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Abstract 
 
As shown in the bibliography, training an ensemble of networks is an interesting way to improve the 
performance. However there are several methods to construct the ensemble. In this paper, some new 
results are presented in a comparison of twenty different methods. Ensembles of 3, 9, 20 and 40 
networks have been trained to show results in a wide spectrum of values. The results show that the 
improvement in performance above 9 networks in the ensemble depends on the method but it is 
usually low. Also, the best method for a ensemble of 3 networks is called “CVC version 2” and uses 
a partition of the training and cross-validation sets according to the more usual method CVC. For the 
case of 9 and 20 networks the best method is “Conservative Boosting”, a modification of 
“Adaboost”. And finally for 40 networks the best method is “Cels”.  
 
Keyword: Multilayer Perceptron, Backpropagation, Ensembles of Neural Networks.  

I. Introduction 
 
Probably the most important property of a neural network is the generalization capability, i.e., the 
ability to correctly respond to new inputs not present in the training set. 
One technique to increase the generalization capability with respect to a single neural network 
consist on training an ensemble of neural networks, i.e., to train a set of neural networks with 
different weight initialization or properties and combine the outputs in a suitable manner. 
It is clear from the bibliography that this procedure in general increases the generalization capability 
[1, 2]. 
The two key factors to design an ensemble are how to train the individual networks to obtain not 
correlated outputs in the different networks and how to combine the different outputs to give a single 
output. 
Among the methods of combining the outputs, the two most popular are voting and output averaging 
[3]. In this paper we will normally use output averaging. This procedure gives a reasonable 
performance [5] and it has not problems of ties. 
In the other aspect, nowadays, there are several different methods in the bibliography to train the 
individual networks and construct the ensemble [1-3]. 
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However, there is a lack of comparison among the different methods. One comparison can be found 
in [4], it is a previous work developed by our research group. In paper [4], eleven different methods 
are compared. The conclusions of this paper are that the method called “Decorrelated” is the best 
among the eleven methods analyzed. 
Now, more complete results are presented by including nine new methods, so the number of 
methods is increased in the comparison to a total of twenty. These new empirical results are quite 
interesting because one of the new methods analyzed in this paper, called “conservative boosting” 
seems to have the best performance in several situations. 

II. Theory 
 
In this section we briefly review the new nine ensemble methods introduced in this paper for 
comparison. The description of the rest of methods denoted by “Simple Ensemble”, “Ola”, “Evol”, 
“Decorrelated”, “Decorrelated2”, “CVC”, “Cels”, “Boosting”, “Bag_Noise” and “Adaboost”, can be 
found our previous reference [4], and in the references cited there. 
 

A. CVC version 2 
In the usual CVC the available data is divided in training, cross-validation and testing subsets. 
After that, the data for training is divided by the number of networks giving several subsets. 
Then, one different subset is omitted for each network and the network is training with the rest 
of subsets. 
The version 2 of CVC included in this paper is used in reference [5]. The data for training and 
cross-validation is jointed in one set and with this jointed set the usual division of CVC is 
performed. In this case, one subset is omitted for each network and the omitted subset is used 
for cross-validation. 
 

B. Aveboost 
Aveboost is the abbreviation of Average Boosting. This method was proposed in reference [6] 
as a variation of Adaboost. In Adaboost, it is calculated a probability for each pattern of being 
included in the training set for the following network. In this case a weighted adaptation of the 
probabilities is performed. 
The method of combination of outputs employed was not averaging in this case. Aveboost has 
the same method of combination of Adaboost. There are different weights in the combination 
according to the performance of the different networks. 
 

C. TCA, Total Corrective Adaboost 
It was also proposed in [6] and it is another variation of Adaboost. In this case the calculation 
of the probability distribution for each network is treated as an optimization problem and an 
iterative process is performed. 
 

D. Aggressive Boosting 
Aggressive Boosting is a variation of Adaboost. It is reviewed in [7]. In this case it is used a 
common step to modify the probabilities of a pattern for being included in the next training set. 
 

E. Conservative Boosting 
It is another variation of Adaboost reviewed in [7]. It is a y technique similar to Aggressive 
Boosting. In this case the probability of the well classified patterns is decreased and the 
probability of wrong classified patterns is kept unchanged. 
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F. ArcX4 

It is another variation of Boosting. It was proposed and studied in reference [8]. The method 
selects training patterns according to a distribution, and the probability of the pattern depend on 
the number of times the pattern was not correctly classified by the previous networks. 
The combination procedure proposed in the reference is the mean average. In our experiments 
we have used this procedure and also voting. 
 

