Fig 6 showing N iterations.

62

International Journal of Information Technology, Vol. 11 No. 4

Fig 3: A typical Schema for application shown in
Fig A

<flow:Workflow flow:start="A">
 <jsdl:Job jsdl:id="A">
 ...
 </jsdl:Job>
 <jsdl:Job jsdl:id="B">
 <flow:Depend flow:success="A"/>
 …...
 </jsdl:Job>
 <jsdl:Job jsdl:id="C">
 <flow:Depend flow:success="A"/>
 ...
 </jsdl:Job>
 <jsdl:Job jsdl:id="D">
 <flow:Depend flow:success="B & C"/>
 ...
 </jsdl:Job>
</flow:Workflow>

Job C Job B

Job D

Job A

Fig 2: A typical DAG representation

Job C

Job B
Repeat
on
LoopBack
Exit Code
OR
N times

Job D

Job A

Fig 4: A typical Application with repetitive
Jobs

63

Haresh S. Bhatt, Dharmesh Bhansali, Sonal Shah, P R Patel, VH Patel, Arup Dasgupta
GANGA: Grid Application iNformation Gathering and Accessing framework

Error!

Fig 5: A typical Schema for Application shown in
Fig C

<flow:Workflow flow:start="A">
 <jsdl:Job jsdl:id="A">
 ...
 </jsdl:Job>
 <jsdl:Job jsdl:id="B">
 <flow:Depend flow:success="A"/>
 ...
 </jsdl:Job>
 <jsdl:Job jsdl:id="C">
 <flow:Depend flow:success="B">
 <flow:LoopBack flow:To=”B”>
 ...
 </jsdl:Job>
 <jsdl:Job jsdl:id="D">
 <flow:Depend flow:success="C">
 ...
 </jsdl:Job>
</flow:Workflow>

 <flow:Workflow flow:start="A">
 <jsdl:Job jsdl:id="A">
 ...
 </jsdl:Job>
 <jsdl:Job jsdl:id="B">
 <flow:Depend flow:success="A"/>
 ...
 </jsdl:Job>
 <jsdl:Job jsdl:id="C">
 <flow:Depend flow:success="B">
 <flow:LoopCount=N flow:To=”B”>
 ...
 </jsdl:Job>
 <jsdl:Job jsdl:id="D">
 <flow:Depend flow:success="C">
 ...
 </jsdl:Job>
 </flow:Workflow>

 Fig 6: A typical Schema for Application

C. GANGA Services

Our aim is to follow OGSA and OGSI [16] in future. Hence, we have a few well
defined services that can be used by any portal, specific environment, meta
scheduler, workflow manager, etc. to (1) add a new Application Information
(application discovery), (2) modify existing Application Information, (3) delete
Application Information, (4) get list of Applications, (5) get Application
Information, (6) get Job Information for an application, and (7) convert existing
Application Information.

These services are used in our architecture as bridge between GANGA registry
and others.

D. Architecture

A combination of layer [24] and BEC [23] patterns is followed in our architecture.
Also UML [25] and RUP [26] are followed to work out reusable components of
the architecture, so that it easily becomes change-resilient. GANGA architecture
is shown in Fig 7.

At the top most layers, users who are application developers, resource managers,
operators, etc are placed. They use various portals or specific environment
(Condor-G , DAGMan, PBS, Load Leveller, etc.) or, workflow managers
(WebDedip, GridAnt, WebFlow[5], [47], etc.) for application development,

64

International Journal of Information Technology, Vol. 11 No. 4

configuration, installation, execution and monitoring. Currently they create
environment specific configuration files to store information about its DAG, data
dependency, job repetitions, job information, and resource requirements as
supported by respective UI or toolkits.

In GANGA architecture, all such portals, environments, workflow managers, etc
will invoke its well-defined services to store and retrieve complete information in
GANGA registry. Existing application information residing in respective
configuration files can be converted into the GXML, through services, to reside in
GANGA registry.

