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Abstract

The stability of a neural network model may often be destroyed by the parameter deviations
during the implementation. However, few results (if any) for the asymptotical stability of
such system with a certain degree of parameter deviations have been reported in the literature.
In this paper, we present a simple delayed neural network model, in which each parameter
deviates the reference point with the degree no more than a certain value, and further
investigate the robust asymptotical stability of this model and estimate the maximum
permissible deviation degree.
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l. Introduction

During recent decades, several neural network models with or without delays have been
extensively studied, particularly, regarding their stability analysis [1-8]. However, It is well
known that the stability of a given system may often be destroyed by its unavoidable
uncertainty due to the existence of modeling error, external disturbance and parameter
fluctuation during the implementation. So it is essential to introduce the robust technique to
design a system with such uncertainty. If the uncertainty of a system is only due to the
deviations and perturbations of its parameters, and if these deviations and perturbations are
all bounded, then the system is called an interval system. Recently, several global and robust
stability criteria for interval neural networks with constant or time-varying delays have been
proposed [9, 10-13]) since the pioneering work of Liao and Yu [10]. In most existing
literature about the uncertain neural network model, the maximum permissible deviation
degree of the system parameters has not been investigated and estimated. However, this is an
unavoidable and important factor to be considered during the implementation. In this paper,
we use functional differential equation to describe a neural network model with parameter
deviation, and further study its robust stability with respect to the parameter deviation degree.

For this purpose, consider a neural network with parameter deviations described by
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U(t)=—Au(t)+W g(ut—7))+1 @
where u(t):[ul(t), ,un(t)]r is the neuron state vector. A=diagla,a,.a ) is a positive
diagonal matrix, g(u)=[gy(w;) - .g,u,)]| denotes the neuron activation functions with
g0)=0, 1=, - 1,[is a constant vector, w :(Wij)nxn is the connect-weighting matrix,

7 >0 is transmission delay. Throughout this paper, we assume that the permissible deviation
degree of the system parameters is denoted by «>0. Here, if we select the matrices

Aozdiag(ai(o))nxn >0 (throughout this paper, we use Q>0 to denote the symmetrical positive
matrix Q) and Woz(wigo))nxn as the reference matrices of A and W, respectively, then
AeN[A,a] and W e N|W, ], where

(- o)l <& <@+,

N[Ay.r]= {diag(ai)nxn
and

(1—a)wi(10) < Wjj £(1+a)wi(0) or (1+a)wi(10) < Wjj S(l—a)wigo)

N[Wo.a]= {(Wij o

Furthermore, we assume that each activation function in (1) is bounded and satisfies the
following sector condition: There exists a positive constant, k >0, such that

gj(x)_gj(y)

X—y

0< <k,forany X,yeR,j=12,---,n. 2

Due to the boundedness of the activation functions, there exists at least an equilibrium point
u” for system (1). In the following, we always shift this equilibrium point into the origin. By
making the transformation x(t)=u(t)-u", we convert model (1) to the following:

%(t)=—Ax()+ W f(x(t 7)) ®

where f;(x;(t)=g;(x)+u5)-g;5) i=12,-,n. Note that f; also satisfies a sector condition
in the form of

£ O b)) -1 ] <o (4)

Il. Stability Analysis

In this section, model (3) is first transformed into another equivalent form, which allows
us to analyze expediently. And then a simple robust stability condition for model (3) will be
derived.

For this purpose, let

E\N=[\w£‘i)\e1 N N - \/We}

nxn2
and
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FW{ Wl e - Wil en} ,

where e; denotes the i-th column-vector of the nxn identity matrix. Obviously, we have

0

iag| S w0 5 w©)
Ew B} = diag Zl‘wlj‘ ZanJ‘ ,
i= i=
(®)
n n
Ry Fw = diag Z‘Wm Z‘Wg%) :
j=1 j=1
Furthermore, let
2= {2 e Rnxm? 3" — diag(e11, &1 &nt - Enn ) ‘gij‘ Sl} (6)
Then, we have the following result, which can be proved directly via simple matrix operation.
Lemma L. Let MWy.a]= W =W+ a? By 5y Fy|Zy < 2*}. Then, Mfwg.a]=Nwp.a].
From Lemma 1, the model (3) can be rewritten as
x(t)=—Ax(t)+ Wo + a?Ey Sy Fy JF(X(t - 2)) @)

where AeN[Ay,a] and =, €Z".