G. EENCL Evolutionary Ensemble with Negative Correlation 
This method is pro-posed in reference [9]. The ensemble is build as a population of a genetic 
algorithm. The fitness function is selected to consider the precision in the classification of the 
individual networks and also to penalize the correlation among the different networks in the 
ensemble.  
Two variations of the method are used, EENCL UG and MG in UG we select as the networks 
of the ensemble the last population of networks, in the case of MG we select the best 
population according to the criterion of the mean squared error of cross-validation. 

III. Experimental Results 
 
We have applied the twenty ensemble methods to ten different classification problems. They are 
from the UCI repository of machine learning databases. Their names are Cardiac Arrhythmia 
Database (Aritm), Dermatology Database (Derma), Protein Location Sites (Ecoli), Solar Flares 
Database (Flare), Image Segmentation Database (Image), Johns Hopkins University Ionosphere 
Database (Ionos), Pima Indians Diabetes (Pima), Haberman’s survival data (Survi), Vowel 
Recognition (Vowel) and Wisconsin Breast Cancer Database (Wdbc). 
We have constructed ensembles of a wide number of networks, in particular 3, 9, 20 and 40 
networks in the ensemble. We repeated the process of training the ensembles of 3, 9, 20 and 40 
networks ten times for ten different partitions of data in training, cross-validation and test. 
With this procedure we can obtain a mean performance of the ensemble for each database (the mean 
of the ten ensembles) and an error in the performance calculated by standard error theory. The results 
are in table I for the case of ensembles of three networks, in table II for nine, in table III for twenty 
and in table IV for forty networks in the ensemble. 
By comparing the results of table 1, and 2 with the results of a single network we can see that the 
improvement by the use of the ensemble methods depends clearly on the problem. For example, in 
databases Aritm (except for the case of CVC version 2), Flare, Pima and Wdbc there is not a clear 
improvement. In the rest of databases there is an improvement; perhaps the most important one is in 
database Vowel. 
This result (the improvement depends strongly of the database) was already known in the 
bibliography. 
There is, however, one exception in the performance of the method Evol. This method did not work 
well in our experiments. In the original reference the method was tested in the database Heart. The 
result for a single network was 60%, for a simple ensemble 61.42% and for Evol 67.14%. We have 
performed experiments with database Heart from the UCI repository and our result for a simple 
network is 82.0 ± 0.9, clearly different. 
Now, we can compare the results of tables I, II, III and IV for ensembles of different number of 
networks. We can see that the results are in general similar and the improvement of training an 
increasing number of networks, for example 20 and 40, is in general low. Taking into account the 
computational cost, we can say that the best alternative for an application is an ensemble of three or 
nine networks. 
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Table I. Results for the ensemble of three networks. 
 

 ARITM DERMA ECOLI FLARE IMAGEN
Single Net. 75.6 ± 0.7 96.7 ± 0.4 84.4 ± 0.7 82.1 ± 0.3 96.3 ± 0.2
Adaboost 71.8 ± 1.8 98.0 ± 0.5 85.9 ± 1.2 81.7 ± 0.6 96.8 ± 0.2
Bagging 74.7 ± 1.6 97.5 ± 0.6 86.3 ± 1.1 81.9 ± 0.6 96.6 ± 0.3
Bag_Noise 75.5 ± 1.1 97.6 ± 0.7 87.5 ± 1.0 82.2 ± 0.4 93.4 ± 0.4
Boosting 74.4 ± 1.2 97.3 ± 0.6 86.8 ± 0.6 81.7 ± 0.4 95.0 ± 0.4
Cels_m 73.4 ± 1.3 97.7 ± 0.6 86.2 ± 0.8 81.2 ± 0.5 96.82±0.15
CVC 74.0 ± 1.0 97.3 ± 0.7 86.8 ± 0.8 82.7 ± 0.5 96.4 ± 0.2
Decorrelated 74.9 ± 1.3 97.2 ± 0.7 86.6 ± 0.6 81.7 ± 0.4 96.7 ± 0.3
Decorrelated2 73.9 ± 1.0 97.6 ± 0.7 87.2 ± 0.9 81.6 ± 0.4 96.7 ± 0.3
Evol 65.4 ± 1.4 57 ± 5 57 ± 5 80.7 ± 0.7 77 ± 5 
Ola 74.7 ± 1.4 91.4 ± 1.5 82.4 ± 1.4 81.1 ± 0.4 95.6 ± 0.3
CVC version 2 76.1 ± 1.6 98.0 ± 0.3 86.8 ± 0.9 82.5 ± 0.6 96.9 ± 0.3
AveBoost 73.4 ± 1.3 97.6 ± 0.7 85.3 ± 1.0 81.8 ± 0.8 96.8± 0.2
TCA 70.7 ± 1.9 96.1 ± 0.6 85.4 ± 1.3 81.9 ± 0.7 94.8 ± 0.5
ArcX4 75.4 ± 0.8 97.8 ± 0.5 85.3 ± 1.1 78.3± 0.9 96.6 ± 0.2
ArcX4 Voting 73.0 ± 0.8 97.0 ± 0.5 85.7 ± 1.1 80.6 ± 0.9 96.5 ± 0.2
Aggressive B 72.3 ± 1.9 97.0 ± 0.5 85.7 ± 1.4 81.9 ± 0.9 96.6 ± 0.3
Conservative B 74.8 ± 1.3 96.9 ± 0.8 85.4 ± 1.3 82.1 ± 1.0 96.5 ± 0.3
EENCL UG 71 ± 2 96.8 ± 0.9 86.6 ± 1.2 81.4 ± 0.8 96.3 ± 0.2
EENCL MG 74.5 ± 1.3 97.2 ± 0.8 86.6 ± 1.2 81.9 ± 0.5 96.0 ± 0.2
Simple Ens. 73.4 ± 1.0 97.2 ± 0.7 86.6 ± 0.8 81.8 ± 0.5 96.5 ± 0.2

