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Abstract 
 

The purpose of reinforcement learning is to maximize rewards from environment, and reinforcement 
learning agents learn by interacting with external environment through trial and error. Q-Learning, a 
representative reinforcement learning algorithm, is a type of TD-learning that exploits difference in 
suitability according to the change of time in learning. The method obtains the optimal policy 
through repeated experience of evaluation of all state-action pairs in the state space. This study chose 
n-Queen problem as an example, to which we apply reinforcement learning, and used Q-Learning as 
a problem solving algorithm. This study compared the proposed method using reinforcement 
learning with existing methods for solving n-Queen problem and found that the proposed method 
improves the convergence rate to the optimal solution by reducing the number of state transitions to 
reach the goal.  
 
Keyword: reinforcement learning, n-Queen problem, Q-Learning 

I. Introduction 
 
The recent explosive increase of electronic information satisfies people’s various needs for diverse 
types of information but it is greatly burdensome to find desired information due to the expansion of 
the volume of data to be processed. Moreover, as the form of information is becoming diversified 
and complicated, we need technologies for quick and accurate information search. In this situation, 
one of important technologies is to detect past experiences and environmental changes and, based on 
them, change existing knowledge and adapt to new environment. Intelligent human agents in social 
environment learn not only through trial and error but also through immediate information, learned 
knowledge and special experiences. 
 

Reinforcement learning does not require preliminary knowledge and learns not through examples 
but through experience and observation. Input information about environment can be learned in state 
environment, which is solely delayed scalar reward, through trial and error for efficient decision 
policies. Here, the goal is to maximize long-term rewards discounted for each action. Although its 
early learning rate is slow but it is efficient for performing complex tasks. 
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The present study chose n-Queen problem as an example, to which we apply reinforcement 
learning, and proposed an algorithm that exploits reinforcement learning to solve the problem. This 
study also carried out an experiment to compare the proposed algorithm with existing problem-
solving methods in order to prove that the proposed algorithm is faster and more efficient in given 
environment. 

II. Relevant Researches 
 
n-Queen problem is to position n  queen pieces on a nn×  square chessboard. Here, a restriction is 
that any two queens cannot be on the same column, the same row or the same diagonal line. The 
number of candidate solutions is !n . 
 

A. Backtracking 
 

Backtracking is a modified depth-first search (DFS) of trees used in solving a problem of 
selecting the order of objects belonging to a set while satisfying certain restrictions in the set. 
Backtracking is the most common method of solving n-Queen problem. It first tests each node 
in a state space tree through depth-first search to see if it is promising, and if the node is not 
promising, it tracks back to its parent node. Backtracking is the same as depth-first search 
except that it visits the child nodes of a node only when the node is promising and there is no 
solution in the node. 
 

B. Backtracking with MonteCarlo algorithm 
 

One of more efficient methods of solving n-Queen problem is using MonteCarlo algorithm. 
MonteCarlo algorithm is a probability-based algorithm, which decides the next command to 
execute at random and estimates the expected values of random variables defined in the sample 
space based on the random means of the sample space. That is, it first deploys queen pieces at 
random for a number of columns and applies backtracking only to the other columns[4]. 
 

C. Reinforcement learning 
 

Depth-first search is a common method of exploring a state space tree and finding the solution 
of problems. It tests each node visited during exploration and tests if the state of the node is 
promising, namely, is possible to be a solution.  
 

In order to solve n-Queen problem using reinforcement learning, we must select the best 
among the next available nodes from each node. For this, it is necessary to estimate how good 
condition each node is in, and the function to produce an estimated value is called an 
evaluation function. Most evaluation functions evaluate nodes heuristically. The simplest 
algorithm is to apply an evaluation function to all selectable nodes from the current node and to 
diverge to the node with the largest value. Because an evaluation function evaluates basically a 
node, however, we do not know whether the selected node ultimately brings a win even if it is 
the best at present. The next section explains reinforcement learning in detail. 

