
Devaraj Das, Ritu Sabharwal, Sujoy Saraswati, P. N. Anantharaman, Jason Oh
A Network Architecture for Enabling Execution of MPI Applications on the Grid

A Network Architecture for Enabling Execution of MPI
Applications on the Grid

Devaraj Das, Ritu Sabharwal, Sujoy Saraswati, P. N. Anantharaman,

Hewlett-Packard (STSD), Bangalore, India

 Jason Oh
Hewlett-Packard, Singapore

{devaraj.das, ritu, sujoy.saraswati, anantharaman.pn2, jason.oh}@hp.com

Abstract
MPICH-G2 is a grid-enabled implementation of the MPI standard (version 1.1) for the
Globus-2 device. MPICH-G2 requires point-to-point communication between the nodes
where computations of a parallel application written using the MPI standard are scheduled.
The point-to-point communication requires that all nodes where computations are scheduled
be part of the same IP address space. This is a major issue when a node is actually a
(Beowulf) cluster with a set of slave nodes in the private IP address space. In this paper, we
propose a solution to this problem using the RSIP (Realm Specific-IP) framework.

Keywords: MPI, MPICH-G2, RSIP, RSAP-IP, Condor, Grid, Globus, RSL, GRAM

I. Introduction and Background

Grid computing, most simply stated is distributed computing taken to the next evolutionary
level. The goal is to create the illusion of a simple yet large and powerful self-managing
virtual computer out of a large collection of connected heterogeneous systems sharing

74

Co-ordinates
startup
& authenticates to
resources

Submits to
multiple
 resources

 User submits
resource
 specification

globusrun

DUROC

GRAM

fork

P0

Condor

P1 P2

GRAM

Condor

P3 P4

GRAM

Figure 1. Parallel Application

mpirun

International Journal of Information Technology, Vol. 11 No. 4

various combinations of resources. There are no dedicated resources as in parallel
computing; any resource available can be used for computation. Resources can be situated
anywhere on the global network.

The Message Passing Interface (MPI) standard [1] provides a common interface for message-
based communication and synchronization among processes executing on distributed-
memory parallel computers and networks of workstations. MPICH [2] is an open-source
implementation of the MPI standard widely used by a large community of Parallel
Application developers. MPICH-G2 [3] is a grid-enabled implementation of the MPI v1.1
standard.

MPICH-G2 is based on services provided by the Globus Toolkit (e.g., job startup, security)
[4]. MPICH-G2 allows coupling of multiple machines, potentially of different architectures,
to run MPI applications. MPICH-G2 automatically converts data in messages sent between
machines of different architectures and supports multi-protocol communication by
automatically selecting TCP for inter-machine messaging and (where available), vendor-
supplied MPI for intra-machine messaging.

Figure 1 illustrates the steps by which a (MPI) parallel application is executed in a Globus
grid system. As a first step, the user compiles the MPI application and links it against the
MPICH-G2 libraries. He then identifies the resources (machines) on the grid, which are
workstations and/or clusters (typically, Beowulf clusters [9]). He frames a Globus Resource
Specification Language (RSL) [5] script and runs the grid-enabled mpirun command. An
alternate here is to run the mpirun command with machines file as an input. The file contains
a list of the resources. In this case, the RSL file is generated internally.

mpirun internally invokes globusrun, which parses the RSL script. globusrun uses the
Dynamically Updated Request Online Coallocator (DUROC) [6] library to schedule the jobs
on the resources (actually the jobs are sub-computations or sub-jobs of the single application).
The DUROC library uses the Grid Resource Allocation and Management (GRAM) [7]
protocol to request that a specific job be started on the resource. These resources typically
have schedulers like Condor [8]. Once a resource receives a request for starting a job, it uses
the requested Job Manager to launch the job. The Job Manager interacts with the scheduler
that in turn schedules the job(s) on specific nodes under its control. In the case where
resource is a cluster, the scheduler will schedule the computations on the compute nodes of
the cluster. In the absence of a scheduler on the resource, default Job Managers like fork will
be used to spawn the computation on the resource. (Note that fork here does not refer to Unix
Operating System’s fork system call). DUROC and the associated MPICH-G2 libraries
manage the sub-computations of the single large computation.
The sub-computations communicate among themselves using TCP or vendor MPI (optimized