 
Table I (continuation). Results for the ensemble of three networks. 

 
 IONOS PIMA SURVI VOWEL WDBC 

Single Net. 87.9 ± 0.7 76.7 ± 0.6 74.2 ± 0.8 83.4 ± 0.6 97.4 ± 0.3
Adaboost 88.3 ± 1.3 75.7 ± 1.0 75.4 ± 1.6 88.43 ± 0.9 95.7 ± 0.6
Bagging 90.7 ± 0.9 76.9 ± 0.8 74.2 ± 1.1 87.4 ± 0.7 96.9 ± 0.4
Bag_Noise 92.4 ± 0.9 76.2 ± 1.0 74.6 ± 0.7 84.4 ± 1.0 96.3 ± 0.6
Boosting 88.9 ± 1.4 75.7 ± 0.7 74.1 ± 1.0 85.7 ± 0.7 97.0 ± 0.4
Cels_m 91.9 ± 1.0 76.0 ± 1.4 73.4 ± 1.3 91.1 ± 0.7 97.0 ±0.4
CVC 87.7 ± 1.3 76.0 ± 1.1 74.1 ± 1.4 89.0 ± 1.0 97.4 ± 0.3
Decorrelated 90.9 ± 0.9 76.4 ± 1.2 74.6 ± 1.5 91.5 ± 0.6 97.0 ± 0.5
Decorrelated2 90.6 ± 1.0 75.7 ± 1.1 74.3 ± 1.4 90.3 ± 0.4 97.0 ± 0.5
Evol 83.4 ± 1.9 66.3 ± 1.2 74.3 ± 0.6 77.5 ± 1.7 94.4 ± 0.9
Ola 90.7 ± 1.4 69.2 ± 1.6 75.2 ± 0.9 83.2 ± 1.1 94.2 ± 0.7
CVC version 2 89.7 ± 1.4 76.8 ± 1.0 74.1 ± 1.2 89.8 ± 0.9 96.7 ± 0.3
AveBoost 89.4 ± 1.3 76.5 ± 1.1 75.1 ± 1.2 88.1 ± 1.0 95.6 ± 0.5
TCA 87.9 ± 1.2 75.4 ± 0.8 73.0 ± 1.5 87.5 ± 1.1 91 ± 4 
ArcX4 89.4 ± 1.0 76.0 ± 0.8 68 ± 2 90.8 ± 0.9 96.3 ± 0.6
ArcX4 Voting 89.0 ± 1.0 76.3 ± 0.8 74 ± 2 86.2 ± 0.9 96.1 ± 0.6
Aggressive B 90.3 ± 0.9 74.3 ± 1.5 73.8 ± 1.5 86.9 ± 1.2 96.6 ± 0.6
Conservative B 89.4 ± 1.0 75.6 ± 1.2 75.6 ± 1.1 88.8 ± 1.1 97.0 ± 0.6
EENCL UG 93.0 ± 1.0 74.7 ± 1.0 73.9 ± 1.2 87.2 ± 0.8 96.2 ± 0.4
EENCL MG 93.7 ± 0.9 75.3 ± 1.0 73.9 ± 0.8 87.4 ± 0.7 96.4 ± 0.5
Simple Ens. 91.1 ± 1.1 75.9 ± 1.2 74.3 ± 1.3 88.0 ± 0.9 96.9 ± 0.5



Carlos Hernández-Espinosa, Joaquín Torres-Sospedra and Mercedes Fernández-Redondo 
New Experiments on Ensembles of MF 
 

14 

Table II. Results for the Ensemble of nine networks. 
 