III. Reinforcement learning 
 

A decision process means that an agent in a certain state performs an action and is rewarded 
from environment, and Markov decision process (MDP) means a decision process that a new 



Soo-Yeon Lim, and Ki-Jun Son 
The Improvement of Convergence Rate in n-Queen Problem Using reinforcement Learning 

 54

state is decided based on the current state and action. In particular, learning of actions to 
perform based on rewards from environment is called reinforcement learning. 
 

A. Reinforcement learning model 
 

Reinforcement learning is the combination of dynamic programming and teacher learning, in 
which an agent learns through trial and error while interacting with external environment. That 
is, the agent attempts actions that it can take against given environment while learning is 
executed, and is reinforced with scalar reinforcement values received from the external 
environment as rewards for actions the agent chose. The learning is based on MDP, reinforcing 
actions little by little in a better direction by receiving rewards for actions that the agent carried 
out.  
 

In choosing the optimal action in the current state, MDP calculates all available actions to 
achieve a given goal and select the action of the highest value. However, it is disadvantageous 
in that it does not work when the number of states is too large or accurate probabilities or 
reward values are not available. Compared to MDP, reinforcement learning is an online 
technique close to the traditional optimization technique called dynamic programming. The 
method learns the optimal action in each state little by little through experiences based on 
many times of trial and error instead of deciding the optimal action in the current state through 
calculation. 

 
Here, environment is composed of states, which are changed by actions taken. In particular, 

actions taken to achieve the goal are called a policy and the mission of an agent is to learn the 
control policy. When the agent’s schedule, namely, its control policy is represented as π, what 
we have to solve is to find the best π, which means π that brings the highest accumulated 
reward. 

 
In order to select the next action in the current state, the agent learns policy AS →:π . We 

define the cumulative reward )( tsV π  achieved by following an arbitrary policy π  from an 
arbitrary initial state ts  as follows. 
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Where the sequence of rewards itr +  is generated by beginning at state ts  and by repeatedly 
using the policy π to select actions as described above ( .),(),(.,. 11 etcsasaei tttt ++ == ππ ).  

 
Here 10 ≤≤ γ  is a constant that determines the relative value of delayed versus immediate 

rewards. In particular, rewards received i time steps into the future are discounted 
exponentially by a factor of iγ . Note if we set 0=γ , only the immediate reward is considered. 
As we set γ  closer 1, future rewards are given greater emphasis relative to the immediate 
reward. The quantity )(sV π  defined by above equation is often called the discounted cumulative 
reward achieved by policy π  from initial state s . 

 
In MDP, the goal of an agent is to learn policy π that maximizes )(sV π  for all states. The 

policy is called the optimal policy and is indicated by *π . The maximum discounted 
cumulative reward is indicated by )(* sV . 

)( ),(maxarg* ssV ∀≡ π

π
π  



International Journal of Information Technology     Vol. 11   No. 5 

                                                                                                                                                                

 

55

)()( **

sVsV ⇒π  
 
Then, how do agents obtain the optimal policy? It is hard to obtain optimal policy *π  directly. 
It is because learning examples are not provided directly in the form of ordered pairs of 

>< as,  but the learner receive rewards necessary for learning.  
 
Thus agents need a method of learning the optimal policy through interaction with 

environment without knowing such a function. It is easier to learn a numeric evaluation 
function than learning a specific policy, and the numeric evaluation function to learn is *V . 
The goal of an agent is to obtain rewards as much as possible. If it comes to know *V  for all 
states, it will change the state according to *V , and as the change is made in sequence the 
agent will reach the optimal policy. 

 
For certain Ss∈ , there can be optimal policy *π  as follows. The optimal action in state s is 

the action a that maximizes the sum of the immediate reward r(s,a) plus the value V* of the 
immediate successor state, discounted by γ . 

