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Abstract 
MPICH-G2 is a grid-enabled implementation of the MPI standard (version 1.1) for the 
Globus-2 device. MPICH-G2 requires point-to-point communication between the nodes 
where computations of a parallel application written using the MPI standard are scheduled. 
The point-to-point communication requires that all nodes where computations are scheduled 
be part of the same IP address space. This is a major issue when a node is actually a 
(Beowulf) cluster with a set of slave nodes in the private IP address space. In this paper, we 
propose a solution to this problem using the RSIP (Realm Specific-IP) framework. 

Keywords: MPI, MPICH-G2, RSIP, RSAP-IP, Condor, Grid, Globus, RSL, GRAM 

I. Introduction and Background 
 

Grid computing, most simply stated is distributed computing taken to the next evolutionary 
level. The goal is to create the illusion of a simple yet large and powerful self-managing 
virtual computer out of a large collection of connected heterogeneous systems sharing 
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various combinations of resources. There are no dedicated resources as in parallel 
computing; any resource available can be used for computation. Resources can be situated 
anywhere on the global network. 

 
The Message Passing Interface (MPI) standard [1] provides a common interface for message-
based communication and synchronization among processes executing on distributed-
memory parallel computers and networks of workstations. MPICH [2] is an open-source 
implementation of the MPI standard widely used by a large community of Parallel 
Application developers. MPICH-G2 [3] is a grid-enabled implementation of the MPI v1.1 
standard.  
 
MPICH-G2 is based on services provided by the Globus Toolkit (e.g., job startup, security) 
[4]. MPICH-G2 allows coupling of multiple machines, potentially of different architectures, 
to run MPI applications. MPICH-G2 automatically converts data in messages sent between 
machines of different architectures and supports multi-protocol communication by 
automatically selecting TCP for inter-machine messaging and (where available), vendor-
supplied MPI for intra-machine messaging. 
 
Figure 1 illustrates the steps by which a (MPI) parallel application is executed in a Globus 
grid system. As a first step, the user compiles the MPI application and links it against the 
MPICH-G2 libraries. He then identifies the resources (machines) on the grid, which are 
workstations and/or clusters (typically, Beowulf clusters [9]). He frames a Globus Resource 
Specification Language (RSL) [5] script and runs the grid-enabled mpirun command. An 
alternate here is to run the mpirun command with machines file as an input. The file contains 
a list of the resources. In this case, the RSL file is generated internally.  
 
mpirun internally invokes globusrun, which parses the RSL script. globusrun uses the 
Dynamically Updated Request Online Coallocator (DUROC) [6] library to schedule the jobs 
on the resources (actually the jobs are sub-computations or sub-jobs of the single application). 
The DUROC library uses the Grid Resource Allocation and Management (GRAM) [7] 
protocol to request that a specific job be started on the resource. These resources typically 
have schedulers like Condor [8]. Once a resource receives a request for starting a job, it uses 
the requested Job Manager to launch the job. The Job Manager interacts with the scheduler 
that in turn schedules the job(s) on specific nodes under its control. In the case where 
resource is a cluster, the scheduler will schedule the computations on the compute nodes of 
the cluster. In the absence of a scheduler on the resource, default Job Managers like fork will 
be used to spawn the computation on the resource. (Note that fork here does not refer to Unix 
Operating System’s fork system call). DUROC and the associated MPICH-G2 libraries 
manage the sub-computations of the single large computation. 
The sub-computations communicate among themselves using TCP or vendor MPI (optimized 
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Figure 2.  Setup of the test-bed
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for the hardware). TCP is used for communication between the sub-computations if vendor 
MPI is not available. MPICH-G2 requires point-to-point communication between the nodes 
where jobs are scheduled. However, in case of Beowulf clusters, this requirement poses a 
major problem. The requirement essentially means that all the compute nodes of the cluster 
have to be in the global1 IP address space. This is in conflict with a regular Beowulf cluster 
setup in which all the compute nodes are in a private IP address space (e.g., 10.x.x.x 
network). We are constrained to launch MPI applications in a single cluster, even though the 
grid may host more than one cluster. This is an under-usage of available resources on the grid. 
 