10.0.1.2 (RSIP client)

 host2.ourdomain.com host1.ourdomain.com

 10.0.1.3 (RSIP client)

10.0.1.1 (RSIP gateway)

Globus gatekeeper +
Condor manager

Compute1 Compute2

Globus
gatekeeper

Figure 2. Setup of the test-bed

75

Devaraj Das, Ritu Sabharwal, Sujoy Saraswati, P. N. Anantharaman, Jason Oh
A Network Architecture for Enabling Execution of MPI Applications on the Grid

for the hardware). TCP is used for communication between the sub-computations if vendor
MPI is not available. MPICH-G2 requires point-to-point communication between the nodes
where jobs are scheduled. However, in case of Beowulf clusters, this requirement poses a
major problem. The requirement essentially means that all the compute nodes of the cluster
have to be in the global1 IP address space. This is in conflict with a regular Beowulf cluster
setup in which all the compute nodes are in a private IP address space (e.g., 10.x.x.x
network). We are constrained to launch MPI applications in a single cluster, even though the
grid may host more than one cluster. This is an under-usage of available resources on the grid.

In this paper, we propose a solution to the problem described above. Our solution is based on
the Realm Specific IP (RSIP) framework and protocol [10, 11]. We describe portions of the
RSIP framework that are relevant to our work in a later section.

II. Problem Illustration

Figure 2 illustrates the setup that we used for deploying our solution. host1 is the head node
of a (Beowulf) cluster with two compute nodes – Compute1 and Compute2. host2 is a
standalone machine accessible directly to host1 on the main network. All nodes are Linux
based and we do not have any vendor MPI in the cluster. The scheduler for the cluster is
Condor. The RSL file shown in figure 3 can be used to submit an MPI application to be run
on the setup. The submission can be done from host2 or from host1. In the setup, all
machines are configured to be in the ourdomain.com domain.

count represents the number of computations (sub-jobs) of the application (under executable
keyword) that is to be initiated on each resource. As was described earlier, globusrun parses
the input RSL file and submits jobs to the resources (resourceManagerContact).

(&(resourceManagerContact="host1.ourdomain.com/jobmanager-condor")
 (count=2)
 (label="subjob 0")
 (environment=(GLOBUS_DUROC_SUBJOB_INDEX 0)
 (LD_LIBRARY_PATH /usr/local/globus-2.4.3/lib/))
 (directory="/home/globus/test")
 (executable="/home/globus/test/cpi")
)
(&(resourceManagerContact="host2.ourdomain.com")
 (count=1)
 (label="subjob 2")
 (environment=(GLOBUS_DUROC_SUBJOB_INDEX 2)
 (LD_LIBRARY_PATH /usr/local/globus-2.4.3/lib/))
 (directory="/home/globus/test")
 (executable="/home/globus/test/cpi")
)

Figure 3. A sample RSL file

The sub-jobs start the initialization process, and invoke a barrier that waits for all sub-jobs to
reach a certain stage when they can run (i.e., they are no longer stuck in some scheduler
queue, etc.). The sub-jobs communicate with the Job Managers using nexus [14] messages
that contain embedded IP addresses or DNS hostnames and ports. The Job Managers create
hash tables using this information. The sub-jobs under each Job Manager use that table in

1 Global with respect to the IP address of the machine where the application is launched. Global and public

are used interchangeably in the paper, and they mean the same in the IP address context.

76

International Journal of Information Technology, Vol. 11 No. 4

doing nexus communications with the hosts. After the nexus communications are
successfully over, the sub-jobs are ready to run.

The sub-jobs then construct the data-structures that are used to identify their bind (IP address,
port) point. This information, embedded in messages, is communicated to other nodes
participating in the MPI application. This is later used for the MPI communication (e.g.,
MPI_Send).

However, in the setup in figure 2, the barrier will not return successfully. This is because
neither host2 can setup socket communication with Compute1 nor Compute1 can set up
socket communication to host2 without special arrangements at the network layer. For
similar reasons, the MPI communication cannot happen successfully.

In both the above cases, the implementation of Globus libraries and globus2 device of
MPICH-G2 implementation is such that they use ephemeral ports. An ephemeral port is a
port assigned by the OS to an application requesting it.
We will explain in the solution section how usage of ephemeral source ports helped us in
devising the solution(s). We basically had to solve the problems of handling embedded
hostnames in messages for the two cases described. In the next section, we discuss the RSIP
protocol parts applicable to this work.

