
J.G. Shi, X.G. Gao, Z. Liu, C.H. Zhang 
Studies for Hierarchy DDBN and Its Inference Algorithm 

 124

3Dept. of Electrical & Computer Engineering,  
Kumamoto University, Kumamoto 860-8555, Japan 

 
candidateshijg@126.com, xggao@nwpu.edu.cn, zch852@gmail.com 

2Graduate School of Engineering, Nagasaki Institute of Applied 
Science, Nagasaki 851-0193, Japan 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract 
 
In order to solve the problem of modeling and inference for a vast complicated system, a new 
concept of Hierarchy DDBN was proposed here through the layer analysis method, and worked out 
the inference algorithm of the Hierarchy DDBN based on the strict probability theory. In order to 
test the validity of the inference algorithm, a series of  simulation were conducted. The result showed 
that the Hierarchy DDBN could model the complicated system in a proper way, and it ccould 
simplify the modeling process, speed up the inference. Also the result was totally in accord with the 
human decision. 
Keyword: Discrete Dynamic Bayesian network, Inference, Algorithm. 

I. Introduction 
 

Since Discrete Dynamic Bayesian Network (DDBN) inferences and predicts system state 
through the observations acquired in the past and at present, it can make the observations 
compensate to each other, and can tolerate the uncertainty and missing of the observations. Thus, 
DDBN has become an important tool for modeling and inferring a dynamic system. The studies for 
DDBN are quite active in the world. Refs. [1,2] introduced DSBN (Discrete Static Bayesian 
Network) and its junction tree inference algorithm in details. Refs. [3] described DDBN and its 
inference algorithm in more details. DSBN or DDBN has been widely used in image identification [5], 
target identification [6], combating situation assessment [7] and tracking [8]. The more studies for 
inference and learning of DSBN or DDBN are on going [8-12].  

 
Because there are a large number of observation variables, the medium variables and system 

variables in a complicated system or in a distributed system, using traditional DDBN will result in a 
high complexity in modeling and in variables, which slowdowns its inference speed. Especially as 
for the distributed systems consisted of a large number of entities, the observations must come from 
every entity, so a large number of observations must be transmitted, and this will depend on a high 
quality communication system. In order to solve this problem, we proposed the concept of Hierarchy 
DDBN and its inference algorithm based on the theory of complicated system. The new type of 
DDBN can be used to rid of the hardship of applying the traditional DDBN to complicated systems.  
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II. Hierarchy DDBN and Its Inference Algorithm 
 

A.  The Definition of Hierarchy DDBN  
 
A DDBN is composed of a series of DSBN corresponding to different time chips. A node in a 

DSBN will be a group of nodes in the corresponding DDBN. We assume, DDBN1、DDBN2….. 
DDBNn，if a hidden node of DDBNi is an observation node of another DDBN, DDBNi－1, then the n 
numbers of DDBNs compose a Hierarchy DDBN. Basically, a Hierarchy DDBN is a group of 
DDBNs with some relations. For example, the distribution of a node in DDBN2 which comes from 
the inference is the input of an observation node of DDBN1. 

 
B. Inference Algorithm of Hierarchy DDBN 

 
         In [2], the author introduced the characters and the conditional independency property of the 
DSBN. To a DSBN which contains n numbers of hidden nodes and m numbers of observation nodes, 
we can summarize the essence of its inference as the formulation below: 

1 2 1 2( , ,... , ,... )n mp y y yx x x ＝

1 2
...

( ( )) ( ( ))

( ( )) ( ( ))
n

i ij j
j i

i ij j
j i

p pa p pa

p pa p pa
x x x

y y x x
y y x x
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∑ ∏ ∏
                    

[1, ], [1, ]i n j m∋ ∈                                                                                     （1） 

Where the xi is a state of variable iX . yi  is a state of variable iY . )( ipa y  is the parents set of 

variable iY . 
 
