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Abstract 
 
The stability of a neural network model may often be destroyed by the parameter deviations 
during the implementation. However, few results  (if any) for the asymptotical stability of 
such system with a certain degree of parameter deviations have been reported in the literature. 
In this paper, we present a simple delayed neural network model, in which each parameter 
deviates the reference point with the degree no more than a certain value, and further 
investigate the robust asymptotical stability of this model and estimate the maximum 
permissible deviation degree. 
 
Keyword: Neural networks, time delays,  

I. Introduction 
 

During recent decades, several neural network models with or without delays have been 
extensively studied, particularly, regarding their stability analysis [1-8]. However, It is well 
known that the stability of a given system may often be destroyed by its unavoidable 
uncertainty due to the existence of modeling error, external disturbance and parameter 
fluctuation during the implementation. So it is essential to introduce the robust technique to 
design a system with such uncertainty. If the uncertainty of a system is only due to the 
deviations and perturbations of its parameters, and if these deviations and perturbations are 
all bounded, then the system is called an interval system. Recently, several global and robust 
stability criteria for interval neural networks with constant or time-varying delays have been 
proposed [9, 10-13]) since the pioneering work of Liao and Yu [10]. In most existing 
literature about the uncertain neural network model, the maximum permissible deviation 
degree of the system parameters has not been investigated and estimated. However, this is an 
unavoidable and important factor to be considered during the implementation. In this paper, 
we use functional differential equation to describe a neural network model with parameter 
deviation, and further study its robust stability with respect to the parameter deviation degree. 

For this purpose, consider a neural network with parameter deviations described by  
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( ) ( ) ( )( ) ItugWtuAtu +−+−= τ&  (1)

where ( ) ( ) ( )[ ]Tn tu,,tutu L1= is the neuron state vector. ( )na,,a,adiagA L21=  is a positive 

diagonal matrix, ( ) ( ) ( )[ ]Tnn ug,,ugug L11=  denotes the neuron activation functions with 
( ) 00 =g , [ ]TnI,,II L1= is a constant vector, ( )

nnijwW
×

= is the connect-weighting matrix, 
0>τ  is transmission delay. Throughout this paper, we assume that the permissible deviation 

degree of the system parameters is denoted by 0≥α . Here, if we select the matrices 
( )( ) 00

0 >= ×nniadiagA (throughout this paper, we use 0>Ω  to denote the symmetrical positive 

matrix Ω ) and ( )( )
nnijwW

×
= 0

0  as the reference matrices of A and W, respectively, then 
[ ]α,ANA 0∈  and [ ]α,WNW 0∈ , where  

 
[ ] ( ) ( ) ( ) ( ) ( ){ }00

0 11 iiinni aaaadiag,AN ααα +≤≤−= × , 

and 

[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )}0 0 0 0
0 1 1 or 1 1ij ij ijij ij ij ijn n

N W , w w w w w w wα α α α α
×

⎧= − ≤ ≤ + + ≤ ≤ −⎨
⎩

 

Furthermore, we assume that each activation function in (1) is bounded and satisfies the 
following sector condition: There exists a positive constant, 0>k , such that 

( ) ( )
k

yx
ygxg jj ≤

−

−
≤0 , for any .n,,,j,Ry,x L21=∈  (2)

 
Due to the boundedness of the activation functions, there exists at least an equilibrium point 

*u  for system (1). In the following, we always shift this equilibrium point into the origin. By 
making the transformation ( ) ( ) *ututx −= , we convert model (1) to the following: 

( ) ( ) ( )( )τ−+−= txfWtxAtx&  (3)

 
where ( )( ) ( )( ) ( ) n,,,j,ugutxgtxf *jj*jjjjj L21=−+= . Note that jf  also satisfies a sector condition 
in the form of  

( )( ) ( )( )[ ] 0≤− jjj xktxftxf  (4)

II.  Stability Analysis 

In this section, model (3) is first transformed into another equivalent form, which allows 
us to analyze expediently. And then a simple robust stability condition for model (3) will be 
derived. 

For this purpose, let 
( ) ( ) ( ) ( )

2

00
11

0
11

0
11

nn
nnnnnnW ewewewewE

×
⎥⎦
⎤

⎢⎣
⎡= LLL , 

and 
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where ie denotes the i-th column-vector of the nn×  identity matrix. Obviously, we have 

( ) ( )

( ) ( ) .wwdiagFF
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 (5)

 
Furthermore, let 

( ){ }11111
22 ≤=∈= × ijnnnnnn* ,,,,,,diagR εεεεεΣΣΣ LLL  (6)

 
Then, we have the following result, which can be proved directly via simple matrix operation. 
 
Lemma 1. Let [ ] { }*WWWW FEWW,WM ΣΣΣαα ∈+== 200 . Then, [ ] [ ]αα ,WN,WM 00 = . 
 

From Lemma 1, the model (3) can be rewritten as 

( ) ( ) ( ) ( )( )τα −Σ++−= txFFEWtxAtx WWW
2

0&  (7)

where [ ]α,ANA 0∈  and *
W Σ∈Σ . 