III. Realm Specific IP

RSIP is a new protocol and is an alternative to the Network Address Translation (NAT) [12].
NAT device sits between an internal network and the rest of the world. NAT device (router)
peeks at each packet passing through it and modifies the IP header and/or the TCP/UDP
header. The main issue with NAT is that end-to-end packet integrity is lost. Apart from this,
NAT requires Application Layer Gateway (ALG) module in the router for each application
protocol that embeds addressing information within the packet payload. RSIP addresses these
limitations and removes them and is thus is a very good alternative to NAT.

RSIP is based on the concept of granting a host from one addressing realm a presence in
another addressing realm. RSIP gateway would replace the NAT router. Figure 4 shows the
high-level architecture of RSIP.

Hosts X (the RSIP client) and Y belong to different address spaces A and B respectively.
Their IP addresses are Xa and Yb respectively. RG is a RSIP gateway with two interfaces
whose addresses are Na and Nb respectively in the address spaces A and B. RSIP defines a
set of protocol messages between the host and the gateway. When X wants to establish an
end-to-end connection with Y, it sends a request to RG to assign it resources (resources
here are IP addresses and ports). RG responds by assigning X resources and it creates a
mapping of X’s addressing information to the assigned resources.

77

Devaraj Das, Ritu Sabharwal, Sujoy Saraswati, P. N. Anantharaman, Jason Oh
A Network Architecture for Enabling Execution of MPI Applications on the Grid

NbNa

Address Space A Address Space B

RG Y X

Figure 4. Architecture of RSIP

Hosts in the address space A use the assigned resources to tunnel data packets to RG. RG
strips off the outer headers and routes the inner packets to address space B. The mapping
created during the time of resource assignment is used to de-multiplex inbound packets from
Y to X.

RSIP comes in two flavors – Realm Specific Address and Port IP (RSAP-IP) and Realm
Specific Address IP (RSA-IP). We base our solution on the first flavor, i.e., RSAP-IP.

A. RSAP-IP

In this case, each RSIP client is assigned the following:
• A port-range. This is used by the client applications as ephemeral source ports.
• An IP address. The IP address is the IP address of the gateway itself.

An RSIP client (for example, X in figure 2) creates a tunnel from itself to the RSIP
gateway. The source IP address of the tunnel is set to the external IP address of the
gateway (Nb), and the tunnel endpoint is set to Na. The routing table is set up such
that the default route is through the tunnel interface. Due to the tunnel, hosts in the
other side of the gateway (address space B in figure 2) get the impression that packets
are being generated from RG and they respond as such. De-multiplexing of packets to
X happens at RG as described earlier.

IV. Solution Overview

In the discussion that follows, address space A in figure 4 is referred to as the private IP
address space and address B is referred to as the public IP address space. The compute nodes
of a cluster are in address space A; RG is the head node of the cluster. RSIP server [13] is run
on cluster head node and RSIP client on each of the compute nodes.

We have come up with two solutions to the problem. The first solution requires no changes
to the source code (of Globus/MPICH) at all. It is based purely on the DNS service and
RSAP-IP. The second solution requires changes to the Globus and the globus2 device of the
MPICH implementation.

A. DNS-based solution

In this solution, the requirement is that all nodes participating in the MPI application
execution must have unique DNS names. DNS entries need to be setup for all
compute nodes in the clusters and the FQDN (fully qualified domain name) of a
compute node in a cluster must resolve to the corresponding head node’s public IP
address. For example, in figure 4, the DNS name Compute1 should resolve to
15.76.98.27. It is not practical to add entries for all compute nodes in the primary

78

International Journal of Information Technology, Vol. 11 No. 4

DNS server of an organization. A more pragmatic alternative is to add entries in the
DNS configuration-related files (such as /etc/hosts on Redhat Linux) of the hosts.
Thus, in the setup that we have, the following DNS entries are added in /etc/hosts file
on compute1 (and similar entries on compute2):

On host2, the following entries are made:

Since the libraries use ephemeral ports, RSAP-IP can be effectively utilized on
compute nodes. The OS on the compute nodes would always assign a port in the port-
range assigned previously by the RSIP server. For example, if compute1 requests a port
(by doing htons(0)) in the Globus/MPICH-G2 libraries, then the port assigned by the
OS will be a port within the port-range assigned to compute1 by the RSIP server at the
time of RSAP-IP registration. Thus, standard RSAP-IP protocol can be straightaway
used in this case to de-multiplex incoming messages from remote nodes (like host2) to
compute1. Also, compute1 (or compute2) can reach host2 through the tunnel route.

