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Abstract

We recently proposed a new hybrid algorithm to solve linear two-stage stochastic integer programs
(2SIPs) based on stage wise (primal) decomposition [1]. The master algorithm performs a search
on the first stage variables by an evolutionary algorithm (EA), the decoupled second stage scenario
problems are solved by mathematical programming. In this paper, the performance of the EA approach
is compared to that of the 2SIP-solver of Carøe and Schultz [2] which is based on scenario (dual)
decomposition. A real-world batch scheduling problem with uncertainties serves as a test instance.

Keywords: stochastic integer programming, evolutionary algorithms, evolution strategies, hybrid al-
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I. Introduction

Design and operational problems in the processing industries are often characterized by uncertainties
in parameters [3]. A promising approach to deal with these uncertainties is the use of stochastic
integer programming [4]. In recent publications, Sand and Engell [5], and Engell et. al. [6] presented
a linear two-stage stochastic integer program for the online-scheduling of an industrial multi-product
batch plant. They applied the rigorous scenario decomposition algorithm of Carøe and Schultz [2],
which was shown to generate high quality solutions in reasonable computing times. However, the
focus is on generating lower bounds on the optimal solution rather than on the generation of good
feasible solutions. Alternatively, Till et. al. [1] proposed a stochastic algorithm to solve 2SIPs based on
stage wise decomposition using evolutionary algorithms combined with mathematical programming
methods. Basically, the rigorous algorithm performs an implicit enumeration of all solutions while
the stochastic one is based on randomized metaheuristics. The aim of this paper is to discuss and to
compare both approaches by solving the same instance of a real world scheduling problem.
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II. The stochastic programming formulation

Two-stage stochastic programs represent optimization problems in which some of the decisions have
to be made under uncertainty in the model parameters and the remaining decisions can be made after
the uncertainty has been realized. When the uncertainty is represented by a finite number of scenarios
ω = 1, . . . , Ω with corresponding probabilitiesπω, thedeterministic equivalent programof the linear
optimization problem in theextensive form[4] is given as

z = minx,yω {cTx +
Ω∑

ω=1

πωq
T
ωyω|Ax ≤ b,Tωx + Wωyω ≤ hω,

x ∈ X,yω ∈ Y, ω = 1, . . . , Ω}. (1)

The variables are assigned to the first and second stage decisionsx and yω, which belong to the
polyhedral setsX andY . The first stage decisionsx representhere-and-now-decisions which are
applied regardless of the future evolution and thus have to be identical for all scenarios. In contrast,
the sets of second stage decisionsyω denote scenario-dependent recourses which are associated to the
corresponding realization ofqω, hω, Tω, andWω. The objective is to minimize the first stage costs
plus the expected second stage costs. The program (1) can be written as theintensive formof the
deterministic equivalent program[4]

z = min
x
{cTx +

Ω∑
ω=1

πωQω(x)|Ax ≤ b,x ∈ X}, (2)

where thesecond stage value functionQω(x) is defined by

Qω(x) = min
yω

{qT
ωyω|Wωyω ≤ hω −Tωx,yω ∈ Y }. (3)

When all second stage variables are continuous, i.e.Y ⊆ Rn2
+ , the value function is a piecewise linear

convex function inx. In a two-stage stochastic integer program (2SIP), a subset of the second stage
variables are subject to integrality requirements, i.e.Y ⊆ Zn′2

+ × Rn′′2
+ . Then the value function is in

general non-convex and non-differentiable inx and has the same properties as the value function in
integer programming [4, 7, 8].

The simplest approach to solve (1) is to consider it as a large scale monolithic mixed-integer linear
program (MILP) and to apply a commercial standard solver, e.g. CPLEX [9]. However, the constraint
matrix of (1) exhibits a characteristic block-angular structure (see Fig. 1) which is amenable to decom-
position approaches. WhenY ⊆ Rn2

+ , this structure together with the convexity property ofQω(x)
is exploited by efficient decomposition approaches like the rigorous L-shaped method [4]. When the
second stage requires integer variables, the non-convexity of the value function prohibits the efficient
use of these methods. For the general case of mixed-integer first and second stages, the dual decom-
position algorithm of Carøe and Schultz [2] is considered to be the state-of-the-art for solving 2SIPs
[3]. A recent survey of algorithms for 2SIPs can be found in [10].
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Figure 1: The structure of the constraints of the the two-stage stochastic program (a), the scenario
decomposition (b), and the stage wise decomposition (c).