GANGA Framework

Developer

Uses and
extends

GANGA registry

Stores,
Retrieves and
Updates

 Application Details
in GXML

Add
Environment

Workflows and Meta schedulers Portals

Specific Computing Environments

Configuration files
(including existing and

new) for Specific
Computing Environment

WebDEDIP

DAGMAN

Any Environment

Load Leveler

invokesinvokes

Interacts Interacts

gets

invokes

uses uses

Interacts

GANGA Services
Condor

Users

Creates

Uses

Fig 7: GANGA architecture

65

Haresh S. Bhatt, Dharmesh Bhansali, Sonal Shah, P R Patel, VH Patel, Arup Dasgupta
GANGA: Grid Application iNformation Gathering and Accessing framework

At the bottom most layer, there is GANGA registry containing information about
all the registered jobs. It contains complete information including DAG
information, job details, data dependency information, resource information of
each job for each application. MDS-2 of the Globus toolkit provides mechanism
for discovering and disseminating information about the structure and state of the
grid resources [31]. However it could not be extended for application information
management as it is read only and deprecated. Hence, LDAP [42] based
repository was developed.

GANGA framework is a bridge between services and registry. It is the core part
addressing the issues of parameter normalization among the environments. The
current prototype supports all the requirements of WebDedip and its load balancer
as well as most useful requirements of DAGMan and Condor.

A developer of a specific environment can extend the generic API following the
frame work to address his parameter normalization. Finalization of JSDL and
other standards will make this task easier. One can use and extend generic API
and modify existing or add new service to make his environment interoperable.

III. Performance Evaluation

GANGA framework is developed using Java technologies (Java API for XML Processing
[JAXP], Java Naming and Directory Interface [JNDI], core Java, etc.) to make it portable
on any platform supporting JRE or JVM. Currently, abstract classes are implemented
based on information analysed from DAGMan -Condor, PBS, Ganesh, Mauvi and Load
Leveller. Generic API, mapped and converter are also implemented to meet the
interoperability requirements for Ganesh, DAGMan-Condor to prove our concept.

We have successfully converted all the Ganesh applications into GXML and vice-verse
and stored into GANGA registry. Their job execution interdependency structures in terms
of Directed Cyclic Graph (DAG), is also stored. Similarly, we have also converted
sample DAGMan-Condor application into GXML and vice-verse. Further Ganesh to
GXML to DAGMan-Condor and vice-verse is also tested. Job repetitions are also
addressed. Following scenarios were emerged while testing the interoperability between
Ganesh and DAGMan-condor.

A. Scenario 1: GUI-based interactive jobs

Certain applications like distributed image processing may require GUI-interface
as well as high-performance computing during its execution. We carried out
performance evaluation test for such a scenario using simulated application in
both the environments. Two types of sample of GUI-based interactive
applications were used, one was in JAVA provided by Ganesh and non-JAVA
provided by Condor.

66

International Journal of Information Technology, Vol. 11 No. 4

For Non-JAVA applications, we could configure and execute sample application
in Ganesh environment successfully for Windows as well as Linux. But when we
tried the same in DAGMan-Condor environment, we encountered two problems.
First, in order to run the application in Windows operating system , we had to
explicitly add the additional parameter USE_VISIBLE_DESKTOP = true on each
machine in the pool to display the GUI. Second, the former mechanism did not
work for Linux. On Linux, application developers need to handle it explicitly in
their applications.

For JAVA applications, we could configure and execute sample application in
Ganesh environment successfully for Windows as well as Linux. But generates
error in DAGMan-Condor.

For interoperability, we suggest that Condor should have the similar mechanism
for Linux, that it has for Windows to handle GUI-based interactive jobs. It should
take the corrective measures for interactive JAVA-based jobs. If it does not
provide support than at least it should either return error or reject the request for
such a job.

 JSDL should provide an additional parameter for GUI-based interactive jobs,
that can be useful to broker in deciding the suitable environment for such jobs.

B. Scenario 2: Input, intermediate, output and execution files (SAMD Architecture)

Consider a case in which multiple instances of a job are running in parallel on the
same machine as depicted in fig 7.

Job A

Input1.dat

Intermediate.dat

Job B

Output1.dat

Job A

Input2.dat

Intermediate.dat

Job B

Output2.dat

 Fig 7: Multiple instances of a job running in parallel on the same machine

In the above case, the job that execute later may overwrite the Intermediate.dat
file generated by the earlier job. Both the environment handles this problem
differently. Condor handles the above problem transparently by executing each
instance in separate directory. It presumes that both executables and data files
should exist in the same directory. Ganesh provides API to handle this by
appending the instance counter with each file like Intermediate_001.dat,

67

Haresh S. Bhatt, Dharmesh Bhansali, Sonal Shah, P R Patel, VH Patel, Arup Dasgupta
GANGA: Grid Application iNformation Gathering and Accessing framework

Intermediate_002.dat etc to prevent file overriding. Therefore, application
programmers are bound to use its proprietary file handling API in their code.