Though the above solution works for fixed number of clusters in a static environment,
it lacks scalability since we have to create DNS entries for all participating nodes. We
remove this limitation in the next solution; that solution is generic and scalable.

10.0.1.1 host1.ourdomain.com host1
10.0.1.2 compute1.ourdomain.com compute2
10.0.1.3 compute2.ourdomain.com compute3
15.76.98.218 host2.ourdomain.com host2

15.76.98.218 host2.ourdomain.com host2
15.76.98.27 compute1.ourdomain.com compute1
15.76.98.27 compute2.ourdomain.com compute2

B. A general solution

The general solution is an extension of the DNS-based solution wherein we remove
the necessity of having to modify files like /etc/hosts on the nodes. The first problem
to tackle is to allow a successful invocation of barrier routine on each node.
Whenever a nexus message is obtained on a socket s, the name of the peer connected
to s is obtained (by doing getpeername). The nexus message is updated to have that
name. The port-number values are not touched. The hash table creation process will
take the modified embedded hostname as input. The peer name obtained from the
socket will be necessarily different from the embedded hostname in cases where
messages are sent from the compute nodes of a cluster to Job Managers on remote
resources. This is because the hostname (actually IP address) in the IP packets would
be the hostname of the respective head node. This effect is due to the usage of RSAP-
IP protocol.

However, the important thing to note is that the above operations are performed on
only the Job Manager side. Normal handling of nexus messages is done in cases (i.e.,
embedded hostnames are used) where a compute node gets a nexus message from its
corresponding Job Manager. The reason for this is that the compute nodes can
communicate with remote resources directly (due to the presence of RSAP-IP). The

79

Devaraj Das, Ritu Sabharwal, Sujoy Saraswati, P. N. Anantharaman, Jason Oh
A Network Architecture for Enabling Execution of MPI Applications on the Grid

assumption made here is that DNS names of the remote resources can be resolved by
the compute nodes – for example, by setting the DNS server of the compute nodes to
the head node and running DNS relay software on the head node.

Thus, the problems associated with the barrier are handled. As an example, consider a
case where compute1 (with FQDN hostname compute1.ourdomain.com) sends a
message to host2 with the hostname embedded in the nexus message. Host host2 will
obtain the peer name of the other end of the connected socket and get 15.76.98.27. It
will then use the DNS name corresponding to 15.76.98.27 (which is a well known
name in the network) for the purpose of hashing, etc.

The next issue to be handled is the issue of embedded hostnames during the MPI
application execution (after the initialization) so that communication using MPI
primitives such as MPI_Send is enabled. An environment variable called
MPICH_GLOBUS2_USE_NETWORK_INTERFACE, already defined in the
MPICH-G2 libraries, is exploited in this case. The value of the variable is set in the
RSL file to the IP address of the resource, which in case of a cluster is the IP address
of the head node. Thus, in the compute nodes, the data-structure created to identify
bind point uses the IP address of the head node. This IP address is also embedded in
the message that is communicated to other nodes (both remote and peer compute
nodes) participating in the MPI application; the latter use this IP address for talking to
the node. This solves the problem of remote resources trying to communicate with
any compute node in the cluster (since RSAP-IP will anyway do the de-multiplexing
of incoming messages based on port numbers).

However, one complication arises because of the use of the environment variable.
This issue has been discussed in section 6.7 of [10]. The RSIP client software creates
a tunnel interface and the IP address of the tunnel interface is set to the IP address of
the public side of the RSIP gateway. If two compute nodes in the same cluster wish to
communicate (e.g., using MPI_Send/Recv), and they both use the public IP address
of the head node as a result of the environment variable being set, then this can result
in a socket being set up between two RSIP hosts having the same source and
destination IP addresses, which most TCP/IP stacks will consider as intra-host
communication.