))],((),([maxarg)( ** asVasrs
a

δγπ +≡  

Here δ(s,a) denotes the state resulting from applying action a to state s. Thus the agent can 
require the optimal the optimal policy by learning V*, provided it has perfect knowledge of the 
immediate reward function r and the state transition function δ. Unfortunately, learning V* is a 
useful way to learn the optimal policy only when the agent has perfect knowledge of  r and δ. 

Reinforcement learning is one of reliable methods of solving these types of problems, and 
one of non-model reinforcement learning methods, which do not need an environment model, 
is Q-Learning. 

 
B. Q-Learning 

 
Q-Learning[1] proposed by Watkins is a widely used reinforcement learning method, which is 
based on stochastic dynamic programming. Q-Learning is a type of TD-Learning that utilizes 
difference in suitability according to time change in learning. It produces satisfactory results 
because it learns Q-value indicating the suitability of actions without information on 
environment models. Q-value means the value of the optimal cumulative reward given when 
the agent chooses an action at a certain state. Thus if an agent has Q function, at any state it can 
find the action it should perform based on Q-value for each action.  
 

A Q-Learning agent needs to select a series of states-actions for the convergence rate of Q-
value that decides the optimal policy in the process of learning. The learning decision policy of 
the algorithm is decided by state-action value function Q that measures the long-term 
discounted reward for each state-action pair. The agent repeatedly experiences all state-action 
pairs in the state space and learns the value of reward given by the environment based on 
evaluation value Q. Here, the agent uses a lookup table to store the values of all state-action 
pairs. In reinforcement learning, the value function determines the value of each node in 
winning. Of course, the value function is formulated through trial and error. The basic concept 
of Q-Learning is expressed as follows. 

 

*( , ) ( , ) ( ( , ) )Q s a r s a V s aγ δ≡ +



Soo-Yeon Lim, and Ki-Jun Son 
The Improvement of Convergence Rate in n-Queen Problem Using reinforcement Learning 

 56

Here, ),( asQ  means the discounted cumulative reward obtainable when starting from state s , 
applying a  as the first action and following the optimal policy. If ),( asQ  is obtained, the 
optimal policy can be found.  

The gem of Q-Learning is that it can describe with a number the situation in which the agent 
is and the action that the agent can take. Values of Q function are stored in the memory in the 
form of a table, which is unreasonable for a problem with a large number of states and actions. 

Thus, sometimes methods adopting neural networks [6] or clustering are used.  

IV. n-Queen algorithm using Q-Learning 
 

For its problem solving algorithm, the present study used Q-Learning algorithm, which is one 
of non-model reinforcement learning. A tree is created for all possible nodes in n-Queen 
problem, and the value function has a corresponding value for each node like a lookup table. 
The function sets the initial value of table, which is the result of the value function, at 0 and 
begins to simulate through play. The queen put on the first column selects a node at random 
irrespective of the value function and then selects one of promising nodes for the queen to be 
put on the next column. The process is repeated to find the solution. If a promising node is not 
found any more in the middle of process, exploration is stopped and the value of Q-table is 
updated. In this way, an event row composed of perception, action and reward experienced by 
an agent is called an episode. This means that interaction between an agent performing learning 
and the external environment finishes in a natural way. It has been already proved that the 
update of Q-value through a number of episodes brings convergence to the optimal solution [7]. 
 

Q-Learning algorithm updates the value function by reflecting the result of play in the 
process of play when it has reached a node from which it cannot proceed any more. It 
propagates the value of the value function for the last node visited to previous nodes to a 
certain degree (propagation constant). In this study, the immediate reward for promising nodes 
was 1 and the propagation constant (discount factor) was 0.9. In this way, reinforcement 
learning runs by itself, giving reward (1) for a necessary action and penalty (0) for an 
unnecessary action. Although this requires a learning process of simulating a large number of 
trials and errors, it is advantageous in that it can gradually improve performance. 