Obviously, system (1) or (3) is of the same stability property as system (7).  It is also 
worth noting that the uncertain matrices A  and WΣ are both diagonal, and, in particular, each 
diagonal element of WΣ  is not larger than one in absolute value. Thus, the transfer above may 
lead to a new and better approach to analyze the robust stability issues of model (1). To state 
our theoretical result, the following lemma is useful. 
Lemma 2. [14] Given any real matrices 321 ΣΣΣ ,, of appropriate dimensions and a scalar ε  > 0 
such that T

330 Σ=Σ< . Then, the following inequality holds: 
                 2

1
32

1
1311221 ΣΣΣ+ΣΣΣ≤ΣΣ+ΣΣ −− TTTT εε . 

Theorem 1. Suppose that there exist positive constants 0>β , 0>γ and 10 <≤α  such that  

01
00 >− TWWD

β
 (8)

where ( )nd,,d,ddiagD L21=  with  
( ) ( )

( ) ( )
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1
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1

02
0 11

γ
γ

αβ
α , n,,,i L21= . 

Then model (7) is robust asymptotically stable at the origin for any αα ≤≤0 . 
Proof. Select a Lyapunov function as 

( )( ) ( ) ( ) ( )( )∫∑ ∫ −
=

+= t
t

Tn

j

x
j dxQfxfdssftxV j

τ ξξξ
1

0  (9)

where W
T

W FFEQ γαβ 2+= >0 ( )αα ≤≤0 and E denotes an identity matrix. 
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  Using the method presented in [2] and its references, it is easy to verify that (9) is a 
Lyapunov function. The time derivative of ( )( )txV  along the trajectories of (7) is 

( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( ).txfQtxftxfQtxf

txfFEtxftxfWtxftAxtxf

txfQtxftxfQtxftxtxftxV

TT

WWW
TTT

TTT

ττ

τατ

ττµ

−−−+

−Σ+−+−=

−−−+=

2
0

&&

 

By Eq. (4) and Lemma 2, we have  
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Obviously, 01
00 >− TWWD β  implies  
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which follows ( )( ) 0<txV& . The proof thus completed. 
Because D is a positive diagonal matrix and TWW 00 is a symmetrical matrix, the theorem above 
can be easily reduced to the following corollary. 
Corollary 1. Let ( )Mmaxλ  denote the largest eigenvalue of matrix M. Suppose that there exist 
positive constants 0>β , 0>γ and 10 <≤ α  such that 

( ) { }i
ni

T
max dWW

≤≤
<

100 minβλ  (10)

 
where id is defined in Theorem 1. Then, model (7) is robust asymptotically stable at the 
origin for any αα ≤≤0 . 

In many neural networks, particularly in biological models, the connection-weight matrix 

is symmetrical, i.e., 00 WWT =  in (7), which implies ( ) ( )∑∑
==

=
n

j
ji

n

j
ij ww

1

0

1

0 , for any n,,,i L21= . 

Therefore, it is easy to see that ( ) ( ) ( ) ( )∑∑∑∑
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0 211 γγγγ . Selecting 1=γ in 

Corollary 1 and furthermore ( )T
max WW 00λβ = , we have the following result. 

 
Corollary 2.  Suppose that 00 WW T =  and there exists 10 <≤α  such that 

( ) ( ) ( )
( )
⎪⎭
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⎬
⎫

⎪⎩

⎪
⎨
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< ∑
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λ  (11)

Then model (7) is robust asymptotically stable at the origin for any αα ≤≤0 . 
From the theoretical analysis above, we can see that the network (3) is always stable only 

if the deviation degree of each parameter is not larger than α  and that the same degree for all 
the parameters is not required. Although we can derive some less conservative stability 
conditions for model (7), we use only the above results in this paper, because they are very 
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simple and easy to verify. Furthermore, from these conditions, we can estimate easily the 
maximum permissible deviation degree α by solving Eq. (11). 
 

III.  Example 

To illustrate our results we consider model (1) with sigmoid function: 
( ) ( )1150 −−+= xx.xfi , n,,,i L21= . 

Furthermore, for notational and computational convenience, we consider only a neural 
network with four neurons. The reference matrices are taken as 
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From Corollary 3, we calculate that the maximum permissible deviation degree is 

763940.=α . That is to say, the model (1) is always stable at an equilibrium as long as the 
deviation degree of the parameters of model (1) is not larger than 0.76394. Figs. 1 and 2 show 
the convergence behaviors for this system with different parameter matrices, respectively. 
 
 
 
 
 

 
Fig. 1. The time response curves for the reference system with 1=τ , the initial conditions 

( ) [ ]Tu 2121 −−=θ , for any [ ]0,τθ −∈ , the external input [ ]TI 3211−= . 
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Fig. 2. The time response curves for the neural network (1) with the parameter matrices: 

( ) 01 0 7A . A= − , W is constructed as follows: the 1st and 4th rows are same as those of 0W ,  

the 2nd and 3rd rows are (1-0.3) and (1+0.5) times of  those of 0W , respectively, 1τ = , the initial 

conditions ( ) [ ]1 2 1 2Tuθ = − − , for any [ ]0,θ τ∈ − , the external input 

[ ]1 1 2 3TI= − . 
 

IV.  Conclusions 

We have presented a simple delayed neural network with parameter deviation and analyzed 
its robust stability, particularly, estimated the maximum permissible deviation degree using 
the proposed stability conditions. Because the issue investigated in this paper may often arise 
during the implementation of neural networks, the results here are practical and should be 
useful for further studies of this kind of neural network model. 
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