 ARITM DERMA ECOLI FLARE IMAGEN
Adaboost 73.2 ± 1.6 97.3 ± 0.5 84.7 ± 1.4 81.1 ± 0.7 97.3 ± 0.3
Bagging 75.9 ± 1.7 97.7 ± 0.6 87.2 ± 1.0 82.4 ± 0.6 96.7 ± 0.3
Bag_Noise 75.4 ± 1.2 97.0 ± 0.7 87.2 ± 0.8 82.4 ± 0.5 93.4 ± 0.3
Cels_m 74.8 ± 1.3 97.3 ± 0.6 86.2 ± 0.8 81.7 ± 0.4 96.6 ± 0.2
CVC 74.8 ± 1.3 97.6 ± 0.6 87.1 ± 1.0 81.9 ± 0.6 96.6 ± 0.2
Decorrelated 76.1 ± 1.0 97.6 ± 0.7 87.2 ± 0.7 81.6 ± 0.6 96.9 ± 0.2

Decorrelated2 73.9 ± 1.1 97.6 ± 0.7 87.8 ± 0.7 81.7 ± 0.4 96.84 ± 
0.18 

Evol 65.9 ± 1.9 54 ± 6 57 ± 5 80.6 ± 0.8 67 ± 4 
Ola 72.5 ± 1.0 86.7 ±1.7 83.5 ± 1.3 80.8 ± 0.4 96.1 ± 0.2
CVC version 2 76.1 ± 1.6 98.0 ± 0.3 86.8 ± 0.9 82.5 ± 0.6 96.9 ± 0.3
AveBoost 73.4 ± 1.3 97.6 ± 0.7 85.3 ± 1.0 81.8 ± 0.8 96.8 ± 0.2
TCA 70.7 ± 1.9 96.1 ± 0.5 85.4 ± 1.3 81.9 ± 0.7 94.8 ± 0.5
ArcX4 75.4 ± 0.8 97.8 ± 0.5 85.3 ± 1.1 78.3 ± 0.9 96.6 ± 0.2
ArcX4 Voting 73.3 ± 0.8 97.6 ± 0.5 84.9 ± 1.1 80.1 ± 0.9 97.2 ± 0.2
Aggressive B 72.3 ± 1.9 97.0 ± 0.5 85.7 ± 1.4 81.9 ± 0.9 96.6 ± 0.3
Conservative B 74.8 ± 1.3 96.9 ± 0.8 85.4 ± 1.3 82.1 ± 1.0 96.5 ± 0.3
EENCL UG 71 ± 2 96.8 ± 0.9 86.6 ± 1.2 81.4 ± 0.8 96.3 ± 0.2
EENCL MG 74.5 ± 1.3 97.2 ± 0.8 86.6 ± 1.2 81.9 ± 0.5 96.0 ± 0.2
Simple Ens 73.8 ± 1.1 97.5 ± 0.7 86.9 ± 0.8 81.6 ± 0.4 96.7 ± 0.3

 
Table II (continuation). Results for the ensemble of nine networks. 

