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Abstract 
 
The problem of quadratic stabilization of linear uncertain systems with multiple time-varying delays 
in state and input is investigated in this paper. The parametric uncertainties are assumed to be time-
varying and unknown but norm-bounded. Applying Lyapunov functional method and the notion of 
quadratic stabilization, sufficient conditions for designing a feedback control law to stabilize a class 
of uncertain linear system are presented in terms of algebraic matrix equations. The results obtained       
depend on the solution of  a certain algebraic matrix equation respectively. Finally, a numerical ex-
ample is given to demonstrate the effectiveness of the proposed method. 
Keyword: quadratic stabilization; time-varying delay system; time-varying norm-bounded 
uncertainty; algebraic matrix equation.  
 

I. Introduction  
 
Quadratic stabilization of uncertain delay systems has been a classical problem for which a variety 
of solutions exists, see[1-25] and the references therein. These solutions differ in how uncertainty 
and delays are described in the model and in the tools that are used to tackle the robust analysis and 
synthesis problems. In [1]-[4], the uncertainties in the system is assumed to satisfy the so-called 
"matching conditions". These conditions are only sufficient for a given uncertain stabilizable system. 
In fact, there are many uncertainty systems which fail to satisfy the " matching conditions " but they 
are stabilizable [5]. Using the concept of quadratic stability [6], [7] and [8] have studied the 
quadratic stabilization of uncertain linear systems. The results of [6], [7] and [8] have been extended  
∗ The work was supported by the National Science Foundation of China under Grants 60574005. 
to time-delay [9], norm-bounded uncertainties [10], and time-varying system [11]. The stabilization 
problem of uncertain systems with state-delay has been studied in [12] and [13]. The work [13] has 
focused on the time systems with state-delay and norm-bounded time-varying uncertainties. 

In this paper, we extend the result of [13] to a class of continuous systems with norm-bounded 
time-varying uncertainties and multiple delays in state and input, using the concept of quadratic 
stabilization [6]. The system studied here fails to satisfy the matching condition. We assume 
parametric uncertainties to be time-varying and unknown but norm-bounded. Applying Lyapunov       
functional method and algebraic matrix equations, we get the conditions for designing a feedback       
control law to stabilize a class of uncertain linear system with multiple time-varying delays in state 
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and input. The results depend on the solution of a certain algebraic matrix equation respectively. 
Finally, an example demonstrates the effectiveness of the proposed method. 
Note 1.  Throughout this paper, we let ),,( ∞−∞=R  ),0[ ∞=+R , nR  be any real n-dimensional 
linear vector space  equipped with Euclidean norm ⋅ . Given any matrix W , let tW , 1−W , ][Wλ  be, 
respectively, the matrix transpose, matrix inverse, and the set of eigenvalues with 

])[(][ WW Mm λλ being the minimum (maximum) eigenvalue. We use )0(WoW > to denote 
(positive-(negative-)) definite matrix W  in addition,  for given 0≥h , we let C  denote the Branch 
space of continuous functions nRh →− ]0,[:π  with  

                                                              )(: 0 αππ α≤≤−∗
= hsup                                                       (1) 

If nRhX →− ],[: τ  is continuous and 0>τ  then we introduce CX t ∈  and 
0),()( ≤≤−+= ααα htxxt                                                     (2) 

This means that for fixed ],0[ τ∈k , tx denotes the restriction of X  to the interval ],[ khk −  
translated to ]0,[ h− .  we also use the superscript "T" and "-1" represent the transpose and matric 
inverse respectively, ][Qλ  denotes minimum eigenvalue of matrix Q . 

II. System Description 
 
Consider a class of linear continuous time uncertain system with state-control delays 
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 where nRtx ∈)(  is the instantaneous state vector; mRtu ∈)(  is the control input. ∈∈ ×
i

nn ARA ,0  
mnnn RDBniR ×× ∈= ,),,,1( 0K are known constant matrices. The matrices ),,1)((),(0 niAA i K=⋅∆⋅∆  

and  )(0 ⋅∆B are real-valued functions representing time-varying parameter uncertainties and )(tdi  
),,1( ni K= ; )(te are any time-varying bounded functions satisfying 

 ),,1(1')(;)(0;1)(;)(0 niteetetddtd iiii K&& =<≤∞<≤≤<≤∞<≤≤ ∗∗ ηη        (4) 