If the DSBN develops T time chips along with the time, the T numbers of DSBN and their 

predecessor-successor relations between each other will form a DDBN. Because every observation 
variables has only one state, so the joined distribution of all hidden variables is  
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＝
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  [1, ], [1, ], [1, ]i T j m K n∋ ∈ ∈                   （2） 

 
Where ijx  is a state of variable ijX , the first subscript stands for the number of the time chip which 
the variable belongs to, the second subscript stands for the number of the hidden variable in set 

1 2( , ,... )nx x x . The same as the variable of ijy . ( )ijpa y is the parents set of variable ijy . 
 
As to a hierarchy DDBN, because it contains more DDBN and the inference of high level 

depends on the inference of the low level, so the inference of the Hierarchy DDBN must begin at the 
lowest level, and upwards one after another. 

 
At first, we deduce the inference algorithm of a two levels Hierarchy DDBN, and generalize it 

to common situations. Assume that the first level DDBN is the high level and that it contains T time 
chips and n1 numbers of hidden variables and m1 numbers of observation nodes in each chip. Note 
these variables as 11 (1 1 )jk j T k nx ≤ ≤ ≤ ≤ and 11 (1 1 )pqy p T q m≤ ≤ ≤ ≤  respectively, where 11 (1 1 )jk j T k nx ≤ ≤ ≤ ≤  
stands for the number k hidden node in chip j of the level one DDBN,  same as the variable of 

11 (1 1 )jk j T k nx ≤ ≤ ≤ ≤ . But in the level one, variables 1 11 1
(1 )p qy Tp≤ ≤  can not be observed directly. 

Their status must come from the inference of the second level. 
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The second level DDBN contains T time chips too. In each chip, there are n2 numbers of hidden 
variables and m2 numbers of observation variables. Note them as 2 2(1 1 )jk j T kx n≤ ≤ ≤ ≤  and 

22 (1 1 )pq p T qy m≤ ≤ ≤ ≤  respectively. According to the definition of Hierarchy DDBNs, assume that the 
observation variables 

1 11 1
(1 )p q Ty p≤ ≤  in level one is equal to the hidden variables 2 111

(1 )j k Tjx ≤ ≤ in 
level two, so the inference results of variables 2 111

(1 )j k Tjx ≤ ≤ are the observations of 
variables

1 11 1
(1 )p q Ty p≤ ≤ . 

 
Assume that every observation variables in level one can be observed and only be observed in 

one state, then the joint distribution of all hidden variables is below 
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where 
1 1

111 112 11 1 1 1 2 1

( , , ... , ..... , , ... )
T T Tm m

y y y y y y  is the only state vector of all observation variables. 

 

But for the Hierarchy DDBN mentioned above, because the variables 1 11 1
(1 )p q Ty p≤ ≤  can not be 

observed in level one DDBN, their distributions can only be acquired after the inference of second 

level DDBN is finished, so every variables of 1 11 1
(1 )p q Ty p≤ ≤  has more than one state, their state is a 

distribution. so the joint distribution of all hidden variables is the weight sum of their joint 

distribution under each distribution of 1 11 1
(1 )p q Ty p≤ ≤ . We deduce the inference algorithm as below: 

 
  1 11 1

(1 )p q Ty p≤ ≤  in the second level DDBN are hidden nodes, and they are noted as 
2 111

(1 )j k Tjx ≤ ≤ , so we must determine the joint distribution of 2 111
(1 )j k Tjx ≤ ≤  according to (3) 

and the probability theory. The joint distribution of variables 2 111
(1 )j k Tjx ≤ ≤ can be determined as 

below. 
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(4) 
where 2 2[1, ], [1, ], [1, ], [1, ]i T p T K qn m∋ ∈ ∈ ∈  When there is only one group of observation variables, get their 
status from the second level DDBN, the joint distribution of all the hidden variables of level one 
DDBN is below: 
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where 1 1[1, ], [1, ], [1, ], [1, ]i T p T K qn m∋ ∈ ∈ ∈ 或 2 2[1, ], [1, ], [1, ], [1, ]i T p T K qn m∋ ∈ ∈ ∈ . 
 