 
 IONOS PIMA SURVI VOWEL WDBC 

Adaboost 89.4 ± 0.8 75.5 ± 0.9 74.3 ± 1.4 94.8 ± 0.7 95.7 ± 0.7
Bagging 90.1 ± 1.1 76.6 ± 0.9 74.4 ± 1.5 90.8 ± 0.7 97.3 ± 0.4
Bag_Noise 93.3 ± 0.6 75.9 ± 0.9 74.8 ± 0.7 85.7 ± 0.9 95.9 ± 0.5
Cels_m 91.9 ± 1.0 75.9 ± 1.4 73.4 ± 1.2 92.7 ± 0.7 96.8 ± 0.5
CVC 89.6 ± 1.2 76.9 ± 1.1 75.2 ± 1.5 90.9 ± 0.7 96.5 ± 0.5
Decorrelated 90.7 ± 1.0 76.0 ± 1.1 73.9 ± 1.3 92.8 ± 0.7 97.0 ± 0.5
Decorrelated2 90.4 ± 1.0 76.0 ± 1.0 73.8 ± 1.3 92.6 ± 0.5 97.0 ± 0.5
Evol 77 ± 3 66.1 ± 0.7 74.8 ± 0.7 61 ± 4 87.2 ± 1.6
Ola 90.9 ± 1.7 73.8 ± 0.8 74.8 ± 0.8 88.1 ± 0.8 95.5 ± 0.6
CVC version 2 89.7 ± 1.4 76.8 ± 1.0 74.1 ± 1.2 89.8 ± 0.9 96.7 ± 0.3
AveBoost 89.4 ± 1.3 76.5 ± 1.1 75.1 ± 1.2 88.1 ± 1.0 95.6 ± 0.5
TCA 87.9 ± 1.2 75.4 ± 0.8 73.0 ± 1.5 87.5 ± 1.1 91 ± 4 
ArcX4 89.4 ± 1.0 76.0 ± 0.8 68 ± 2 90.8 ± 0.9 96.3 ± 0.6
ArcX4 Voting 91.3 ± 1.0 76.3 ± 0.8 73.9 ± 1.0 94.6 ± 0.9 96.6 ± 0.6
Aggressive B 90.3 ± 0.9 74.3 ± 1.5 73.8 ± 1.5 86.9 ± 1.2 96.6 ± 0.6
Conservative B 89.4 ± 1.0 75.6 1.2 75.6 ± 1.1 88.8 ± 1.1 97.0 ± 0.6
EENCL UG 93.0 ± 1.0 74.7 ± 1.0 73.9 ± 1.2 87.2 ± 0.8 96.2 ± 0.4
EENCL MG 93.7 ± 0.9 75.3 ± 1.0 73.9 ± 0.8 87.4 ± 0.7 96.4 ± 0.5
Simple Ens 90.3 ± 1.1 75.9 ± 1.2 74.2 ± 1.3 91.0 ± 0.5 96.9 ± 0.5
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Table III. Results for the ensemble of twenty networks. 
 

 ARITM DERMA ECOLI FLARE IMAGEN
Adaboost 71.4 ± 1.5 97.5 ± 0.6 86.0 ± 1.3 81.1 ± 0.8 97.3 ± 0.2
Bagging 75.9 ± 1.7 97.6 ± 0.6 87.1 ± 1.0 82.2 ± 0.5 97.0 ± 0.3
Bag_Noise 76.0 ± 1.1 97.3 ± 0.6 87.4 ± 0.8 82.1 ± 0.5 93.3 ± 0.3
Cels_m 75.4 ± 1.2 93.9 ± 1.4 86.3 ± 1.3 81.5 ± 0.4 95.7 ± 0.2
CVC 74.8 ± 1.3 97.3 ± 0.6 86.5 ± 1.0 81.7 ± 0.7 96.8 ± 0.2
Decorrelated 76.1 ± 1.1 97.6 ± 0.7 87.1 ± 0.7 81.3 ± 0.5 96.9 ± 0.2
Decorrelated2 73.9 ± 1.1 97.6 ± 0.7 88.1 ± 0.7 81.6 ± 0.5 96.8 ± 0.2
Evol 65.9 ± 1.9 47 ± 5 55 ± 4 81.2 ± 0.5 63 ± 5 
Ola 72.5 ± 1.1 87.0 ± 1.4 84.3 ± 1.2 80.7 ± 0.4 96.4 ± 0.2
CVC version 2 74.3 ± 1.2 97.5 ±  0.6 86.6 ± 1.1 81.8 ± 0.4 97.0 ± 0.2
AveBoost 75.5 ± 1.1 97.9 ±  0.5 86.2 ± 1.2 82.4 ± 0.7 97.3 ± 0.3
TCA 71.6 ± 1.8 92 ± 2 85.4 ± 1.5 79.7 ± 0.9 95.7 ± 0.3
ArcX4 74.4 ± 1.4 97.8 ±  0.6 85.6 ± 0.8 78.4 ± 1.4 97.4 ± 0.2
ArcX4 Voting 75.1 ± 1.2 97.3 ± 0.7 86.0 ± 1.2 78.6 ± 1.0 97.3 ± 0.2
Aggressive B 74.8 ± 1.5 97.0 ± 0.6 87.1 ± 1.1 82.0 ± 0.5 97.2 ± 0.3
Conservative B 74.7 ± 0.9 97.9 ±  0.6 86.9 ± 1.2 82.8 ± 0.6 97.2 ± 0.3
EENCL UG 72.9 ± 0.9 95.1 ±  1.1 87.2 ± 0.7 82.0 ± 0.8 96.9 ± 0.3
EENCL MG 73.5 ± 1.6 96.2 ± 0.9 87.7 ± 1.0 81.4 ± 0.6 96.6 ± 0.3
Simple Ens 73.8 ± 1.1 97.3 ± 0.7 86.9 ± 0.8 81.5 ± 0.5 96.7 ± 0.2

 
Table III (continuation). Results for the ensemble of twenty networks. 