III. The EA/SIP approach for stage wise decomposition

The main idea of the EA/SIP algorithm is to consider the implicit form of the 2SIP (2) as the master
problem and to let an evolutionary algorithm perform the search on the first stage decisionsx. With
fixed first stage decisions the stages decompose (see Fig. 1) intoΩ subproblems (3), which are solved
separately for allω ∈ {1, . . . , Ω} using a standard MILP solver (e.g. CPLEX [9]). Each individual
of the EA interpretsx as itsobject parameters(phenotype) and the objective valuez(x) as itsfitness.
In contrast to stage decomposition based mathematical programming methods (e.g. the L-shaped
decomposition) EAs do not require convexity of the value function. However, an EA is not able to
provide lower bounds during the course of evolution in contrast to mathematical algorithms.

Till et. al. [1] proposed the use of an integer evolution strategy (ES) as a master algorithm. Evolu-
tion strategies are a class of evolutionary algorithms, which were originally developed for continuous
search spaces and which adapt the mutation strength during the course of evolution [11]. The integer
ES used here is designed for bounded search spacesX [12] and is based on the ES for unbounded
integer programming of Rudolph [13].

The integer ES employed here uses a population size ofµ parents with a recommended number of
offspring λ = 7µ. For the recombination, two of theµ parents are randomly selected. Similar to
the GA crossover-operator, the dominant recombination operator generates an offspring by randomly
taking each of the offsprings parameters from one of the selected parents with the same probability.
The intermediate recombination uses the arithmetic mean of both parents’ parameters. Usually, the
object parameters (search space, phenotype) are recombined by the dominant method and the strategy
parameters (e.g. mutation step size) by the intermediate method. The mutation operator with a constant
mutation rate adds values from a geometric distribution scaled by the adaptive mean mutation step
sizeσ to the integer parameters. If a parent individual exceeds the maximum ageκ, it is not further
considered in the selection that chooses the bestµ individuals from a set ofµ parents andλ offspring.

There is no general efficient method for constraint handling in EAs [14]. To handle the feasibility
constraints onx ∈ X given in (2), we propose the use of a modified objective function. The original
objectivef(x) in (2) is replaced byF (x) which always prefers feasible to infeasible solutions [15]:

F (x) =

{
f(x) if x is feasible
fmax + p(x) otherwise

}
(4)

The parameterfmax denotes the worst feasible solution and is found by maximizing the integer relax-
ation of (2). The positive penalty termp(x) is a measure of the constraint violation and is typically
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calculated byp(x) =
∑J

j=1 rj max[0, (gj(x))], a weighted sum of the right hand sides of the violated
constraints using a positive scaling factorrj for each constraint. In our approach the penalty term is
explicitly calculated using simple linear equations and logic conditions.

The EA/SIP algorithm is finite if a termination criterion is used. In general, an EA does not provide
a lower bound. Since the EA/SIP algorithm is based on a probabilistic technique, there is a positive
probability that the optimum will not be visited in a given time [11]. Thus for the evaluation of the
best objective found by the EA the median of several runs is considered.

IV. The scenario (dual) decomposition approach

The first stage decisionsx cannot anticipate which scenario realizes and must be feasible for each
scenario. The condition that the first stage decisionx is taken before realizing the random outcome
can be stated explicitly by thenonanticipativity constraintson copies of the first stage variablesxω for
each scenarioω. An equivalent formulation of (1) is given by

z = minxω ,yω {
Ω∑

ω=1

πω(cTxω + qT
ωyω)|x1 = . . . = xΩ,Axω ≤ b,

Tωxω + Wωyω ≤ hω,xω ∈ X,yω ∈ Y, ω = 1, . . . , Ω}. (5)

This formulation suggests a decomposition based on dropping the nonanticipativity constraints since
the stochastic program then becomes separable in theΩ subproblems corresponding to the individual
scenariosω (see Fig. 1).

The main idea of the dual decomposition algorithm of Carøe and Schultz [2] is the Lagrangian relax-
ation of the nonanticipativity constraints and a branch-and-bound algorithm to reestablish nonantici-
pativity. With the nonanticipativity constraints formulated as

∑Ω
ω=1 Hωxω = 0, H = (H1, . . . ,HΩ)

and the vector of Lagrangian multipliersλ, the Lagrangian dual problem of (5) is written as

zLD = max
λ

D(λ), (6)

D(λ) = min
xω ,yω

{
Ω∑

ω=1

πω(cTxω + qT
ωyω) + λHωxω|Axω ≤ b,

Tωxω + Wωyω ≤ hω,xω ∈ X,yω ∈ Y, ω = 1, . . . , Ω} (7)

While (6) is a nonlinear concave maximization usually solved by a subgradient method [2], the sub-
problem (7) is separable in the scenariosω which represent a MILP problem that can be solved e.g. by
CPLEX [9].