If there are more than one group of observation variables which get their status from the 
inference results of the lower level DDBN, let us say there are z groups of this kind of observation 
variables, we note them as:  
               1 11 1

(1 )p q Ty p≤ ≤ , 1 11 2
(1 )p qy Tp≤ ≤ ，……， 1 11

(1 )p qz
y Tp≤ ≤  

 
They are hidden variables in the second level DDBN( maybe more than one DDBN in level 

two), and then the joint distribution of all hidden variables in level one DDBN is below. 
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1 1[1, ], [1, ], [1, ], [1, ]i T p T K qn m∋ ∈ ∈ ∈ or 2 2[1, ], [1, ], [1, ], [1, ]l li T p T K qn m∋ ∈ ∈ ∈ .                               （6） 

 
 If a hierarchy DDBN contains H levels of DDBN, and there are zi observation variables in the 

ith level which their status must come from the inference results of the level i+1, then the inference 
of this Hierarchy DDBN will be the generalization of the two levels Hierarchy DDBN mentioned 
above. It is below: 

 
1 At first, we must start from the level H, and calculate the joint distribution of all hidden 

variables in level H according to formula 3. 
 
2 Start with the result of 1, extract out the distribution of hidden variables, which are the 

observation variables in level H-1 using formula 4. Now, all status of the observation nodes in level 
H-1 are known. 

 
3 Let control C=H-1. 
 
4 Calculate the joint distribution of all hidden variables in level C DDBN using formula 6。 
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dispatch 
1＃：2＃： 

1＃preponderant 
super： 

comparative： 
common： 
inferior： 

2＃preponderant： 
super： 

comparative： 
common： 
inferior： 

1＃capacity： 
super： 

comparative： 
common： 
inferior： 

2＃capacity: 
super： 

comparative： 
common： 
inferior： 

5 If C>1, because the joint distribution of all hidden variables in level C DDBN are known, we 
can extract out the distribution of hidden variables which are the observation variables in level C-1 
using formula 4, now, all status of the observation nodes in level C-1 are known, Let C=C-1, go to 4; 
else The process of the inference is over. 

III. Samples and Simulation 
 

Now, we can see the application and advance of the hierarchy DDBN. The sample is the 
emergency helicopter schedule problem. Assume that we have some helicopters for the use of 
disaster saving. The command center directs all the helicopters and allocate task for them according 
to the position of the disaster, the emergency of the disaster and the capacity of these helicopters. 
However, the status and capacity of every helicopter change dynamically according to the position 
between the disaster and the helicopter, and the emergency of the disaster are change dynamically 
too. Thus, the helicopter dispatch should be modeled using dynamic Bayesian network, otherwise, 
the status and capacities of the helicopters can not be acquired by the command center directly. If we 
model the helicopter dispatch problem by a single DDBN, the inference can only be executed in the 
command center and every helicopter must transfer a large number of data to the command center. 
The data transfers will cost much time, and data transfers are jammed easily. The best method is that 
the capacity and status are calculated by every helicopter itself using inference, and transfer the 
concise results of their inference to the command center. This process is just a hierarchy work and 
the hierarchy DDBN is the right way to model the process. 

 
A. The Helicopter Schedule Model 

 
The function of the command center is to evaluate the preponderant relationship between the 

helicopter and the disaster, and allocate helicopters for the disasters by their emergency order. The 
method of the command center is dispatching the most preponderant and the most capable one to 
saving a disaster. To make it simple, assume that the command has the power to command two 
helicopters, and now, a disaster in some place occurred. Then we can model the helicopter schedule 
as fig 1.  