In this paper, we propose a solution to the problem described above. Our solution is based on 
the Realm Specific IP (RSIP) framework and protocol [10, 11]. We describe portions of the 
RSIP framework that are relevant to our work in a later section. 
 
 
II. Problem Illustration 
 
Figure 2 illustrates the setup that we used for deploying our solution. host1 is the head node 
of a (Beowulf) cluster with two compute nodes – Compute1 and Compute2. host2 is a 
standalone machine accessible directly to host1 on the main network. All nodes are Linux 
based and we do not have any vendor MPI in the cluster. The scheduler for the cluster is 
Condor. The RSL file shown in figure 3 can be used to submit an MPI application to be run 
on the setup. The submission can be done from host2 or from host1. In the setup, all 
machines are configured to be in the ourdomain.com domain. 
 
count represents the number of computations (sub-jobs) of the application (under executable 
keyword) that is to be initiated on each resource. As was described earlier, globusrun parses 
the input RSL file and submits jobs to the resources (resourceManagerContact). 
 
(&(resourceManagerContact="host1.ourdomain.com/jobmanager-condor") 
  (count=2) 
  (label="subjob 0") 
  (environment=(GLOBUS_DUROC_SUBJOB_INDEX 0) 
        (LD_LIBRARY_PATH /usr/local/globus-2.4.3/lib/)) 
  (directory="/home/globus/test") 
  (executable="/home/globus/test/cpi") 
) 
( &(resourceManagerContact="host2.ourdomain.com") 
   (count=1) 
   (label="subjob 2") 
   (environment=(GLOBUS_DUROC_SUBJOB_INDEX 2) 
               (LD_LIBRARY_PATH /usr/local/globus-2.4.3/lib/)) 
   (directory="/home/globus/test") 
   (executable="/home/globus/test/cpi") 
) 

Figure 3. A sample RSL file 

The sub-jobs start the initialization process, and invoke a barrier that waits for all sub-jobs to 
reach a certain stage when they can run (i.e., they are no longer stuck in some scheduler 
queue, etc.). The sub-jobs communicate with the Job Managers using nexus [14] messages 
that contain embedded IP addresses or DNS hostnames and ports. The Job Managers create 
hash tables using this information. The sub-jobs under each Job Manager use that table in 

                                                           
1 Global with respect to the IP address of the machine where the application is launched. Global and public 

are used interchangeably in the paper, and they mean the same in the IP address context. 
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doing nexus communications with the hosts. After the nexus communications are 
successfully over, the sub-jobs are ready to run.  

 
The sub-jobs then construct the data-structures that are used to identify their bind (IP address, 
port) point. This information, embedded in messages, is communicated to other nodes 
participating in the MPI application. This is later used for the MPI communication (e.g., 
MPI_Send). 

 
However, in the setup in figure 2, the barrier will not return successfully. This is because 
neither host2 can setup socket communication with Compute1 nor Compute1 can set up 
socket communication to host2 without special arrangements at the network layer. For 
similar reasons, the MPI communication cannot happen successfully. 

 
In both the above cases, the implementation of Globus libraries and globus2 device of 
MPICH-G2 implementation is such that they use ephemeral ports. An ephemeral port is a 
port assigned by the OS to an application requesting it. 
We will explain in the solution section how usage of ephemeral source ports helped us in 
devising the solution(s). We basically had to solve the problems of handling embedded 
hostnames in messages for the two cases described. In the next section, we discuss the RSIP 
protocol parts applicable to this work. 
 
 
III. Realm Specific IP 
 
RSIP is a new protocol and is an alternative to the Network Address Translation (NAT) [12]. 
NAT device sits between an internal network and the rest of the world. NAT device (router) 
peeks at each packet passing through it and modifies the IP header and/or the TCP/UDP 
header. The main issue with NAT is that end-to-end packet integrity is lost. Apart from this, 
NAT requires Application Layer Gateway (ALG) module in the router for each application 
protocol that embeds addressing information within the packet payload. RSIP addresses these 
limitations and removes them and is thus is a very good alternative to NAT. 
 