The Lagrangian dual provides a tight lower bound which is not smaller than the lower boundzLP

obtained by the LP relaxation of (1), i.e.zLP ≤ zLD [2]. Let the optimal solution of (1) bezopt, then
the duality gap is defined aszopt − zLD and the integrality gap aszopt − zLP .
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Figure 2: The flow sheet of the EPS-process.

The implementation of the finite dual decomposition algorithm [2] called DDSIP [16] uses a standard
branch and bound procedure [8] on the first stage variables:

1. Initialization: Setz∗ = ∞ and letP consist of problem (5).

2. Termination: If P = ∅ thenx∗ with z∗(x∗) is optimal.

3. Node selection:Select and deleteP ∈ P and solve its Lagrangian dual. IfP is infeasible,zLD =
∞. If zLD ≥ z∗ then goto 2.

4. Bounding: If the first stage solutions of the dual subproblems (7) are different, compute a solution
suggestion heuristicallŷx(P ) = Heu(x1, . . . ,xΩ). Computez(x̂) from (2) and (3), and set
z∗ := min{z∗, z(x̂)}, delete allP ′ ∈ P with zLD(P ′) ≥ z∗.

5. Branching: Select a componentxk of x and add two new problems toP that differ fromP by
the additional constraintsxk ≤ bx̂kc andxk ≥ bx̂kc + 1 (if xk is integer), orxk ≤ xk − ε and
xk ≥ xk + ε, whereε > 0. Go to 3.

V. The real world benchmark example

The aggregated scheduling model of a multi-product batch plant for the production of polymers with
uncertainty in the demands serves as a real world example [5]. As shown in Fig. 2, two types (A,B)
of expandable polystyrene (EPS) in five grain size fractions each are produced from a number of raw
materials (E). The availability of raw materials and the product storage capacity are assumed to be
unlimited. The preparation stage is not limiting the production process and is thus neglected in the
sequel.

The polymerization stage operates in batch mode. The production of each batch is controlled by a
recipe. For eachEPS-type, five recipes exist which determine the grain size distribution such that
each batch yields a main product and four coupled products. The duration of a polymerization is the
same for all recipes. After the polymerization of a batch is finished, this batch is directly transferred to
the corresponding mixer of the finishing stageA or B. The mixers are semi-continuous storage tanks,
the finishing lines operate continuously. If a mixing tank runs empty, the corresponding finishing line
has to be shut down temporarily. After a shutdown, the line has to stopped for a certain period of
time. The objective is to maximize the profit calculated from sales revenues, production costs, storage
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costs and penalties for lateness and for finishing line start-ups and shut-downs. The main production
decisions are the discrete choice of recipes and their starting times.

The aggregated scheduling model [5] is a multi-period model considering a scheduling horizon ofi ∈
I = {1, . . . , 7} periods; each period corresponds to two days. The production decisions are modelled
by integer variables denoting the numbers of batches according to reciperp to be started in periodi:
Ni,rp ∈ {0, . . . , Nmax = 12}. The first stage decisionsx consist of allNi,rp with i ∈ {1, . . . , 3}.
The remaining production decisions together with all continuous variables including sales, storages
etc. form the set of mixed-integer second-stage variables. The uncertainty is represented byΩ = 16
demand scenarios of equal probabilityπω. The resulting 2SIP is characterized by: integer first stage,
mixed-integer second stage, uncertainty only in the right-hand sidehω.

The monolithic MILP corresponding to (1) contains 5601 real variables, 1586 integer variables, and
4083 constraints. Each subproblem corresponding to a second stage value functionQω(x) in (3)
contains 321 real variables, 68 integer variables, and 228 constraints. From a practical point of view,
the CPU-time is limited to4 hours.

VI. Implementation and experimental setup

The algorithmic framework of EA/SIP was implemented in C/C++ usingTEA [12], a library for the
design of standard and non-standard EAs. For the MILP subproblems GAMS/CPLEX 8.1 [9] is used.
The calculations were performed on a 2.4 GHz Linux machine.

The strategy parameters of the ES were set tosES = (µ = 10, λ = 70, κ = 5, σinit = 1.2) and the
termination criterion of the value function subproblems (3) is set to a relative integrality gap of1%.
The EA/SIP was initialized (I) by randomly generated feasible first stage solutions and (II) by the best
µ solutions of the wait-and-see problem (WS) [4], i.e. (5) with dropped nonanticipativity constraints.