 
In order to learn for each Q-value, Q-Learning agents maintain n tables ( nn × ) for their Q-

values, and agents that have finished Q-Learning become able to estimate the results of long-
term actions. Although it does not rise in other types of learning, one of problems in 
reinforcement learning is the balance between exploration and exploitation. Exploration is 
selecting unknown states and actions to collect new information and exploitation is taking 
learned states and actions. Exploitation guarantees that all available states and actions are 
sufficiently explored to satisfy the rule of Q-Learning convergence, and exploration adopts the 
greedy policy [5].  

 
It is necessary to exploit known states and actions in order to get reward but it is also 

important to explore unknown states and actions in order to select better actions in the future. 
The balance between exploration and exploitation one of very important matters in 
reinforcement learning and is determined by various factors. To solve the problem related to 
the balance between exploration and exploitation in reinforcement learning, this study 
maintained a separate table to store the number of times that a queen piece was put on. In n-
Queen problem, the solution is sought for simultaneously with the occurrence of the episode 

*( ) arg max ( , )
a
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that n queen pieces are put on. If the episode ends before n queen pieces are put on, it is a path 
of failure. Thus the path is avoided in the next episode and, as the path is set at random, the 
revisiting of a node that has been visited can be avoided. Therefore, the problem can be solved 
by inducing exploration toward positions with a small value in the table that stores the number 
of times. Figure 1 below shows the algorithm explained above expressed in Java. 

// Find the optimal position of a queen on the corresponding row
// If it is found, recall with the value of the next row with ‘queens (the number of the next row)’
public static void queens (int i) 

{
int j; int jp = 0;  // Position of the row to move into 
for (j = 1; j <= n; j ++) // Find the position on the next row to put a queen on 
{

if (promising (i, j))  {   // Check if a queen can be put on the corresponding column 
if (jp == 0)  // In the first comparison, if the value in the memory 

for the existing position is 0, change the base to the newly found row 
jp = j;

if (PT [Ts][i][jp] > PT [Ts][i][j])   // Choose one with a smaller number of times of positioning 
jp = j;

}
}

if (jp != 0)  { // If a position to move into has been found or the last position has been reached, 
coln ++;         // increase the number of columns that have been processed 
col [coln] = jp;    // Position a queen 
PT [Ts][coln][jp] ++;   // Increase the number of times of positioning a queen 

for the corresponding row and column 
runcount1 ++;    // Increase the number of times of positioning a queen 
if (coln != n)    // If the column is last or the positioning of queens has not been finished 

queens (coln + 1);  // Position a queen on the next column 
else  {     // When the last position has been reached 

runcount5 ++;
QTcount ();

}
}
else  // When the last position has not been reached, calculate Q 
{ 

QTcount ();
}

}

// Find the optimal position of a queen on the corresponding row
// If it is found, recall with the value of the next row with ‘queens (the number of the next row)’
public static void queens (int i) 

{
int j; int jp = 0;  // Position of the row to move into 
for (j = 1; j <= n; j ++) // Find the position on the next row to put a queen on 
{

if (promising (i, j))  {   // Check if a queen can be put on the corresponding column 
if (jp == 0)  // In the first comparison, if the value in the memory 

for the existing position is 0, change the base to the newly found row 
jp = j;

if (PT [Ts][i][jp] > PT [Ts][i][j])   // Choose one with a smaller number of times of positioning 
jp = j;

}
}

if (jp != 0)  { // If a position to move into has been found or the last position has been reached, 
coln ++;         // increase the number of columns that have been processed 
col [coln] = jp;    // Position a queen 
PT [Ts][coln][jp] ++;   // Increase the number of times of positioning a queen 

for the corresponding row and column 
runcount1 ++;    // Increase the number of times of positioning a queen 
if (coln != n)    // If the column is last or the positioning of queens has not been finished 

queens (coln + 1);  // Position a queen on the next column 
else  {     // When the last position has been reached 

runcount5 ++;
QTcount ();