RSIP is based on the concept of granting a host from one addressing realm a presence in 
another addressing realm. RSIP gateway would replace the NAT router. Figure 4 shows the 
high-level architecture of RSIP. 

 
Hosts X (the RSIP client) and Y belong to different address spaces A and B respectively. 
Their IP addresses are Xa and Yb respectively. RG is a RSIP gateway with two interfaces 
whose addresses are Na and Nb respectively in the address spaces A and B. RSIP defines a 
set of protocol messages between the host and the gateway. When X wants to establish an 
end-to-end connection with Y, it sends a request to RG to assign it resources (resources 
here are IP addresses and ports). RG responds by assigning X resources and it creates a 
mapping of X’s addressing information to the assigned resources.  
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Figure 4.  Architecture of RSIP 

 
Hosts in the address space A use the assigned resources to tunnel data packets to RG. RG 
strips off the outer headers and routes the inner packets to address space B. The mapping 
created during the time of resource assignment is used to de-multiplex inbound packets from 
Y to X. 
 
RSIP comes in two flavors – Realm Specific Address and Port IP (RSAP-IP) and Realm 
Specific Address IP (RSA-IP). We base our solution on the first flavor, i.e., RSAP-IP.  
 

A. RSAP-IP 
 

In this case, each RSIP client is assigned the following: 
• A port-range. This is used by the client applications as ephemeral source ports. 
• An IP address. The IP address is the IP address of the gateway itself.  

 
An RSIP client (for example, X in figure 2) creates a tunnel from itself to the RSIP 
gateway. The source IP address of the tunnel is set to the external IP address of the 
gateway (Nb), and the tunnel endpoint is set to Na. The routing table is set up such 
that the default route is through the tunnel interface. Due to the tunnel, hosts in the 
other side of the gateway (address space B in figure 2) get the impression that packets 
are being generated from RG and they respond as such. De-multiplexing of packets to 
X happens at RG as described earlier. 

 
IV. Solution Overview 
 
In the discussion that follows, address space A in figure 4 is referred to as the private IP 
address space and address B is referred to as the public IP address space. The compute nodes 
of a cluster are in address space A; RG is the head node of the cluster. RSIP server [13] is run 
on cluster head node and RSIP client on each of the compute nodes. 
 
We have come up with two solutions to the problem. The first solution requires no changes 
to the source code (of Globus/MPICH) at all. It is based purely on the DNS service and 
RSAP-IP. The second solution requires changes to the Globus and the globus2 device of the 
MPICH implementation. 
 

A. DNS-based solution 
 
In this solution, the requirement is that all nodes participating in the MPI application 
execution must have unique DNS names. DNS entries need to be setup for all 
compute nodes in the clusters and the FQDN (fully qualified domain name) of a 
compute node in a cluster must resolve to the corresponding head node’s public IP 
address. For example, in figure 4, the DNS name Compute1 should resolve to 
15.76.98.27. It is not practical to add entries for all compute nodes in the primary 
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DNS server of an organization. A more pragmatic alternative is to add entries in the 
DNS configuration-related files (such as /etc/hosts on Redhat Linux) of the hosts. 
Thus, in the setup that we have, the following DNS entries are added in /etc/hosts file 
on compute1 (and similar entries on compute2): 

 

    
 

On host2, the following entries are made: 
 

 
 
Since the libraries use ephemeral ports, RSAP-IP can be effectively utilized on 
compute nodes. The OS on the compute nodes would always assign a port in the port-
range assigned previously by the RSIP server. For example, if compute1 requests a port 
(by doing htons(0)) in the Globus/MPICH-G2 libraries, then the port assigned by the 
OS will be a port within the port-range assigned to compute1 by the RSIP server at the 
time of RSAP-IP registration. Thus, standard RSAP-IP protocol can be straightaway 
used in this case to de-multiplex incoming messages from remote nodes (like host2) to 
compute1. Also, compute1 (or compute2) can reach host2 through the tunnel route. 
 