For the dual decomposition algorithm [2] we used the C implementation DDSIP [16]. The Lagrangian
dual problem is solved by a conic bundle algorithm. The CPLEX9.03 callable library [9] is used to
solve the mixed-integer subproblems in the branch-and-bound tree. The calculations were performed
on a 3.06 GHz Linux machine.

In the root node of DDSIP, the Lagrangian dual (6) is solved to obtain an initial lower boundzLD and
values of the Lagrange multipliersλ. For all subsequent nodes, the lower bounds are calculated from
(7). The termination criterion of CPLEX is set to a relative optimality gap of1%. The initialization
was done by the solution of the expected value (EV) problem. The EV problem consists of a single
scenario where the random parameters are replaced by their expected value [4].

VII. Numerical results

In Fig. 3, the objective values of the best feasible solutions found in the course of the computations
are plotted over the CPU-time. The line denoted by ’CPLEX’ shows the solution of the example
problem in form of a monolithic MILP (1) using CPLEX [9]. DDSIP denotes the result of the dual
decomposition algorithm with the best heuristic found in several experiments, namelyTake the average
of all subsolutions, round the integer components to the next integer.

DDSIP requires about0.7h of CPU-time to compute a lower bound by solving the Lagrangian dual in
the root node. Then the branch-and-bound procedure starts.

For the given problem instance, both algorithms generate solutions with good values of the objective
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Figure 3: Best solutions (objective) versus CPU-time of CPLEX, DDSIP, and EA/SIP.

Table 1: Best solution found by EA/SIP and DDSIP after4h of CPU-time.

best first stage solutionx
Algor. periodi = 1 periodi = 2 periodi = 3 z∗

EA/SIP 0 0 4 0 2 6 0 0 0 0 0 2 0 0 5 2 0 1 0 2 0 1 0 0 6 2 0 3 0 0 -51.79
DDSIP 0 0 3 0 2 7 0 0 0 0 0 1 1 0 5 2 0 1 0 2 0 2 0 0 5 1 0 4 0 0 -51.89

with respect to the requirements of the application problem. The EA/SIP algorithm with WS initial-
ization has already found a good solution before DDSIP has finished solving the Lagrangian dual.
The solution vector of the first stage variables are not identical what leads to a small difference in the
objective of∆z = 0.1 (see Tab. 1).

A detailed view on the course of computation is given in Fig. 4 where the evolution of the lower bound
during the solution process of the Lagrangian dual in the DDSIP root node is also displayed. After
0.7h, the branch and bound algorithm in DDSIP starts and computes upper bounds.

The performance of a branch-and-bound algorithm depends on efficient pruning of the search space
which requires tight lower bounds (see. e.g. [8]). The initial lower bound of DDSIP is obtained from
the Lagrangian dual which is computationally expensive. On the other hand the dual bound is much
tighter than the lower bound obtained by integer relaxations e.g. at the root node after 20 seconds,
zLP = −62.22 andzLD = −52.60.

The observations have shown, that the EA/SIP Algorithm is capable of solving the stochastic program
much faster than CPLEX and in a similar range of the CPU-time and solution quality as DDSIP. From
the random initial solution it can be seen that EA/SIP works also well without knowledge of the optimal
solution of particular scenarios or lower bounds. For both decomposition approaches, the efficiency
depends on a careful tradeoff between the termination criterion of the subproblems and the algorithmic
parameters of the master algorithm.

VIII. Summary and conclusions

In this paper, two conceptually different decomposition algorithms for 2SIPS were presented and com-
pared for a real world example. The EA/SIP approach of Till et. al. [1] is based on stage wise (primal)
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Figure 4: A detailed view on the course of the computation and the dual lower bound (zLP = −62.22).

decomposition combined with randomized search techniques. The algorithm of Carøe and Schultz [2]
is based on scenario (dual) decomposition combined with a rigorous search technique. It was shown
that both decomposition algorithms perform considerably better than an algorithm that does not exploit
the special structure of 2SIPs. Both decomposition based algorithms find similar solutions.

The decomposition approaches are complementary. The dual decomposition obtains tight lower bounds
while the ES can be seen as self-adjusting heuristic. A combination of both, e.g. a dynamic reduction
of the ES search space based on tight bounds may lead to an improved decomposition algorithm and is
subject to current research. Further current research addresses the investigation of the of relationship
between the initialization, the stochastic properties of the 2SIP model, and the performance of the
algorithms.
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