To handle the described situation, the RSIP server is made to save the port-mapping
information to a well-known file whenever a compute node registers. The file is
created in a file-system shared by all nodes in the cluster. For example, as per the
setup illustrated in figure 2, a file with the following information2 will be accessible
to all nodes:

10.0.1.2 8192 255
10.0.1.3 8447 255

This means that 10.0.1.2 has been assigned 255 ports starting from 8192, and,
10.0.1.3 has been assigned 255 ports starting from 8447. This file will be looked up
(information can be cached in local data-structures too) whenever a given compute
node tries to communicate with a destination IP address same as the public IP address

2 These are indicative values

80

International Journal of Information Technology, Vol. 11 No. 4

of the head node. The input to the look-up will be the destination port number and
this will return an IP address. Note that because the MPICH-G2 libraries use
ephemeral ports this technique can be used. The destination IP address is then
replaced with the IP address returned by the look-up and hence the communication
will happen with the right compute node.

V. RSAP-IP overheads

RSAP-IP has some complications that have been discussed under section 6 in [10]. Some
issues like fragmentation, RSAP-IP protocol traffic, etc. are potential complexities that can
affect MPICH-G2 applications too. However, as discussed in [10], most of these issues can
be mitigated. Issues like protocol traffic requirements can be minimized by setting large
timeouts for recurring events like renewal of compute node registrations with the RSAP-IP
server. We handle one specific complexity to do with multi-party applications by sharing the
port-address mapping information with all nodes in the cluster. Some issues like host
deallocation may not apply to MPICH-G2 applications at all. We are in the process of
analyzing the other issues with RSAP-IP that can affect MPICH-G2.

VI. Related work

There were some efforts regarding the use of use of nexus proxy [15] but it is unclear
whether the solution is applicable to the versions of Globus and MPICH-G2 available today
[16]. The nexus proxy approach is based on SOCKS protocol. Since SOCKS protocol does
not support the handling of passive open sockets, the solution requires relay processes to be
run in the cluster and outside the cluster. In our approach, we do need the RSIP server and
RSIP client processes, but if we carefully go through the set of steps that each of them does
to set up tunnels, create mappings from assigned client ports to client IP addresses, etc., we
will notice that we can do all that at system startup time and get rid of the daemon processes.
[17] proposes a grid solution based on Java called Ibis and they address the problem of
private cluster nodes communication with other external hosts using relay processes like [15].
Due to the presence of relays, both [15] and [17] require extensive code changes in MPICH-
G2/Globus since the usual socket-related system calls cannot be directly used and
performance is impacted as well. We solve the problem in a more simplistic, elegant, and,
generic fashion by using RSIP.

VII. Conclusion and Results

In this paper, we have proposed two solutions to ameliorate the issue of MPICH-G2
requiring all nodes participating in an MPI application to be in the public IP address space.
RSAP-IP is exploited for this purpose. The solutions work for real-world grid setup and are
practical. The first DNS-based solution applies to small organizations where the number of
clusters and their configurations in terms of number of compute nodes does not vary much
over time. In case of the (more scalable) second solution, modifications to the Globus and
MPICH-G2 libraries are minimal (tens of lines of code).

The solutions have been tested with a couple of MPICH-G2 applications in a variety of
cluster deployments. Real-world MPI applications from Singapore MIT Alliance (SMA)

81

Devaraj Das, Ritu Sabharwal, Sujoy Saraswati, P. N. Anantharaman, Jason Oh
A Network Architecture for Enabling Execution of MPI Applications on the Grid

were demonstrated on a grid setup at the LinuxWorld Conference, Singapore, May, 2004.
The resources used were IA32 ProLiant Opteron Cluster of 4 blade servers, x86 running
Linux and IA64 cluster of 2 nodes running Linux. The solutions will be used for the grid
setup at the prestigious National Grid Office (NGO), Singapore (where they are unable to
assign public IP addresses to compute nodes in clusters due to limited IP addresses). This
work has also been submitted to Globus open source for review.

As part of future work, we will exploit the applicability of RSIP to solve firewall issues in
running MPICH-G2 applications. We will also address the complications and interoperability
issues (if any) in a network of clusters where some of the clusters have vendor-MPI.
Performance studies of applications deployed in this architecture will also be done.