 
Each helicopter must calculate its capacity by inference and take its own motor state, saving 

equipment state, detection equipment state and screw capacity in to account. The inference DDBN 
model is shown in fig 2. In this model(fig 2), All the status can be acquired form transducers and 
database. To make it simple, we assume that the two helicopters have the same flying quality and 
have the same equipment. They are installed remote saving system and short range saving system, 
remote detector and short range detector. The saving system contains electrical equipment and 
mechanical equipment. So the capacity of a helicopter can be classified to 4 stages, super, 
comparative, common and inferior. 
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Fig 1. The helicopter schedule model (level 1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2. The capacity decision model for a helicopter （level 2） 
 
In order to execute the inference, we also need to set the conditional probability table for each 

level of the DDBN. This table should be determined by experts. According to some experts, we set 
the conditional probability table as table 1 and table 2. 

Table 1. The conditional probability table of the helicopter schedule model (level 1) 

 1# 2#  1# 2# 
0.7 0.05 0.7 0.1 
0.2 0.2 0.15 0.25 
0.05 0.1 0.1 0.25 

1＃
preponde

rant 
0.05 0.65 

1＃
capacity 

0.05 0.4 
0.1 0.7 0.1 0.7 
0.25 0.2 0.25 0.15 
0.25 0.05 0.25 0.1 

2＃
preponde

rant 
0.4 0.05 

2＃
capacity 

0.4 0.05 

Table 2. The conditional probability table of the capacity decision model (level 2) 
 super comparative common inferior 

0.5 0.5 0.5 0.1 
0.5 0.5 0.5 0.1 

Motor state 
 

0 0 0 0.8 
0.4 0.4 0.2 0.1 
0.35 0.4 0.2 0.1 
0.2 0.1 0.5 0.1 

Electrical 
state 
 

0.05 0.1 0.1 0.7 
0.75 0.2 0.1 0.1 
0.1 0.5 0.1 0.1 
0.05 0.2 0.7 0.1 

Screw 
quality 
 
 0.1 0.1 0.1 0.7 

0.45 0.3 0.1 0.1 
0.25 0.5 0.3 0.1 
0.2 0.1 0.5 0.1 

Detector 
state 

0.1 0.1 0.1 0.7 
Mechanical 0.4 0.4 0.2 0.1 

capacity 
super:  comparative:   
common: inferior: 

Motor state 
good: 

common： 
failure： 

Detector state 
All normal： 

Remote only： 
Short only： 
All failure： 

Electrical state 
All normal： 

Remote only： 
Short only： 
All failure： 

Mechanical state 
All normal： 

Remote only： 
Short only： 
All failure： 

Screw quality 
All well： 

Remote only： 
Short only： 

Know nothing： 
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0.35 0.4 0.2 0.1 
0.2 0.1 0.5 0.1 

state 
 

0.05 0.1 0.1 0.7 
0.7 0.1 0.1 0.1 
0.1 0.7 0.1 0.1 
0.1 0.1 0.7 0.1 

Next time 

0.1 0.1 0.1 0.7 
 
Assume that a disaster occurred in some place, and the distances between each helicopter and 

the disaster are the same. This means, no.1 helicopter has the same preponderant as the no.2 
helicopter. The command center must dispatch a helicopter to go to the place to save the disaster. 
Assume we observed the situation and the helicopters 4 times, and have 4 groups of observations. 
All the observations are shown in table 3 and table 4. 