}
}
else  // When the last position has not been reached, calculate Q 
{ 

QTcount ();
}

}
 

Figure 1    n-Queen algorithm using Q-Learning 

V. Experiments and evaluation 
 

The criterion for evaluating performance in n-Queen problem is the number of state transitions 
to put n queen pieces. We performed Q-Learning using lookup tables for all available states. 
Each execution is composed of a sequence of trials. In the first trial of each execution, the 
agent is given a random position. After the trial, the value rewarded is propagated and updates 
values in Q-tables and the trial is continued. Each trial ends on reaching the nth column. For 
example, if n=10, 22 times of episode and 143 times of state transition occur on the average. 
 

The present study compared the number of state transitions in finding the optimal solution in 
three methods, which are general backtracking, backtracking using MonteCarlo technique and 
Q-Learning. According to the result, the third method found the solution with the least number 
of state transitions. The method is expected to improve performance significantly for n that 
requires a large amount of exploration. Table 1 shows the number of state transitions for each n 
when the three methods are used. 

 
Table 1    Comparison of the number of state transitions 
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Table 2 shows values in Q-table produced when n=10. In the table, the value of Q(1,1) 
indicates the largest one among values in the Q-table of all states in the 2nd column that can be 
reached from (1,1). According to the result of analyzing the table, the position of the largest Q-
values (colored cells) converges into the solution of the problem. 

 
Table 2    Q-table produced when n=10 

1 2 3 4 5 6 7 8 9 10
1 4.095 4.686 4.095 4.095 4.686 5.695 6.126 5.695 5.695 4.686
2 5.217 4.686 5.217 5.217 5.695 5.217 5.217 3.439 4.095 5.217
3 4.686 4.686 4.686 4.095 4.686 4.095 3.439 5.217 4.686 0.000
4 3.439 4.686 4.095 4.095 4.095 3.439 4.095 4.095 4.095 4.095
5 3.439 3.439 3.439 1.900 2.710 0.000 3.439 2.710 4.095 0.000
6 1.900 1.000 3.439 2.710 1.900 1.000 1.000 2.710 2.710 2.710
7 0.000 1.000 1.000 0.000 1.900 2.710 1.900 1.900 0.000 1.900
8 1.000 1.000 1.000 1.900 1.000 0.000 1.000 0.000 0.000 0.000
9 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Goal  

VI. Conclusions 
 

The present study proposed an algorithm based on reinforcement learning in order to solve n-
Queen problem. According to the result of comparing it with existing algorithms, it reduced the 
number of state transitions in reaching the goal and, as a result, its convergence rate into the 
optimal solution was quite fast.  
 

However, basic reinforcement learning like Q-Learning shows low performance for big 
problems because reward should be back-propagated to the original state at which the action 
was taken. In addition, the state space may expand excessively depending on the nature of 
problems. A large state space requires a large amount of exploration and only the Q-values of 
experienced state-action pairs are updated. This means that the speed of learning is low. 
Moreover, the biggest problem in ordinary reinforcement learning methods is that they cannot 
be applied as they are to complex problems that have a large state space. Expression using 
lookup tables is considered to be an inappropriate method. Therefore, it is necessary to make 
research on the use of a small action space for agents to learn as well as on the improvement of 
speed and efficient function approximation. 

What is more, it is necessary to study methods of exploiting knowledge about given 
environment in the process of learning in order to learn models similar to the real world as well 
as various forms of reinforcement learning algorithms. 

   N Backtracking-1 Backtracking-2 
(MonteCarlo) -learning 

4    26 16 8 
5 15 16 13 
6 171 66 53 
7 42 43 39 
8 876 171 33 
9 333 383 65 
10 975 942 143 
11 517 1,039 300 
12 3,066 1,539 428 
13 1,365 5,434 852 
14 26,495 16,846 764 
15 20,280 14,869 621 
20 3,992,510 1,384,727 7,007 
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