References

[1] MPI: A Message-Passing Interface Standard. http://www.mpi-forum.org/docs/mpi-11-

html/mpi-report.html
[2] MPICH-A Portable Implementation of MPI.
 http://www-unix.mcs.anl.gov/mpi/mpich/
[3] MPICH-G2. http://www.niu.edu/mpi
[4] The Globus Alliance. http://www.globus.org
[5] The Globus Resource Specification Language RSL v1.0.

http://www.globus.org/gram/rsl_spec1.html
[6] The Dynamically-Updated Request Online Coallocator (DUROC).
 http://www-fp.globus.org/duroc/
[7] Globus 2.4 Services
 http://www.globus.org/gt2.4/admin/guide-services.html#gram
[8] Condor Project.
 http://www.cs.wisc.edu/condor/
[9] Beowulf Cluster. http://www.beowulf.org/
[10] M. Borella, et al. “RFC 3102 - Realm Specific IP: Framework”, October 2001.
 http://www.faqs.org/rfcs/rfc3102.html
[11] M. Borella, et al. “RFC 3103 - Realm Specific IP: Protocol Specification”, October

2001.
 http://www.faqs.org/rfcs/rfc3103.html
[12] Network Address Translation.
 http://www.vicomsoft.com/knowledge/reference/nat.html
[13] RSIP for Linux.
 http://openresources.info.ucl.ac.be/rsip/
[14] The Nexus Multithreaded Communication Library. http://www.globus.org/nexus/
[15] Mark Baker, et al. “A Report on Experiences Operating the Globus Toolkit through a

Firewall”.
 http://esc.dl.ac.uk/Papers/firewalls/globus-firewall-experiences.pdf
[16] Mailing-list discussion.
 http://www-unix.globus.org/mail_archive/mpich-g/2004/03/msg00012.html
[17] Alexandre Denis, et al. “Wide-Area Communication for Grids: An Integrated Solution

to Connectivity, Performance and Security Problems”,
http://hpdc13.cs.ucsb.edu/papers/33.pdf

82

http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html
http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.niu.edu/mpi
http://www.globus.org/
http://www.globus.org/gram/rsl_spec1.html
http://www-fp.globus.org/duroc/
http://www.cs.wisc.edu/condor/
http://www.beowulf.org/
http://www.faqs.org/rfcs/rfc3102.html
http://www.faqs.org/rfcs/rfc3102.html
http://www.vicomsoft.com/knowledge/reference/nat.html
http://openresources.info.ucl.ac.be/rsip/
http://www.globus.org/nexus/
http://esc.dl.ac.uk/Papers/firewalls/globus-firewall-experiences.pdf
http://www-unix.globus.org/mail_archive/mpich-g/2004/03/msg00012.html
http://hpdc13.cs.ucsb.edu/papers/33.pdf

International Journal of Information Technology, Vol. 11 No. 4

Devaraj Das is a post graduate in Computer Science from Indian
Institute of Science, Bangalore, India. He has been working with
Hewlett-Packard ISO, Bangalore since July 1997. His interests are in
the area of Distributed Systems, Networking and Security
technologies. He has actively contributed in the deployment of Grid-
based solutions in multiple customer environments.

Ritu Sabharwal is a post graduate in Computer Science from Indian
Institute of Science, Bangalore, India. She has been working with
Hewlett-Packard ISO, Bangalore since February 2003. In her role as a
Senior Systems/Software Engineer at HP she has been working on
the SmartFrog project in collaboration with HP Labs, Bristol, UK and
has also actively participated in Research and Development of Grid
related technologies and solutions.

Sujoy Saraswati is a post graduate in Computer Science from Indian
Institute of Technology, Kharagpur, India. He has been working with
Hewlett-Packard ISO, Bangalore from last five years. In his role as a
Software Engineer in HP he has been working in the Caliper project
under the STSD division. HP Caliper is a powerful performance
measurement tool for Itanium applications. Sujoy has also been
associated with the work for enabling execution of MPI applications
on the grid.

Anantharaman (Ananth) manages the Grid program, compiler,
developer tools and Java products at Hewlett Packard, India Software
Operations. The key areas of work in his group include developing
toolsets for grid deployment, virtualization technologies and
compiler/java technology for PA RISC and Itanium platform. His
group is actively engaged in several projects for NGPP. Ananth has
an extensive industry experience of over 20 years as a manager as
well as a technologist working in systems technology. Ananth holds a
masters degree in Electronics from Indian Institute Of Science,
Bangalore, India.

Jason Oh is a post graduate in Computing and Information Systems
from University of London, UK. He has been working with Hewlett-
Packard Singapore since July 2000. In his role as a Solution Architect
in HP, he provides consultation and architect solutions for High
Performance Computing (HPC) and Grid requirements.

83