Though the above solution works for fixed number of clusters in a static environment, 
it lacks scalability since we have to create DNS entries for all participating nodes. We 
remove this limitation in the next solution; that solution is generic and scalable. 
 

10.0.1.1 host1.ourdomain.com host1 
10.0.1.2 compute1.ourdomain.com compute2 
10.0.1.3 compute2.ourdomain.com compute3 
15.76.98.218 host2.ourdomain.com host2 
 

15.76.98.218 host2.ourdomain.com host2
15.76.98.27 compute1.ourdomain.com compute1 
15.76.98.27 compute2.ourdomain.com compute2 
 

B. A general solution 
 

The general solution is an extension of the DNS-based solution wherein we remove 
the necessity of having to modify files like /etc/hosts on the nodes. The first problem 
to tackle is to allow a successful invocation of barrier routine on each node. 
Whenever a nexus message is obtained on a socket s, the name of the peer connected 
to s is obtained (by doing getpeername). The nexus message is updated to have that 
name. The port-number values are not touched. The hash table creation process will 
take the modified embedded hostname as input. The peer name obtained from the 
socket will be necessarily different from the embedded hostname in cases where 
messages are sent from the compute nodes of a cluster to Job Managers on remote 
resources. This is because the hostname (actually IP address) in the IP packets would 
be the hostname of the respective head node. This effect is due to the usage of RSAP-
IP protocol.  

 
However, the important thing to note is that the above operations are performed on 
only the Job Manager side. Normal handling of nexus messages is done in cases (i.e., 
embedded hostnames are used) where a compute node gets a nexus message from its 
corresponding Job Manager. The reason for this is that the compute nodes can 
communicate with remote resources directly (due to the presence of RSAP-IP). The 
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assumption made here is that DNS names of the remote resources can be resolved by 
the compute nodes – for example, by setting the DNS server of the compute nodes to 
the head node and running DNS relay software on the head node. 

 
Thus, the problems associated with the barrier are handled. As an example, consider a 
case where compute1 (with FQDN hostname compute1.ourdomain.com) sends a 
message to host2 with the hostname embedded in the nexus message. Host host2 will 
obtain the peer name of the other end of the connected socket and get 15.76.98.27.  It 
will then use the DNS name corresponding to 15.76.98.27 (which is a well known 
name in the network) for the purpose of hashing, etc. 
 
The next issue to be handled is the issue of embedded hostnames during the MPI 
application execution (after the initialization) so that communication using MPI 
primitives such as MPI_Send is enabled. An environment variable called 
MPICH_GLOBUS2_USE_NETWORK_INTERFACE, already defined in the 
MPICH-G2 libraries, is exploited in this case. The value of the variable is set in the 
RSL file to the IP address of the resource, which in case of a cluster is the IP address 
of the head node. Thus, in the compute nodes, the data-structure created to identify 
bind point uses the IP address of the head node. This IP address is also embedded in 
the message that is communicated to other nodes (both remote and peer compute 
nodes) participating in the MPI application; the latter use this IP address for talking to 
the node. This solves the problem of remote resources trying to communicate with 
any compute node in the cluster (since RSAP-IP will anyway do the de-multiplexing 
of incoming messages based on port numbers).  
 
However, one complication arises because of the use of the environment variable. 
This issue has been discussed in section 6.7 of [10]. The RSIP client software creates 
a tunnel interface and the IP address of the tunnel interface is set to the IP address of 
the public side of the RSIP gateway. If two compute nodes in the same cluster wish to 
communicate (e.g., using MPI_Send/Recv), and they both use the public IP address 
of the head node as a result of the environment variable being set, then this can result 
in a socket being set up between two RSIP hosts having the same source and 
destination IP addresses, which most TCP/IP stacks will consider as intra-host 
communication.  