Table 3. The 4 time slots observations of no.1 helicopter 

 Time slot 1 Time slot 2 Time slot 3 Time slot 4 
preponderant comparative comparative comparative comparative 
motor good good good good 
detector state all normal all normal all normal all normal 
electrical state all normal all normal all normal all normal 
mechanical  all normal all normal all normal all normal 
screw quality all well all well all well all well 

Table 4. The 4 time slots observations of no.2 helicopter 

 Time slot 1 Time slot 2 Time slot 3 Time slot 4 
preponderant comparative comparative comparative comparative 
motor good good good good 
detector state short only all normal short only all normal 
electrical state short only short only short only short only 
mechanical  all normal all normal all normal all normal 
screw quality short only short only short only short only 

 
From table 2 and table 4, we can know that the two helicopters has the same preponderant at 

four times, and the equipments of no.1 helicopter are all normal. But the equipments of no.2 
helicopter are not all normal, further more; the screw of no.1 helicopter has high quality than the 
screw of the no2 helicopter. So we can conclude that the capacity of no.1 helicopter is more better 
than no.2 helicopter. The command center should dispatch no.1 helicopter to undertake the saving 
task. 
 
 

B. Results of the simulation 
 
Using the inference algorithm, we take a simulation for the helicopter schedule problem, the 

results are shown in table 5, table 6 and table 7. 

Table 5. The capacity inference results for no.1 helicopter 

Time slot 1 Time slot 2 Time slot 3 Time slot 4 
0.9684  0.0305  0.0011 

0.0001 
0.9889  0.0109  0.0002 

0.0000 
0.9889  0.0109  0.0002 

0.0000 
0.9684  0.0305  0.0011 

0.0001 

Table 6.  The capacity inference results for no.2 helicopter 

Time slot 1 Time slot 2 Time slot 3 Time slot 4 
0.0182  0.0421  0.9395 

0.0002 
0.0057  0.0188 0.9755   

0.0000 
0.0057  0.0188  0.9755   

0.0000 
0.0182  0.0421  0.9395   

0.0002 
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Table 7. The helicopter schedule inference results 

Time slot 1 Time slot 2 Time slot 3 Time slot 4 
0.9906    0.0094 0.9974    0.0026 0.9878    0.0122 0.9868    0.0132 

 
From the inference results mentioned above we can conclude that the inference results are 

totally in accord with the judgment of human beings. The inference program is running by a P-III- 
900 CPU. The capacity decision inference takes 0.6 seconds. The helicopter schedule inference takes 
0.5 seconds. The total time cost is 1.1 seconds. We also integrated the two levels model to form a 
single big DDBN, and took an inference on the big one, the results of the four time slots are 
（0.9757  0.0243）、（0.9852  0.0148）、（0.9570  0.0430）、（0.9601  0.0399）），it takes 
1 second. So on this condition, the time consumption of the two types DDBN is the same. Using the 
hierarchy DDBN can save more time for data communications, so inference in the hierarchy DDBN 
are fast. Further more, when the numbers of the dynamic Bayesian networks in level two are more 
than 2, because the second level inference are executed in parallel by more than one computers, the 
inference in hierarchy DDBN will more fast.  In addition, there is a slight difference between the 
inference results of the hierarchy DDBN and the integrated. The reason is that the inference result is 
influenced by the priority probabilities. In a hierarchy DDBN, there will be more priority 
probabilities, and there is only one priority probability in a single level DDBN. The slight difference, 
for qualitative inference, can be omitted. 

VI. Conclusions 
 

The basic idea of the hierarchy DDBN comes from the actual requirement for modeling and 
inference the complicated system. The model of the hierarchy DDBN is the abstract of the 
relationship between the actual physical system, and the inference algorithm comes from the basic 
theories of Bayesian network and from the probability theory, so we can trust the truth of this. From 
the simulation, we can conclude that the hierarchy DDBN can make the modeling and inference for 
the complicated system easy. The inference formulations (1.3~1.6) seems more complicated. But it 
is more easy for programming, and it is faster than the big single level DDBN which is the 
integration of the all levels of DDBN。The reasons are two main points: one is that the inference of 
the hierarchy DDBN was executed by more computers and in a parallel manner; another one is that 
the hierarchy DDBN can save more time for data communications in the distributed system; in 
addition, it can be implemented locally and in parallel manner without sacrificing accuracy. 
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