 
 IONOS PIMA SURVI VOWEL WDBC 
Adaboost 91.4 ± 0.8 74.8 ± 1.0 74.3 ± 1.5 96.1 ± 0.7 96.3 ± 0.5
Bagging 89.6 ± 1.1 77.0 ± 1.0 74.6 ± 1.7 91.3 ± 0.6 97.5 ± 0.4
Bag_Noise 92.7 ± 0.6 76.3 ± 0.8 74.6 ± 0.7 86.7 ± 0.7 96.1 ± 0.5
Cels_m 93.3 ± 0.7 75.4 ± 1.0 64 ± 3 87.5 ± 0.8 96.5 ± 0.5
CVC 89.6 ± 1.3 76.2 ± 1.3 73.8 ± 0.9 91.9 ± 0.5 97.4 ± 0.4
Decorrelated 91.1 ± 0.9 76.1 ± 1.0 74.1 ± 1.4 93.3 ± 0.6 97.0 ± 0.5
Decorrelated2 90.9 ± 0.9 76.1 ± 1.0 74.3 ± 1.3 93.3 ± 0.5 97.0 ± 0.5
Evol 66.1 ± 1.2 65.2 ± 0.9 74.8 ± 0.7 60 ± 3 78 ± 3 
Ola 69.4 ± 1.2 74.2 ± 1.1 74.1 ± 0.7 88.7 ± 0.8 95.3 ± 0.6
CVC version 2 91.0 ± 0.9 76.7 ± 0.8 73.6 ± 1.0 93.3 ± 0.6 95.9 ± 0.6
AveBoost 91.4 ± 1.0 76.0 ± 1.1 74.8 ± 1.2 95.8 ± 0.6 95.8 ± 0.6
TCA 86.1 ± 1.0 73.5 ± 0.9 71.3 ± 1.8 84 ± 3 94.4 ± 0.7
ArcX4 92.0 ± 0.9 72.7 ± 1.1 69 ± 2 96.6 ± 0.5 96.4 ± 0.6
ArcX4 Voting 92.6 ± 0.9 75.0 ± 0.9 73.8 ± 1.5 96.1 ± 0.7 96.6 ±  0.6
Aggressive B 91.6 ± 0.9 75.5 ± 1.3 73.9 ± 1.7 96.9 ± 0.6 96.8 ± 0.6
Conservative B 92.4 ± 1.0 76.7 ± 1.2 72.8 ± 1.3 96.6 ± 0.6 96.4 ±  0.6
EENCL UG 92.3 ± 1.1 75.2 ± 0.8 72.5 ± 1.5 88.2 ± 0.9 95.8 ± 0.4
EENCL MG 92.3 ±  1.0 76.2 ± 1.3 74.1 ± 1.0 88.3 ± 0.9 96.5 ± 0.4
Simple Ens 90.4 ± 1.0 75.9 ± 1.2 74.3 ± 1.3 91.4 ± 0.8 96.9 ± 0.5
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Table IV Results for the ensemble of forty networks. 
 