 
To handle the described situation, the RSIP server is made to save the port-mapping 
information to a well-known file whenever a compute node registers. The file is 
created in a file-system shared by all nodes in the cluster. For example, as per the 
setup illustrated in figure 2, a file with the following information2 will be accessible 
to all nodes: 

 
10.0.1.2  8192  255 
10.0.1.3  8447  255 

 
This means that 10.0.1.2 has been assigned 255 ports starting from 8192, and, 
10.0.1.3 has been assigned 255 ports starting from 8447. This file will be looked up 
(information can be cached in local data-structures too) whenever a given compute 
node tries to communicate with a destination IP address same as the public IP address 

                                                           
2 These are indicative values 
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of the head node. The input to the look-up will be the destination port number and 
this will return an IP address. Note that because the MPICH-G2 libraries use 
ephemeral ports this technique can be used. The destination IP address is then 
replaced with the IP address returned by the look-up and hence the communication 
will happen with the right compute node. 
 
 

V. RSAP-IP overheads 
 
RSAP-IP has some complications that have been discussed under section 6 in [10]. Some 
issues like fragmentation, RSAP-IP protocol traffic, etc. are potential complexities that can 
affect MPICH-G2 applications too. However, as discussed in [10], most of these issues can 
be mitigated. Issues like protocol traffic requirements can be minimized by setting large 
timeouts for recurring events like renewal of compute node registrations with the RSAP-IP 
server. We handle one specific complexity to do with multi-party applications by sharing the 
port-address mapping information with all nodes in the cluster. Some issues like host 
deallocation may not apply to MPICH-G2 applications at all. We are in the process of 
analyzing the other issues with RSAP-IP that can affect MPICH-G2. 
 
 
VI. Related work 
 
There were some efforts regarding the use of use of nexus proxy [15] but it is unclear 
whether the solution is applicable to the versions of Globus and MPICH-G2 available today 
[16]. The nexus proxy approach is based on SOCKS protocol. Since SOCKS protocol does 
not support the handling of passive open sockets, the solution requires relay processes to be 
run in the cluster and outside the cluster. In our approach, we do need the RSIP server and 
RSIP client processes, but if we carefully go through the set of steps that each of them does 
to set up tunnels, create mappings from assigned client ports to client IP addresses, etc., we 
will notice that we can do all that at system startup time and get rid of the daemon processes. 
[17] proposes a grid solution based on Java called Ibis and they address the problem of 
private cluster nodes communication with other external hosts using relay processes like [15]. 
Due to the presence of relays, both [15] and [17] require extensive code changes in MPICH-
G2/Globus since the usual socket-related system calls cannot be directly used and 
performance is impacted as well. We solve the problem in a more simplistic, elegant, and, 
generic fashion by using RSIP. 
 
 
VII. Conclusion and Results 
 
In this paper, we have proposed two solutions to ameliorate the issue of MPICH-G2 
requiring all nodes participating in an MPI application to be in the public IP address space. 
RSAP-IP is exploited for this purpose. The solutions work for real-world grid setup and are 
practical. The first DNS-based solution applies to small organizations where the number of 
clusters and their configurations in terms of number of compute nodes does not vary much 
over time. In case of the (more scalable) second solution, modifications to the Globus and 
MPICH-G2 libraries are minimal (tens of lines of code). 
 
The solutions have been tested with a couple of MPICH-G2 applications in a variety of 
cluster deployments. Real-world MPI applications from Singapore MIT Alliance (SMA) 
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were demonstrated on a grid setup at the LinuxWorld Conference, Singapore, May, 2004. 
The resources used were IA32 ProLiant Opteron Cluster of 4 blade servers, x86 running 
Linux and IA64 cluster of 2 nodes running Linux. The solutions will be used for the grid 
setup at the prestigious National Grid Office (NGO), Singapore (where they are unable to 
assign public IP addresses to compute nodes in clusters due to limited IP addresses). This 
work has also been submitted to Globus open source for review. 
 
As part of future work, we will exploit the applicability of RSIP to solve firewall issues in 
running MPICH-G2 applications. We will also address the complications and interoperability 
issues (if any) in a network of clusters where some of the clusters have vendor-MPI. 
Performance studies of applications deployed in this architecture will also be done. 
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