Such different methodology creates the interoperability issue. Ganesh should
handle the files in a similar way as Condor because most of the environments
follow the same mechanism and it does not overload the application developers.

C. Scenario 3: File transfers

Applications like Distributed Disaster Management System, need to transfer input,
intermediate and output files from machine to machine. Let’s consider a case as
shown in Fig 8. All the jobs except the Job C are scheduled on the Ganesh
environment. Job C is on scheduled on DAGMan-condor.

Job A on Ganesh at Machine 1

Job C on DAGMan-Condor at Machine 3
Job B on Ganesh at Machine 2

b.out c.out

Machine X (Submitter Machine)

a.out

a.in

c.out

a.out

Job D on Ganesh at Machine 4

a.out

Fig 8: Jobs on different execution environment on different machines

Both of the environments handle the file transfer mechanism differently. Ganesh
can transfer output files directly from Machine 1 to Machine 2 and Machine 2 to
Machine 4 as it supports remote to remote file transfer, But for executing the Job
B on DAGMan-Condor, the output of Job A i.e. a.out is first to be transferred on
the Machine X then Condor will transfer it from Machine X to Machine 3. The
output file c. out it will send back to the Machine X. This output file will be
provided to Job D by again transferring the file from Machine X to Machine 4.
This is because, Condor does not support remote to remote file transfer. It achieve
this by first transfer the file from remote to submitter machine then from
submitter to another remote machine. This creates the interoperability problem
when jobs are scheduled under different execution environments. It also creates
the network overhead of two hops and is inefficient particularly when file sizes
are huge.

GANGA takes care of this while converting Ganesh Job into Condor Job by
breaking a single remote to remote file transfer into two i.e. remote to submitter

68

International Journal of Information Technology, Vol. 11 No. 4

machine then submitter machine to remote and vice-verse However it does not
make use of the advance feature of Ganesh scheduler. We suggest, Condor
should also support remote-to-remote file transfer to efficiently support such
applications.

D. Scenario 4: Standard output and error files location

Standard output and error files are required to monitor the status of the jobs that
are submitted. In a Grid scenario, the machines through which the jobs are
submitted and the machines through which the jobs are monitored, may not be the
same. Both the environments keep the standard output and error files at different
locations that create the interoperability problem. In Ganesh, these files are
transferred on a predefined machine having web server which can be accessed
through any standard web browser. In Condor, these files are transferred back to
the submitting machine, which restricts the roaming facility or compromise
security. It creates the interoperability issue as user need to know different
mechanism to access the standard output and standard error. Ideally, there should
be a provision in Condor to transfer these files on any machine in the pool and not
only on the machine through which the job is submitted. Till that, scheduler
handles this as it knows the machine from where the jobs are being submitted
However for interoperability, we address this interoperability issue by storing
these files in GANGA repository. Any of the environment can retrieve these files
and display on its own. However, we suggest that other execution environment
should also support the sharing of standard output and error files similar to
Ganesh.

We are additionally studying the GridAnt and Karajan [48] to address their
interoperability with Ganesh. Karajan uses complete syntax (e.g., “For Loop” for
repetitive task management) which is similar to that followed by Ganesh (it uses
“Loop Count”). Ganesh has additional option for handling the repetition through
“Exit Code”. It enables application to have run time dynamic repetition control.
Some of GANGA’s current services are web based and are tested on Windows
with IIS as well as Linux servers with Apache. OpenSSL is used for security
management [30]. We are in process of using GSI [15] along with Globus
certificates on Linux [14] and java certificates on Windows [39] for
authentication and authorization.

IV. Conclusion and Future Scope

Interoperability among various environments is very useful as each environment has
specific advantages. Furthermore, users will continue to develop applications on their
most suited environment. . However, they will also be in the position to take advantage of
other environments. The meta schedulers and workflow schedulers will be able to use
all the resources available with all the environments. The registry of the resource
information is useful in many ways. Similarly, registry of application will also be useful

69

Haresh S. Bhatt, Dharmesh Bhansali, Sonal Shah, P R Patel, VH Patel, Arup Dasgupta
GANGA: Grid Application iNformation Gathering and Accessing framework

in multi dimensions. It will become mandatory in future especially for virtualization
(single operational umbrella) for a community grid or across community grid.