 ARITM DERMA ECOLI FLARE IMAGEN
Adaboost 73.8 ± 1.1 97.8 ± 0.5 85.7 ± 1.4 81.1 ± 0.7 97.3 ± 0.2
Bagging 74.7 ± 1.5 97.6 ± 0.6 86.9 ± 1.1 82.0 ± 0.6 97.1 ± 0.3
Bag_Noise 75.7 ± 1.3 97.5 ± 0.6 87.5 ± 0.8 82.1 ± 0.6 93.4 ± 0.3
Cels_m 74.5 ± 1.7 95.3 ± 1.2 81.9 ± 1.8 81.5 ± 0.4 95.7 ± 0.2
CVC 73.4 ± 1.9 97.3 ± 0.6 86.8 ± 0.9 81.7 ± 0.7 96.6  ± 0.2
Decorrelated 75.6 ± 1.3 97.6 ± 0.7 87.5 ± 0.7 81.4 ± 0.5 96.9 ± 0.2
Decorrelated2 74.4 ± 1.2 97.6 ± 0.7 88.2 ± 0.7 81.7 ± 0.4 96.8 ± 0.2
Evol 59 ± 2 41 ± 7 52 ± 6 81.2 ± 0.5 63 ± 4 
Ola 75.1 ± 1.1 87.7 ± 1.6 84.9 ± 1.3 80.7 ± 0.4 96.3 ± 0.2
CVC version 2 77.0 ± 0.8 97.2 ± 0.6 86.3 ± 0.9 82.2 ± 0.5 96.7 ± 0.3
AveBoost 76.3 ± 1.0 97.2 ± 0.7 86.0 ± 1.1 80.7 ± 1.1 97.5 ± 0.2
TCA 70.6 ±  1.7 82 ± 5 84.0 ± 1.4 80.1 ± 1.0 95.8 ± 0.3
ArcX4 74.0 ± 1.4 97.5 ±  0.6 86.2 ± 1.0 80.0 ± 1.1 97.4 ± 0.2
ArcX4 Voting 74.6 ±  1.0 97.2 0.7 85.9 ± 1.2 80.1 ± 0.8 97.4 ± 0.2
Aggressive B 75.5 ± 1.2 96.6 ± 0.5 87.8 ± 0.9 82.0 ± 0.6 97.3 ± 0.3
Conservative B 75.1 ±  1.0 97.6 ± 0.7 87.8 ± 1.1 82.7 ± 0.6 97.2 ± 0.2
EENCL UG 70.7 ±  1.9 95.8 ±  1.1 86.5 ± 0.8 82.1 ± 0.7 97.0 ± 0.2
EENCL MG 74.1 ± 1.2 96.1 ±  1.1 88.1 ± 0.7 82.1 ± 0.5 96.8 ± 0.3
Simple Ens 73.8 ± 1.1 97.6 ± 0.7 86.9 ± 0.7 81.6 ± 0.5 96.8 ± 0.2

 

Table IV (continuation). Results for the ensemble of forty networks. 
 

 IONOS PIMA SURVI VOWEL WDBC 
Adaboost 91.6 ± 0.7 73.3 ± 1.0 73 ± 2 97.0 ± 0.6 96.7 ± 0.9
Bagging 90.0 ± 1.1 77.0 ± 1.1 74.2 ± 1.3 91.2 ± 0.8 97.4 ± 0.3
Bag_Noise 93.0 ± 0.6 76.4 ± 0.9 74.6 ± 0.7 86.5 ± 0.8 95.9 ± 0.5
Cels_m 92.9 ± 0.9 75.7 ± 0.7 71.3 ± 1.9 79.1 ± 1.3 96.3 ± 0.6
CVC 88.3 ± 1.0 76.6 ± 1.0 74.6 ± 1.0 92.2  ± 0.8 96.8 ± 0.5
Decorrelated 91.0 ± 1.0 75.9 ± 1.0 73.9 ± 1.4 93.1 ± 0. 97.0 ± 0.5
Decorrelated2 90.7 ± 0.9 76.2 ± 1.0 74.3 ± 1.3 93.5 ± 0.6 96.9 ± 0.4
Evol 64.1 ± 1.3 65.9 ± 1.0 74.8 ± 0.7 54 ± 3 77.6 ± 1.9
Ola 69.4 ± 1.4 74.4 ± 0.7 74.8 ± 0.8 88.6 ± 1.0 95.7 ± 0.6
CVC version 2 92.0 ± 1.0 76.1 ± 0.9 73.4 ± 1.2 92.9 ± 0.7 96.0 ± 0.5
AveBoost 91.6 ± 0.9 76.6 ± 1.0 74.6 ± 1.1 96.4 ± 0.6 96.0 ± 0.5
TCA 79 ± 5 73.7 ± 0.8 70.2 ± 1.7 79 ± 4 92.8 ± 1.7
ArcX4 91.6 ± 1.0 73.4 ± 0.6 72.3 ± 1.4 96.9 ± 0.5 96.5 ± 0.6
ArcX4 Voting 91.7 ± 1.0 74.5 ± 0.9 73.0 ± 1.4 97.0 ± 0.5 96.7 ± 0.6
Aggressive B 92.3 ± 0.9 75.7 ± 1.2 73.9 ± 1.4 97.5 ± 0.5 96.7 ± 0.6
Conservative B 91.9 ± 0.8 76.2 ± 1.2 73.3 ± 1.5 97.3 ± 0.6 96.3 ± 0.5
EENCL UG 92.9 ± 0.8 74.3 ± 0.8 72.3 ± 1.2 90.0 ± 1.0 96.5 ± 0.8
EENCL MG 93.7 ± 0.7 76.5 ± 1.2 75.3 ± 1.1 89.6 ± 0.8 96.8 ± 0.6
Simple Ens 90.3 ± 1.0 75.9 ± 1.2 74.3 ± 1.3 92.2 ± 0.7 96.9 ± 0.5