Obviously, system (1) or (3) is of the same stability property as system (7). It is also
worth noting that the uncertain matrices A and %, are both diagonal, and, in particular, each

diagonal element of %, is not larger than one in absolute value. Thus, the transfer above may

lead to a new and better approach to analyze the robust stability issues of model (1). To state
our theoretical result, the following lemma is useful.
Lemma 2. ™! Given any real matricess,,x,,=,0f appropriate dimensions and a scalar & >0

such that 0<x5 == . Then, the following inequality holds:
SI%, +203, <X 8%, +& 35N,
Theorem 1. Suppose that there exist positive constants >0, y>0and 0<a <1 such that

1 T
D-=WyW, >0 8
5 oo 8
where D =diag(d;,d,,--,d,) with
_z)a® n n
d, :m_ﬂ_azilzngo)‘wz‘wg_g)‘j, i 120,
k V= j=1

Then model (7) is robust asymptotically stable at the origin forany 0<a <« .
Proof. Select a Lyapunov function as

= £ 108+ e o

where Q= SE +a?y Ry Ry >0 (0<a <a)and E denotes an identity matrix.
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Using the method presented in [2] and its references, it is easy to verify that (9) is a
Lyapunov function. The time derivative of V(x(t)) along the trajectories of (7) is

V{x(t)=£7 (e xt)+ 17 (XE)Q F(xlt) - e 17 (Xt - 2))Q F (x(t ~ 7))
=~ £ T (xtt))Ax(t) + £ T (XKW £ ((t — o)) + £ (x{t)lr® By Ty Fay  (x(t )
FT(XD)Q F(x(t) - £ T (Xt - 7))Q f(xt o))

By Eg. (4) and Lemma 2, we have

V)<~ (0] -2 B, - A% R 5 wign] | )

PN ()
s—fT(x(t){diag(( k)a' ~p-a 2[71/

Obviously, D ;WOWOT >0 implies

(-a)p? 13
dlag[ —B-a 2 7/]_ W ‘+)/Z‘WJI‘ ——WWT>O

which followsV (x(t)) < 0. The proof thus completed.
Because D is a positive diagonal matrix and w WT is a symmetrical matrix, the theorem above

can be easily reduced to the following corollary.
Corollary 1. Let ﬂmax(M) denote the largest eigenvalue of matrix M. Suppose that there exist

positive constants >0, y>0and 0<a <1 such that

max(WOW )<ﬁ mm{ } (10)

I<i<n

Wi ‘+7Z‘WJI ‘H__WWT]‘C( ).

where d; is defined in Theorem 1. Then, model (7) is robust asymptotically stable at the
origin forany 0<a<a .
In many neural networks, particularly in biological models, the connection-weight matrix

is symmetrical, i.e., W] =W, in (7), which implies i‘wi(jo)‘:i‘w(j?)‘, for any i=1,2,---,n
j=1 j=1

0
1 n
jl ‘ (}/‘f‘]/jzlwﬂo

Therefore, it is easy to see that = Z‘W ‘
j

n - -
)‘2 zzl‘wi(jo)‘. Selecting  =1in
Corollary 1 and furthermore g = Mmax@o W, i we have the following result.

Corollary 2. Suppose that Wy =W, and there exists 0 <& <1 such that
/ 6,',; T) (L- a)a
Amax Voo <1r<n||<nn{ jZWij )‘} (11)

Then model (7) is robust asymptotically stable at the origin forany 0<a <« .

From the theoretical analysis above, we can see that the network (3) is always stable only
if the deviation degree of each parameter is not larger than & and that the same degree for all
the parameters is not required. Although we can derive some less conservative stability
conditions for model (7), we use only the above results in this paper, because they are very
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simple and easy to verify. Furthermore, from these conditions, we can estimate easily the
maximum permissible deviation degree « by solving Eq. (11).

I11. Example

To illustrate our results we consider model (1) with sigmoid function:
f(x)=05(| x+1|-| x-1]), i=1,2,--,n.

Furthermore, for notational and computational convenience, we consider only a neural
network with four neurons. The reference matrices are taken as

1 0 0 0.05 0.03 —0.06]
0 0 0.05 0 0.1 0.02
A, = and W, = .
0 0 0.03 0.1 0 —-0.04
0 1] |-0.06 0.02 -0.04 0 |

From Corollary 3, we calculate that the maximum permissible deviation degree is
a =0.76394 . That is to say, the model (1) is always stable at an equilibrium as long as the
deviation degree of the parameters of model (1) is not larger than 0.76394. Figs. 1 and 2 show
the convergence behaviors for this system with different parameter matrices, respectively.
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Fig. 1. The time response curves for the reference system with 7 =1, the initial conditions
u@@)=fp 2 -1 -2 ,forany 6<|-r,0], the external input 1=[-1 1 2 3.
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Fig. 2. The time response curves for the neural network (1) with the parameter matrices:
A= (1—0.7) Ay, W is constructed as follows: the 1st and 4th rows are same as those of W,

the 2nd and 3rd rows are (1-0.3) and (1+0.5) times of those of W , respectively, 7 =1, the initial
conditions L(Qz[l 2 4 —qT , for any @€ [—r, O] , the external input
14 1 2 g

I\VV. Conclusions

We have presented a simple delayed neural network with parameter deviation and analyzed
its robust stability, particularly, estimated the maximum permissible deviation degree using
the proposed stability conditions. Because the issue investigated in this paper may often arise
during the implementation of neural networks, the results here are practical and should be
useful for further studies of this kind of neural network model.
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