Currently GXML is used for interoperable information management which will become
JSDL compliant once JSDL is frozen. Our model supports DAG information also, which
is not part of JSDL. Repetition is also supported to certain extent. WFM group is in
process of working out specification for work flow. We shall extend our mechanism to
incorporate recommendation on finalization of WFM specifications. GANGA provides
the mechanism for interoperability among the different execution environment. As
Ganesh is our product, we have extended its scheduler and incorporated the
recommendation given by the GANGA for interoperability. Till that other execution
environments starts the support for interoperability, we anticipate there is a requirement
for interoperability controllers among the different execution environments.

Acknowledgement

We acknowledge Mr. Hardik Dave, Mr. Hiren Gajjar, Mr. Shamit Mankad, Ms Anvi
Shah of LD college of Engineering and Mrs. Mayuri Sharma, for their implementation
help.

Reference:

[1] I. Foster, C. Kesselman, S. Tuecke “The Anatomy of the Grid: Enabling Scalable

Virtual Organizations”, International Journal of Supercomputer Applications and
High Performance Computing, 2001.

[2] I. Foster, C. Kesselman, J. Nick, S. Tuecke, “The Physiology of the Grid: An Open
Grid Services Architecture for Distributed Systems Integration,” Open Grid Service
Infrastructure WG, Global Grid Forum, June 22, 2002. http://www.
globus.org/research/papers/ogsa.pdf.

[3] I. Foster and C. Kesselman, “Globus: A Metacomputing Infrastructure Toolkit”,
International Journal of Supercomputer Applications, 11(2): 115-128, 1997.

[4] Buyya R, Abramson D, and Giddy J “Nimrod/G: An Architecture for a Resource
Management and Scheduling System in a Global Computational Grid”, Proc. 4th
International Conference on High Performance Computing in Asia-Pacific Region
(HPC Asia'2000), Beijing, China. IEEE Computer Society Press, USA, 2000.

[5] T. Haupt, E. Akarsu, G. Fox and W Furmanski, “Web Based Metacomputing”,
Special Issue on Metacomputing, Future Generation Computer Systems, North
Holland 1999.

[6] Bester, J., Foster, I., Kesselman, C., Tedesco, J., and Tuecke, S., “GASS: A Data
Movement and Access Service for Wide Area Computing Systems”, Sixth
Workshop on I/O in Parallel and Distributed Systems, May 5, 1999.

[7] Czajkowski, K., Foster, I., Karonis, N., Kesselman, C., Martin, S., Smith, W.,

Tuecke, S., “A Resource Management Architecture for Metacomputing Systems”,
Proc. IPPS/SPDP ’98 Workshop on Job Scheduling Strategies for Parallel
Processing, 1998.

70

International Journal of Information Technology, Vol. 11 No. 4

[8] Henderson, R. and Tweten, D., “Portable Batch System: External Reference
Specification”, 1996.

[9] IBM, “Using and Administering IBM LoadLeveler, Release 3.0”, IBM
CorporationSC23-3989, 1996.

[10] Litzkow, M., Livny, M., and Mutka, M., “Condor – A Hunter of Idle Workstations”,
Proc. 8th Intl Conf. on Distributed Computing Systems, 1988, pp. 104-111.

[11] Gregor von Laszewski, Ian Foster, Jarek Gawor, and Peter Lane, "A Java
Commodity Grid Kit," Concurrency and Computation: Practice and Experience, vol.
13, no. 8-9, pp. 643-662, 2001, http:/www.cogkits.org/.

[12] [DAGMan] http://www.cs.wisc.edu/condor/dagman
[13] The Globus Resource Specification Language RSL v1.0 http://www-

 fp.globus.org/gram/rsl_spec1.html
[14] Globus Simple CA directory - ftp://ftp.globus.org/pub/gsi/simple_ca
[15] Globus Security Policy and Implementation. 1997, http://www.globus.org/security/.
[16] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, T. Maguire,

T. Sandholm, P. Vanderbilt, D. Snelling, “Open Grid Services Infrastructure (OGSI)
Version 1.0,” Global Grid Forum Draft

[17] Haresh S. Bhatt, B. K. Singh, A. K. Aggarwal, A Generalized Environment for
Distributed Image Processing, HPCS-2002, Canada

[18] Haresh S. Bhatt, Aggarwal A.K., web enabled client-server model for development
environment of distributed image processing, Proceedings of international
conference on meta computing, GRID-2000, pp 135- 145

[19] Haresh S. Bhatt, Singh B.K., Aggarwal A.K., Application centric load balancing
based on hybrid model, International conference for advance computing and
communication ADCOM-2001, organised by IEEE and ACS India, Dec. 2001,
Page(s): 231-238

[20] Jensen K, “AN introduction to the Theroritical Aspects of Coloured Petri Nets.
Lecture notes in Computer Science, Vol. 803, Springer-Verlag, Berlin Heidelberg
New York (1994) 230-272.

