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Abstract 
 
A neural network-based model reference adaptive control approach (MRAC) for ship steering 
systems is proposed in this paper. For the nonlinearities of ship steering system, performances of 
traditional adaptive control algorithms are not satisfactory in fact. The presented MRAC system 
utilizes RBF neural network to approximate the unknown nonlinearities in order to get a high 
adaptive control performance. Mechanism and stability of the control system are presented in detail. 
Also, a stable controller parameter adjustment law for RBF neural network, which is determined by 
using Lyapunov stability theory, is constructed. Simulation also shows the effectiveness and high 
performance of the proposed algorithm. 
Keyword: neural network, model reference adaptive control, ship steering.  

I. Introduction  
To improve fuel efficiency and reduce wear on ship components, autopilot systems have been 
developed and implemented for controlling the directional heading of ships [1]. Often, the autopilots 
utilize simple control schemes such as PID control. However, the capability for manual adjustments 
of the parameters of the control is desired to compensate for disturbances imposing on the ship such 
as wind, wave and currents. For large variations, the parameters of the autopilot must be continually 
modified. Such continual adjustments are necessary because the dynamics of a ship varies with, for 
example, speed, trim, and loading. As a result, it is of great interest to have an adaptive controller for 
automatically adjusting of the control law. 
Since MRAC is first applied to ship steering control system in 1970s by Amerongen, many adaptive 
algorithms for ship steering control are available in the literature [2-3]. However, as a result of being 
based on linear dynamic model of ship steering, the performance of these algorithms are not 
satisfactory.  
Neural network thus appears to offer advantages over other forms of control for ship steering, in 
which the outstanding nonlinear mapping capability of neural network is exploited for forward and 
inverse plant models in order to develop different adaptive control schemes [4-5]. In this paper, a 
neural network-based model reference adaptive controller is developed, in which the error between 
the outputs of the plant and the reference model is used to adapt the controller parameters. The 
nonlinear part of the controller, which compensates the plant nonlinearity, is implemented by an 
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RBF network. The adjustment mechanism is determined by the Lyapunov stability analysis of the 
overall adaptive control system. This kind of neural network-based adaptive controller is applicable 
to a wide variety of practical problems. 
The paper is organized as follows: Section 2 presents the nonlinear dynamic model of ship steering 
used in this study and gives an overview of the neural network-based MRAC system. In section 3, 
the stability of the proposed control system is analyzed. In section 4, numerical simulation is made to 
demonstrate the control performance of neural network-based MRAC system. Conclusions are 
summarized in section 5. 

II. Ship Steering Control 
A. Nonlinear Model of Ship Steering  

Generally, ship dynamics is obtained by Newton’s laws of motion [6-8]. The SISO maneuvering 
Model of a ship may be expressed as 

( ) δψψ kkd =+ &&&  , (1) 

where ( )tψ  is the yaw angle of the ship, δ is the rudder angle and ( )ψ&d  is a damping term of the form 

( ) 01
2

2
3

3 ddddd +++= ψψψψ &&&&  . (2) 

Because of symmetry, most ship have the property that 020 == dd . Shown from (1) and (2), ship 
exhibits nonlinear dynamical relations between its heading and rudder angle. 
Model reference adaptive control algorithm is one of most effective methods applied to ship steering 
system for its capability of adaptiveness and robustness. The dynamics of the reference model 
should be matched to the dynamics of the ship regardless of the magnitude of the demanded change 
of reference yaw angle. An appropriate model proposed by Van Amerongen is as follows [2]: 

rmmmmmm kba ψψψψ =++ &&&  , (3) 

where mψ  specifies the desired system performance for the ship heading (yaw angle) ψ . 
B. Neural Network-based MRAC System 

The objective of a MRAC system is to obtain a control law and an updating law of the controller 
parameters, such that the overall control system responds dynamically as the specified reference 
model. This may be expressed as follows. The objective is to determine a control action law ( )tδ , for 
all 0>t , and an updating law of the controller parameters such that  