The initial condition of system (3) is given by  
),,1](0},,max{[),()( **

0 niedtx i K=−∈∀=+ θθφθ  
where )(⋅φ  is a differentiable vector-value initial function defined over Banach space 

]0},,max{[ ** edC i− .  
In this note, we assume that the uncertainties satisfy: 

110 )()();,,1,0()()( ++=⋅∆==⋅∆ nniii EtFHBniEtFHA K                                     (5) 
  Where mq

n
nq

i
sn

i RERniERniH ×
+

×× ∈∈=∈+= 1,),,1,0(,)1,,1,0( KK  are known constant matrices. 
  qsRtF ×∈)(  is an unknown matrix function satisfying  

ItFtF T ≤)()(                                  (6) 
   with the elements of )(⋅F being Lebesgue measurable. In order to facilitate further development, 
we introduce 
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for ni ,,1K= . 

Definition 1. The uncertain linear system (3)-(7) is said to be quadratically stabilizable if there 
exists a linear feedback control law )()( tKxtu = , positive-definite symmetric matrices iRP;  

mmRMni ×∈= );,,1( K  and a constant 0>ξ such that the following condition holds. Given any 
admissible uncertainty )(⋅F , choosing 
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as the Lyapunov function of closed-loop system. The Lyapunov derivative corresponding to the 
resulting closed-loop system satisfies the bound 
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for all 1),( +∈ nRtx . 
Before moving on, we introduce a lemma, which is essential for the development of our result: 

Lemma 1. [9]  Given any constant 0>ρ and matrices )(,,ˆ tFED  with compatible dimensions such 
that ItFtF T ≤)()( , then 

)()(1)(ˆˆ)()()(ˆ)(2 txEEtxtPxDDPtxtExtFDPtx TTTTT

ρ
ρ +≤             (10) 

for all nRtx ∈)( . 

III. Main Results  
 
In this section, we give a control law to stabilize the uncertain linear system of (3)-(7) and summa-
rize the results as the following theorems. 
 
Theorem 1. Let ),,1(,, niRRRQRS nn

i
nnmm K=∈∈∈ ×××  and nnRM ×∈ be positive-definite 

symmetric matrices and suppose there exists a constant 0>ρ  such that the algebraic matrix 
equation 
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has a positive-definite symmetric solution P , where 
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  Then the uncertain delay systems (3)-(7) is quadratically stabilizable. At the same time, a suitable 
stabilizing control law is given by 

     ).()()( 0
1 tKxtPxBStu T =−= −                             (13) 

Proof.  Suppose that the algebraic matrix equation (10) has a solution 0>= TPP , and let )(tu  be 
given by (12). Therefore, according to (7), the closed-loop uncertain system (3) can be expressed by 
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For the Lyapunov function 
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which is positive-definite for all 0)( ≠tx , the Lyapunov derivative corresponding to the closed- loop 
system (14) is given by 
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We can rewrite (13) into the following form 
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 By using Schur complement argument, it following from (16) that 
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   In order to verifying (16), we should construct an upper bound for the Lyapunov derivative in (17). 
So, we rewrite W  into the following way 
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   Applying (13) to the second, third, forth and last terms in (18) we can get 
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 So, from (19), (20), (21) and (22) we can obtain 

2)(][)()()( txQtQxtxtV m
TT λ−≤−≤&                           (23) 

For all RRtx n ×∈),( . Therefore the inequality (6) is satisfied with 0][ >= Qmλξ .                        
 
 Remark 1.   In system (3), if 0=D , the system becomes the system discussed in [15]. In nominal 
system (without uncertainties), we can see that ,0,0,0,0,0,0 3100 ====== + EHEHEH nii and 
hence 0≡G . It turns out that the quadratic stability requires  
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Remark 2.   It should be emphasized that the upper bound is not conservative. A larger upper bound 
can be obtained by the following theorem. 
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Theorem 2.  Let mmnn
i

nnmm RMniRRRQRS ×××× ∈=∈∈∈ ),,,1(,, K  be given positive-definite 
symmetric matrices and suppose that there exists a constant 0>ρ  such that the algebraic matrix 
equation (8) has a definite solution. 
   Then given any positive-definite symmetric matrices ,, ** nnmm RQRS ×× ∈∈  and nn

i RR ×∈* , 

  mmRM ×∈* ,  there exists a constant 0* >ρ . Such that given any ],0[~ *ρρ ∈ , the algebraic matrix 
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   has a positive-definite symmetric solution P . 
Proof.   Suppose that P  is a positive-definite symmetric solution to (10). Therefore 