[21] GRRP Czajkowski, K., Fitzzgerald, S., Foster, I. and Kesselman, C., Grid
Information Services for Distributed Resource Sharing. in Tenth IEEE International
Symposium on High Performance Distributed Computing(HPDC-10), (2001).

[22] NAKADA, H., SATO, M., AND SEKIGUCHI, S. Design and Implementations of
Ninf: towards a Global Computing Infrastructure. Future Generation Computing
Systems 15, 5-6 (1999), 649–658.

[23] OpenPBS http://www.openpbs.org/
[24] UNICORE. http://www.unicore.de/
[25] OMG Specifications for UML,

http://www.omg.org/technology/documents/formal/uml.htm
[26] I. Jacobson, Grady Booch, J. Rumbaugh, “The Unified Software development

Process”,Addison-Wesley,2000.
[27] Haresh S. Bhatt, RM Patel, Hitesh Kotecha, VH Patel, Arup Dasgupta, “GANESH:

Grid Application maNagement and Enhanced ScHeduling”, Unpublished.
[28] K. Amin, M. Hategan, G. von Laszewski, N. J. Zaluzec, S. Hampton, and A. Rossi,

“GridAnt: A Client-Controllable Grid Workflow System,” in 37th Hawai’I

71

http://www.cs.wisc.edu/condor/dagman
http://www-/
ftp://ftp.globus.org/pub/gsi/simple_ca
http://www.globus.org/security/
http://www.openpbs.org/
http://www.unicore.de/
http://www.omg.org/technology/documents/formal/uml.htm

Haresh S. Bhatt, Dharmesh Bhansali, Sonal Shah, P R Patel, VH Patel, Arup Dasgupta
GANGA: Grid Application iNformation Gathering and Accessing framework

International Conference on System Science, Island of Hawaii, Big Island, 5-8 Jan.
2004. http://www.mcs.anl.gov/_gregor/papers/vonLaszewski--gridant-hics.pdf

[29] Andreas Savva, Ali Anjomshoaa, Fred Brisard, R Lee Cook, Donal K. Fellows, An
Ly, Stephen McGough, Darren Pulsipher, “Job Submission Description Language
(JSDL), Specification”, 17 May 2004,
http://www.ggf.org/Meetings/GGF11/Documents/draft-ggf-jsdl-spec.pdf

[30] OpenSSL Project http://www.openssl.org
[31] Czajkowski, K., Fitzgerald, S., Foster, I., and Kesselman, C., “Grid Information

Services for Distributed Resource Sharing”, 2001.
[32] GRIP Czajkowski, K., Fitzzgerald, S., Foster, I. and Kesselman, C., Grid

Information Services for Distributed Resource Sharing. in Tenth IEEE International
Symposium on High Performance Distributed Computing(HPDC-10), (2001).

[33] http://www.isro.org/
[34] “Ant – a Java-based Build Tool,” , http://ant.apache.org/
[35] M. Neary, B. Christiansen, P. Cappello, K. Schauser, Javelin: Parallel computing on

the internet, Future Generation Computer Systems, Vol. 15, (1999), 659-674.
[36] GRIS Czajkowski, K., Fitzzgerald, S., Foster, I. and Kesselman, C., Grid

Information Services for Distributed Resource Sharing. in Tenth IEEE International
Symposium on High Performance Distributed Computing(HPDC-10), (2001).

[37] FraunHofer Resource Grid: XML schema of the Grid Job Definition Language,
http://www.fhrg.fhg.de/de/fhrg/schemas/gadl/gidl.xsd

[38] G. von Laszewski and P. Wagstrom, Tools and Environments for Parallel and
Distributed Computing, ser. Series on Parallel and Distributed Computing. Wiley,
2004, ch. Gestalt of the Grid, pp. 149–187.
http://www.mcs.anl.gov/_gregor/papers/vonLaszewski--gestalt.pdf

[39] Vladimir Silva, Manage X.509 certificates in your grid with Java Certificate
Services, http://www-106.ibm.com/developerworks/grid/library/gr-jsc/?ca=dgr-
lnxw06ManageX.509

[40] Frey, J., Tannenbaum, T., Foster, I., Livny, M. and Tuecke, S., Condor-G: A
Computation Management Agent for Multi-Institutional Grids. In 10th
International Symposium on High Performance Distributed Computing, (2001),
IEEE Press, 55-66