( ) ( ) εψψ ≤−
∞→

tt mt
lim  (4) 

for some specified constant 0>ε . 
The nonlinear adaptive control system considered in the present paper is generalized from the well-
known linear model reference adaptive control systems [9-10]. Consider the plant to be controlled 
given by (1) and reference model given by (2). Assume that mmm kba ,,  have been chosen such that a 
desired trajectory ( )tmψ  is obtained for the plant output ( )tψ  to follow. The system structure is shown 
in Fig. 1. 
The proposed control law has the following form: 

( ) ( ) ( ) ( ) ( )[ ]( )twNtktatb
k

t frmmm ,1 ψψψψδ && ++−−=  , (5) 

where ( ) ∑ ⎟
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&  is implemented using an RBF network that approximates the 

function of ( )⋅d . w is the parameter vector of the neural network, which represents the neural 
network-based adaptive controller parameters to be tuned. 
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Define the error signal as 
( ) ( ) ( )ttte mψψ −=  . (6) 

When the neural network exactly represents the function ( )⋅d , i.e., when ( )( ) ( )( )tdwtN f ψψ && =,  for all t, 
the closed loop system equation, in terms of the error signal, is obtained by substituting (2) and (5) 
into (1) as  

( ) ( ) ( ) 0=++ tebteate mm &&&  , (7) 

which is asymptotically stable for 0>ma  and 0>mb . So, the control objective of ( )tψ  tracking ( )tmψ  
is achieved, i.e., ( ) ( ) ( ) 0→−= ttte mψψ  as ∞→t . 
Consider the neural network learning error, i.e., the approximation error in the representation of the 
function ( )⋅d  by the neural network, given by 
Substitute (3), (5) and (8) into (1), the closed loop system equation becomes 

( ) ( ) ( )[ ] ( )( )tdtwtNw f ψψψ &&& −=∆ ,,  . (8) 

Note that when the learning error tends to zero, i.e., when dN f → , the control error ( )te  tends to 
zero too. Define the neural network weight parameter error as *~ www −= , where *w  is optimal 
parameter vector corresponding to the global minimum error of the network which minimizes 

( )w,ψ&∆ ; i.e., the minimum value of ( )w,ψ&∆  that could be reached is ( )*, wψ&∆ . 

 
Fig. 1. Neural network-based model reference adaptive control system structure 

III. Stability Analysis 
It is assumed that both RBF centers and widths have been chosen and fixed adequately. To drive the 
ship responding dynamically as the specified reference model, the weight values of the linear 
combiner will be adjusted by a learning law so to force the error ( )w,ψ&∆  tend towards to minimum 
value. For the error between the output of the actual nonlinear function ( )⋅d and the output of 
designed RBF neural network is not available, an alternative approach by using the error between the 
reference model output and the plant output as the activation signal of the parameter adjusting law is 
proposed. In this subsection, analysis will be given for the stability of the parameter adjusting law. 
Background material on practical stability will be first introduced [11]. 
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Lemma 1.: Let a system be given by 
( ) 0,, >= ttxfx&  , (9) 

which has the equilibrium state at the origin, i.e., ( ) 0,0 =tf  for all 0≥t . Let the perturbed system be 
given by 

( ) ( )txptxfx ,, +=&  . (10) 

Let Q be a set which is closed and bounded containing the origin and let 0Q be a subset of Q. Let 
( )00 ,, txtx  be the solution of (11) satisfying ( ) 0000 ,, xtxtx = . Let P be the set of perturbations satisfying 
( ) δ≤txp ,  for all x, where 0>δ . If for each p in P, each 0x  in 0Q , and each 00 ≥t , ( )00 ,, txtx  is in Q for 

all 0≥t , then, the equilibrium of (10) at the origin is said to be practically stable.  
Lemma 2.: Let ( )xV  be a scalar function which has continuous first partial derivative for all x and 
with the property that ( ) ∞→xV  as ∞→x . Let ( )xV&  denote the time derivative of V along the 
solutions of system (11). If ( ) ε−≤xV&  for all x outside 0Q , for all p in P, and for all 0≥t  and if 