ρPP =∗ satisfies the algebraic matrix equation 
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Using the results of [7] and [14], it directly follows that there exists a constant 0>∗ρ  such that 
the algebraic matrix equation 
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 has a positive-definite symmetric solution P~  for all ],0(ˆ *ρρ ∈ .                                              
 
Remark 3.  We can see from Theorem 2 that the failure or success of the algorithm is independent of 
the selection of SQ, , and ),,1( nnRi K= . If the algorithm succeeds, we can conclude that the 
uncertain system (1)-(5) is quadratically stabilization by control law (10). 

IV. Simulation Example 
 
Now, we consider a dynamic system with the following data 
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We can get from Matlab 
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So the feedback control law can be chosen as 
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The resulting closed-loop state trajectory is presented in figure 1. 

V. Conclusion 
 
This paper has established a linear feedback control law that can stabilize a uncertain system with 
state-control delay and time-varying unknown-but-bounded parameters. The controller in this paper 
is obtained from solving an algebraic matrix equation. An simulation example illustrates the 
effectiveness of the method that given in this paper. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

References 
 
[1] J. C. Shen, B. S. Chen, and F. C. Kung. Memoryless stabilization of uncertain dynamic 

delay system: Riccati equation approach[J]. IEEE Trans. Automat. Contr., vol. 36, 1991, pp. 
638-640. 

[2] G. Leitmann. On the efficacy of nonlinear control in uncertain linear systems[J]. J. Dynamic 
Syst Measurements Contr., vol. 103, 1981, pp. 95-102.  

[3] M. Corless and G. Leitmann. Continuous state feedback guaranteeing uniform ultimate 
boundedness of uncertain dynamic system[J]. IEEE Trans. Automat. Contr., vol. AC-26, 
1981, pp. 1139-1144. 

 
Fig. 1. Quadratic stabilization of uncertain  

delay system 



Yong-gui Kao, Cun-chen Gao and Wei-dong Sun 
Quadratic Stabilization of Linear Uncertain Systems with Multiple Time-varying Delays in State and Input 

8 

[4] B. R. Barmish, M Corless, and G. Leitmann. A new class of stabilizing controllers of an 
uncertain linear system[J]. SIAM J. Contr., vol. 21, 1983, pp. 246-252. 

[5] I. R. Retersen and C. V. Hollot. A Riccati equation approach to the stabilization of uncertain 
linear systems[J]. Automat., vol. 22, 1986, pp. 397-411. 

[6] B. R. Barmish. Necessary and sufficient conditions for quadratic stabilizability of an 
uncertain systems[J]. J. Optim. Theory Appl., vol. 46, 1985, pp. 399-408. 

[7] I. R. Retersin. A stabilization algorithm for a class of uncertain linear systems[J]. Syst. 
Contr. Lett., vol. 8, 1987, pp. 351-357. 

[8] I. R. Petersen and C. V. Hollot. A Riccati equation approach to the stabilization of uncertain 
linear systems[J]. Automatica, vol. 22, 1988, pp. 217-20. 

[9] J. C. Shen, B. S. Chen, and F. C. Kung. Memoryless stabilization of uncertain dynamic 
delay system: Riccati equation approach[J]. IEEE Trans. Automat. Contr., vol. 36,1991, pp. 
638-640. 

[10] K. Zhou and P. P. Khargonekar. Robust stabilization linear systems and norm-bounded 
time-varying uncertainty[J].  Syst. Contr. Lett., vol. 10, 1988, pp. 17-20. 

[11] M. A. Rotea and P. P. Khargonekar. Stabilizability of linear time-varying and uncertain 
linear systems[J]. IEEE Trans. Automat. Contr., vol. AC-33, 1988, pp. 884-447. 

[12] M. S. Mahmoud and N. F. Al-Muthairi. Design of robust controllers for time-delay 
systems[J]. IEEE Trans. Automat. Contr., 1994, vol. 39. 

[13] Magdi S. Mahmoud and Naser F. Al-Muthairi. Quadratic stabilization of continuous time 
systems with state-delay and norm-bounded time-varying uncertainties[J]. IEEE Trans. 
Automat. Contr., vol. 39.10, 1994, pp. 2135-2139. 