[41] D. Jackson, "Silver Metascheduler Overview,",http://supercluster.org/projects/silver
[42] OpenLDAP http://www.openldap.org/
[43] Ian Foster and Carl Kesselman (eds), “The Grid: Blueprint for a New Computing

Infrastructure”, Morgan Kaufmann, July 1998. ISBN 1-55860-475-8.
[44] Grid-enabled PBS: the PBS-Globus Interface,

http://www.globus.org/retreat00/presentations/g_PBS-abstract.pdf
[45] https://forge.gridforum.org/projects/jsdl-wg/
[46] https://forge.gridforum.org/projects/wfm-wg/
[47] Andreas Hoheisel, “User Tools and Languages for Graph-based Grid Workflows”,

GGF-10. http://www.ggf.org/
[48] http://www-unix.globus.org/cog/manual-cog2.pdf
[49] http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/

72

Dr Haresh S Bhatt is a senior scientist working in Indian Space Research
Organization since 1984. He was actively involved in all the IRS (Indian Remote
Sensing Satellite) programs till 1997. His remarkable contribution in automatic
cloud covers estimation for IRS and in solving IRS-1C on-board sensor calibration
was internationally acclaimed and was first of its kind. He has number of
publications in International conferences and journals. Currently, he is working in
the field of handshaking of Advanced Communication Satellites and state of art
Computing Technology. He has been member of program committee and referee in
many national and international conferences He is a recipient of UN/ESA long

http://www.mcs.anl.gov/_gregor/papers/vonLaszewski--gridant-hics.pdf
http://www.ggf.org/Meetings/GGF11/Documents/draft-ggf-jsdl-spec.pdf
http://www.openssl.org/
http://www.isro.org/
http://ant.apache.org/
http://www.fhrg.fhg.de/de/fhrg/schemas/gadl/gidl.xsd
http://www.mcs.anl.gov/_gregor/papers/vonLaszewski--gestalt.pdf
http://www-106.ibm.com/developerworks/grid/library/gr-jsc/?ca=dgr-lnxw06ManageX.509
http://www-106.ibm.com/developerworks/grid/library/gr-jsc/?ca=dgr-lnxw06ManageX.509
http://www.openldap.org/
http://www.globus.org/retreat00/presentations/g_PBS-abstract.pdf
https://forge.gridforum.org/projects/jsdl-wg/
https://forge.gridforum.org/projects/wfm-wg/
http://www.ggf.org/
http://www-unix.globus.org/cog/manual-cog2.pdf
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/

International Journal of Information Technology, Vol. 11 No. 4

 Mr. Dharmesh Bhansali is B.E. (Computers) and MBA. He is working with Space
Applications Centre, Indian Space Research Organization since 1997. He has
been involved in various project development work related to SACNET, EDUSAT
and GSAT 4. His main area of interest is networking, software engineering, web-
based application development, e-learning and Grid Computing. He has several
publications in national and International conferences and journals.

Ms. Sonal Shah is Graduate in Electronics and Communications. Working as
Scientist/Engineer in Space Applications Centre in the field of Networking and
Satellite Communications.

Mr. Praful Patel is M.Sc. (Physics) and working with SAC, ISRO since 1984. His
areas of interest are Networking and Internet & Security.

Mr. V H Patel is presently Head of Department of Networks Division at Space
Applications Centre, Indian Space Research Organisation, Ahmedabad, India. He is
B.Engg. in Elect. Communications Engg. from Indian Institute of Science, India.
His experience includes Development in Video Subsystems and Image Processing
Systems. He has vast experience in Computer Engg., Computer Architecture and
Networking, Space Technology and Remote Sensing Technology.

Mr. Dasgupta is an M.E. in Electrical Communications Engineering and has been
working in the Space Applications Centre since November 1970. He worked in
the Satellite Instructional Television Experiment (SITE). From 1976 till 2000 he
was involved in the management of applications programmes for several remote
sensing satellites including Bhaskara and IRS as well as development of Image and
Information Processing systems. He is currently the Deputy Director SATCOM
and IT Applications Area. He is a recipient of the Astronautical Society of India
Award for Space Science and Applications for the year 2000. He is a Senior
Member of the Institute of Electrical and Electronic Engineers, Inc, USA and the
Chairman of the IEEE, Gujarat Section, 2003-04 and Fellow of the Institution of
Electronics and Telecommunications Engineers, India.

73