( ) ( )yVxV ≤  for all x in 0Q , and all y outside Q, then system (10) possesses strong practical stability. 
Based on Lemma 1 and 2, a theorem is proposed as follows. 
Theorem 1. Suppose that the control law is given by (5) and the parameter updating law is given by 

( ) ( ) ( ) ( )tKwtetBtw −Ψ−= &&  , (11) 

where pRw ∈  is the weight factor of the linear combiner of the RBF units; Ψ  and K are diagonal 
positive definite matrices, i.e.,  ( )idiag Ψ=Ψ  and ( )iKdiagK =  with 0>Ψi  and 0>iK ; ( ) pRtB ∈  is the 
output of the hidden layer of the RBF, i.e., ( ) ( )[ ] ( ) ( )twtBtwtN T

f =,ψ& . Then, the whole system given by 

( ) ( ) ( )
( ) ( ) ( ) ( )⎪⎩

⎪
⎨
⎧

−Ψ−=

=++

tKwtetBtw

tebteate mm

&&

&&&

~
0

 (12) 

possesses strong practical stability under perturbation given by ( )w,ψ&∆ , where ( ) ( ) *~ wtwtw −=  and 
*w  is the optimal parameter vector as defined before. 

Proof: System (13) under the given perturbation is described by 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )⎪⎩

⎪
⎨
⎧

−Ψ−=

∆=++

tKwtetBtw

wtebteate mm

&&

&&&&

~
,ψ

 . (13) 

Consider the positive definite function 

( ) wweebweV T
m

~~
2
1

2
1

2
1~, 122 −Ψ++= &  . 

(14) 

Clearly, V can be upper bounded by 

( ) 2122 ~
2
1

2
1

2
1~, weebweV m ⋅Ψ++≤ −&  . 

(15) 

The time derivative of V evaluated along the trajectories of system (13) is 

( ) wweweawweeeebV T
m

T
m

&&&&&&&&&& ~~,~~ 121
)13(

−− Ψ+∆+−=Ψ++= ψ  . (16) 

Since both ( )ψ&d  and [ ]wN f ,ψ&  are continuously differentiable with respect to their arguments, so 
( )w,ψ&∆ is continuously differentiable too. One can apply the mean value theorem and obtain 

( ) ( )
( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∆∂
+∆=∆

ξ

ξψ
ψψ

w
w

www T ,~*,,
&

&&  (17) 
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for some ξw , where ( )*, wψ&∆  is the learning error evaluated at  the global minimum *ww = . 
Considering (8) and  

( ) ( )
( )tB

w
wN

w
w f =

∂

∂
=

∂

∆∂

ξ

ξ

ξ

ξ ψψ ,, &&
 

 

and substituting  (18) into (17), one gets 

( ) ( )weBweweaV T
m

&&&&&& ~~*, 12
)13(

−Ψ++∆+−= ψ  . (18) 

The second term of (18) is partially cancelled out by the following parameter updating law 

( ) ( ) ( ) ( )tKwtetBtw −Ψ−= &&~  . (19) 

As *w  is a constant vector, he adjusting law of w can be determined as in (9), i.e., 
( ) ( ) ( ) ( )tKwtetBtw −Ψ−= &&  .  