[14] L. Xie, M. Fu and C. E. de-Souza. ∞H  control and quadratic stabilization of systems with 
parameter uncertain via output feedback[J]. IEEE Trans. Automat. Contr., vol. 37, 1992, pp. 
1253-1256. 

[15] Peng Shia, El-K, ebir Boukasb, Yan Shic, Ramesh K. Agarwal d. Optimal guaranteed cost 
control of uncertain discrete time-delay systems[J]. Journal of Computational and Applied 
Mathematics, vol. 157, 2003, pp. 435–451. 

[16] D. ARZELIER, D. PEAUCELLE. Quadratic guaranteed cost control for uncertain 
dissipative models: a Riccati equation approach[J]. INT.  J. CONTROL, vol. 73, No. 9, 
2000, pp. 762 - 775. 

[17] Chang W.-J., Wang L., Hao F. Linear matrix inequality approach to quadratic stabilisation 
of switched systems[J]. IEE Proc.-Control Theory Appl., vol. 151, No. 3, 2004, pp. 289 - 
294. 

[18] Z. Ji, Shengyuan Xu, James Lamb, ChengwuYang. Quadratic stability and stabilization of 
uncertain linear discrete-time systems with state delay[J]. Systems  Control Letters, vol. 43, 
2001, pp. 77-84. 

[19] Amato, Pironti, Stefano. Necessary and sufficient conditions for quadratic stability and 
stabilizability of uncertain linear time-varying systems[J]. IEEE Transactions on Automatic 
Control, vol. 41, No.1, 1996, pp. 125-128. 

[20] Su T.-J. Lu, C.-Y., Tsai, J. S . LMI approach to delay-dependent robust stability for 
uncertain time-delay systems[J]. IEE Proceedings: Control Theory and Applications, vol. 
148, No. 3, 2001, pp. 209-212.  

[21] Shieh Cheng-Shion. Robust output-feedback control for linear continuous uncertain state 
delayed systems with unknown time delay[J]. Circuits, Systems, and Signal Processing, vol. 
21, No. 3, 2002, pp. 309-318. 

[22] Gong Chang-Zhong, Wang Wei, Liu Quan-Li. LMI approach to guaranteed cost control for 
a class of uncertain dynamic time-delay systems[J]. Control and Decision, vol. 18, No. 2,  
2003, pp. 135-140. 

[23] Wei-Yong Yan, Lam, James. On quadratic stability of systems with structured uncertainty 
[J]. IEEE Transactions on Automatic Control, vol. 46, No. 11,2001, pp. 1799-1806. 



International Journal of Information Technology     Vol. 11   No. 6  2005 

                                                                          9                                                                                     

 

[24] D. Arzelier, D.  Peaucelle.  Quadratic guaranteed cost control for uncertain dissipative 
models: a Riccati equation approach[J]. International Journal of Control, vol. 73, No. 9, 
2000, pp. 762-776. 

[25] Ramos, Domingos C. W., Peres, Pedro L. D.  An LMI Condition for the Robust Stability of 
Uncertain Continuous-Time Linear Systems[J]. IEEE Transactions on Automatic Control, 
vol. 47, No. 4, 2002, pp. 675-679. 

 
 
 
 
 
 
 
 
 

 
 
 
 

Yonggui Kao received the B.S. degree in mathematics and 
Management science and engineering from Beijing Jiaotong 
University, the M.S. degree in mathematics from Ocean University of 
China, in 1996 and 2005, respectively. He is currently working 
toward the Ph.D. degree in the school of information science and 
engineering, Ocean University of China, Qingdao, P. R. China. 
His research interests include fuzzy control and its application, 
control for time-delay systems, and chaotic systems. 

Weidong Sun received the B.S. degree in mathematics from Ocean 
University of China, Qingdao, in 2004, P. R. China. He is currently 
working toward the M.S. degree in department of mathematics, 
Ocean University of China. His research interests include fuzzy 
control and its applications, control for time-delay systems, and 
uncertain systems.

CunChen Gao was born in Shandong, China in 1956. He 
received his Ph.D. degree from the South-China University of 
Technology, Canton, China in 1997, all in theory and applications of 
automatic control. Between December 1996 and July 2001, he was a 
professor at the Department of Mathematics at Yantai Normal 
University. Since August 2001, he was a professor and Ph.D. Tutor at 
the ocean information probes into with the processing at Ocean 
University of China. His current research interests include the theory 
and applications of large-scale dynamic systems, the analysis and 
synthesis of variable structure control systems with time-delays.