 
We have also calculated the percentage of error reduction of the ensemble with respect to a single 
network. We have used equation I for this calculation. 
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single network ensemble
reduction

single network

PerError PerError
PerError �

PerError
100

−
=  (I) 

The value of the percentage of error reduction ranges from 0%, where there is no improvement by 
the use of a particular ensemble method to 100%. There can also be negative values when the 
performance of the ensemble is worse than the single network. 
This new measurement is relative and can be used to compare more clearly the different methods. 
Furthermore we can calculate the mean performance of error reduction across all databases this 
value is in table V for ensembles of 3, 9, 20 and 40 nets. 
 

Table V. Mean percentage of error reduction for the different ensembles. 
 

 Ensemble
3 Nets 

Ensemble 
9 Nets 

Ensemble 
20 Nets 

Ensemble 
40 Nets 

Adaboost 1.33 4.26 9.38 12.21 
Bagging 6.86 12.12 13.36 12.63 
Bag_Noise -3.08 -5.08 -3.26 -3.05 
Boosting -0.67 --- --- --- 
Cels_m 9.98 9.18 10.86 14.43 
CVC 6.18 7.76 10.12 6.48 
Decorrelated 9.34 12.09 12.61 12.35 
Decorrelated2 9.09 11.06 12.16 12.10 
Evol -218.23 -297.01 -375.36 -404.81 
Ola -33.11 -36.43 -52.53 -47.39 
CVC version 2 10.25 10.02 7.57 7.49 
AveBoost 1.13 10.46 9.38 10.79 
TCA -9.71 -25.22 -43.98 -53.65 
ArcX4 1.21 2.85 7.85 10.05 
ArcX4 Voting -2.08 9.73 10.76 11.14 
Aggressive B 1.22 7.34 13.03 13.54 
Conservative B 4.45 13.07 14.8 14.11 
EENCL UG 0.21 -3.23 -3.59 1.10 
EENCL MG 3.96 1.52 2.84 7.89 
Simple Ens 5.89 8.39 8.09 9.72 

 
According to this global measurement Ola, Evol and BagNoise performs worse than the Simple 
Network, i.e., it is not worthy to use an ensembles with these three methods. The best methods are 
Bagging, Cels, Decorrelated, Decorrelated2 and Conservative Boosting. 
The best method for 3 nets in the ensemble is CVC version 2, the best method for the case of 9 and 
20 nets is Conservative Boosting and the best method for the case of 40 networks is Cels but the 
performance of Conservative Boosting is also good. 
So, we can conclude that if the number of networks is low it seems that the best method is CVC 
version 2 and if the number of network is high the best method is in general Conservative Boosting. 
Also in table V, we can see the effect of increasing the number of networks in the ensemble. There 
are several methods (Adaboost, Cels, ArcX4, ArcX4 Voting, Aggressive Boosting and Conservative 
Boosting) where the performance seems to increase slightly with the number of networks in the 
ensemble. But other methods like Bagging, CVC, Decorrelated, Decorrelated2 and Simple Ensemble 
does not increase the performance beyond 9 or 20 networks in the ensemble. The reason can be that 
the new networks are correlated to the first ones or that the combination method (the average) does 
not exploit well the increase in the number of networks. 
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IV. Conclusion 

In this paper we have presented experimental results of twenty different methods to construct an 
ensemble of networks, using ten different databases. We trained ensembles of 3, 9, 20 and 40 
networks in the ensemble, so we have cover a wide spectrum in the number of networks in the 
ensemble. The results showed that in general the improvement by the use of the ensemble methods 
depends clearly on the database as it was already known in the bibliography. Also the improvement 
in performance from three or nine networks in the ensemble to a higher number of networks depends 
on the method, but it is usually low. Taking into account the computational cost, an ensemble of nine 
networks may be the best alternative for most of the methods. Finally, we have obtained the mean 
percentage of error reduction over all databases. It is a relative measurement that it is not statistically 
significant but we think it can be useful to have an insight in the performance. According to the 
results of this measurement the best methods are Bagging, Cels, Decorrelated, Decorrelated2 and 
Conservative Boosting. The best method for 3 networks in the ensemble is CVC version 2, the best 
method for the case of 9 and 20 nets is Conservative Boosting and the best method for 40 is Cels but 
the performance of Conservative Boosting is also good. So we can conclude that if the number of 
networks is low it seems that the best method is CVC Version 2 and if the number of network is high 
the best method is in general Conservative Boosting. 
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