Then, Considering (20) and ( ) ( ) *~ wtwtw −= ,  (14) becomes 

( ) *~~~*, 112
)13( KwwwKweweaV T

m
−− Ψ−Ψ−∆+−= &&&& ψ  ,  

and ( )13V&  can be upper bounded by 

( ) *~~*, 2
2

1
2

)13( wwweweaV m ⋅−−⋅∆+−≤ µµψ &&&&  , (20) 

where { }iii K Ψ= /min1µ  and K1
2

−Ψ=µ . Taking into account the fact that the bilinear terms can be 
expressed as 

( ) ( ) ( ) 22
2

23

*,
2
1

2
1*,

2
1*, wew

e
ew ψη

η
ηψ

η
ψ &&& ∆++⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
∆−−=⋅∆  , (21) 

and 

22
2

23

*
2
1~

2
1*
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2
1*~ w

w
w

w
ww ξ

ξ
ξ

ξ
++⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−=⋅   (22) 

for some R∈η  and R∈ξ , (21) can be rewritten as 

( ) ( )( )22
2

222
2

2
1

2
213 **,

2
1~

22
1 wwweaV m ξµψη

ξ
µµ

η
+∆+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−≤ &&&  (23) 

Equivalently, (24) can be written as  

( ) ρσ +−≤ VV 13
&  (24) 

with 

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⋅Ψ

−
−=

− 21
2

2
1

2
2,12min

ξ
µξµ

η
σ ma  , 

 

and ( )( )22
2

22 **,
2
1 ww ξµψηρ +∆= & . It is always possible to choose ( )ma212 >η  and ( )12

2 2/ µµξ > , 

i.e., 0>σ . Now, consider 

( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ +

≤==
σ

ερ
weVweQQ ~,:~,0   

for some 0>ε . It results from (25) that ( ) ε−<13V&  for all e and w~  outside Q since  



Jin Cheng, Jianqiang Yi, Dongbin Zhao 
Neural Network Based Model Reference Adaptive Control for Ship Steering System 

80  

( )
σ

ερ +
>weV ~,   

and that ( ) ( )ywxV <  for all Qx ∈  and all y outside Q. Then apply Lemma 2, (25) implies that (13) 
possess strong practical stability. 

IV. Simulation Result 
To show the performance of the proposed neural network-based model reference adaptive control 
algorithm, and also to verify the stability proved in the preceding theoretical analysis, numerical 
simulation is carried out for a ship steering system. 
The dynamics model of a ship steering system is given as 

24.2,42.9,0107.0 31 === ddk  ,  

which corresponds to the dynamics of a warship traveling at 16 knots [12]. Define the reference 
model (3) as 

025.0,45.0,025.0 === mmm bak  .  

RBF network is defined with  
[ ]
[ ]

( ) [ ]00000
10101010

5.025.025.05.0

=
=

−−=

w

c
σ  , 

 

and 
[ ]
[ ]05.005.005.005.0

9.199.199.199.19
diagK
diag

=
=Ψ

 .   

After the training process is completed, ( ) 0025.0, =∆ wψ& and ( ) [ ]2986.00572.08088.06292.0 −−−=tw . 
The evolution of the desired and measured output signals of the system is presented in Fig.2. The 
learning process can be seen in Fig.3 and Fig.4, which represents respectively the error between the 
reference model and the plant and the learning error of the RBF neural network. Results show that 
the proposed neural network-based MRAC algorithm and the updating law have satisfactory 
performance. 
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Fig. 2. Desired output of reference model and measured output of plant (dashed line) 
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Fig. 3.  Error between the reference model and the plant 
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 Fig. 4.  Learning error of the RBF neural network 

 

V. Conclusion 
A neural network based model reference adaptive controller for ship steering system has been 
presented, in which a RBF neural network is utilized to adaptively compensate the nonlinearities in 
the plant. For the error between the output of the nonlinear function ( )⋅d  and the output of the RBF 
neural network is not available, the error between the reference model output and the plant output is 
used instead as the activation signal of the parameter adjusting law. Based on the Lyapunov stability 
theory, the updating law for the RBF neural network and practical stability are analyzed, which takes 
into account the neural network learning error. Numerical simulation was carried out to show the 
practical feasibility and performance of the proposed neural network-based adaptive control 
algorithm. 
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