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Abstract 
 
The application of sinusoidal periodic search signals results in the “chatter” problem of the output 
and the switching of the control law of the general extremum seeking control (ESC). An annealing 
recurrent neural network (RNN) is proposed for ESC to solve those problems in the general ESC.  
The paper converts ESC into seeking the extreme point where the slope of Cost Function is zero, and 
applies an annealing recurrent neural network to finding the point and stabilizing the plant at the 
point. ESC combined with the annealing RNN doesn’t make use of search signals such as sinusoidal 
periodic signals, which solves those problems in previous ESC and improves the dynamic 
performance of the ESC system greatly. At the same time, it can be simplified by the proposed 
method to analyze the stability of ESC. The simulation results of a simplified UAV tight formation 
flight model proved the advantages mentioned above. 
Keyword: Recurrent Neural Network, Extremum Seeking Control, UAV, Tight Formation Flight.  

I. Introduction 
 

A. Background  
Early work on performance improvement by extremum seeking can be found in Tsien. In the 
1950s and 1960s, ESC was considered as an adaptive control method[1]. Until 1990s sliding 
mode control for extremum seeking has not been utilized successfully[2]. Subsequently, a 
method of adding compensator dynamics in ESC was proposed by Krstic, which improved the 
stability of the system[3]. Although those methods improved tremendously the performance of 
ESC, the “chatter” problem of the output and the switching of the control law limit the 
application of ESC. 

B. Main Contribution  
The method of combining an annealing recurrent neural network with ESC is proposed in the 
paper. First, this paper converts ESC into seeking the extreme point where the slope of cost 
function is zero; second, constructs an annealing RNN; then, applies the annealing RNN to 
finding the extreme point and stabilizing the plant at the point. The annealing RNN proposed in 
the paper doesn’t make use of search signals such as sinusoidal periodic signals, so the method 
can solve the “chatter” problem of the output and the switching of the control law in the 
general ESC and improve the dynamic performance of the ESC system, which are validated by 
simulating a simplified tight formation flight model consisting of two Unmanned Aerial 

An Annealing Recurrent Neural Network for 
Extremum Seeking Control  

Yun-an Hu, Bin Zuo 

Department of Control Engineering, Naval Aeronautical 
Engineering Academy, Yantai 264001, P. R. China 

hya507@yahoo.com 
zuobin97117@163.com 



Yun-an Hu, Bin Zuo 
An Annealing Recurrent Neural Network for Extremum Seeking Control  
 

46 

Vehicles. At the same time, it can be simplified by the proposed method to analyse the stability 
of ESC. 

II. Problem Formulation 
 

Consider a single-input single-output nonlinear system: 

 
( ) ( )( )
( )( )

x f x t ,u t

y F x t

=

=

&
 (1) 

Where x R,u R∈ ∈ and y R∈ are the state, the control and the output variables, respectively. 
( )F x is also defined as the cost function of the system. ( )f x,u  and ( )F x are smooth 

functions[4].  
Assumption 1: There is a smooth control law: 
 ( ) ( )( )u t x t ,α θ=  (2) 
to stabilize the nonlinear system(1), where θ  is a parameter which determines a unique 
equilibrium point.  
With the control law (2), the closed-loop system of the nonlinear system (1) can be written as: 

( )( )x f x, x,α θ=&  

Assumption 2: There is a smooth function n
ex : R R→  such that: 

( )( ) ( )0 ef x, x, x xα θ θ= ↔ =  

Assumption 3: The static performance map at the equilibrium point ( )ex θ  from θ  to y  
represented by: 
 ( )( ) ( )ey F x Fθ θ= =  (3) 

is smooth and has a unique maximum or minimum point R∈∗θ  such that: 
( ) 0F θ ∗′ =  

and ( ) 0F θ ∗′′ >  or ( ) 0F θ ∗′′ <  

Differentiating (3) with respect to time yields the relation between θ&  and ( )y t& . 

 ( )( ) ( ) ( )J t t y tθ θ =& &  (4) 

where ( )( ) ( )F
J t

θ
θ

θ
∂

=
∂

. 

By Assumption 3, if the system converges to an extreme pointθ ∗ , at the same time ( )J θ  will 
also converge to zero. An annealing recurrent neural network is applied to ESC to minimize 
( )J θ  in finite time. Certainly the system is subjected to (4). 

Then, the optimization problem can be written as follows. 
Minimize: ( )J θ  

Subject to: ( )( ) ( ) ( )J t t y tθ θ =& &  (5) 
The optimization (5) is then equivalent to 
Minimize: Tc ξ  
Subject to: A bξ =  (6) 
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where,
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By the dual theory, the dual program corresponding to the program (6) is 
Maximize: Tb z  
Subject to: TA z c=  (7) 
where, [ ]1 2 3

Tz z z z= . 
Therefore, an extremum seeking problem is converted into the programs defined in (6) and (7). 

III. Problem Formulation 
 

C. Energy Function 
In view of the primal and dual programs (6) and (7), define the following energy function: 

 ( ) ( ) ( ) ( ) ( ) ( ) 22 21 1 1
2 2 2

T T TE ,z c b z T t A b T t A z cξ ξ ξ= − + − + −  (8) 

Clearly, the energy function (8) is convex and continuously differentiable. The first term in (8) 
is the squared difference between the objective functions of the programs (6) and (7), 
respectively. The second and the third terms are for the equality constraints of (6) and (7). 
( )T t  is a time-varying  annealing parameter matrix, ( )31 2

1 2 3 3 3

tt tT diag e , e , e ββ βη η η −− −

×
= , 

( )1 2 3i i, i , ,η β = are positive scalar constants, which are used to scale the annealing rate.  

D. Dynamic Equations 
With the energy function defined in (8), the dynamics for the neural network solving (6) and (7) 
can be defined by the negative gradient of the energy function as follows: 

 ( )dv E v
dt

µ= − ∇  (9) 

where, ( )Tv ,zξ= , ( )E v∇ is the gradient of the energy function ( )E v  defined in (8), and µ is a 
positive scalar constant, which is used to scale the convergence rate of the recurrent neural 
network. 
The dynamical equation (9) can be expressed as: 

 ( ) ( ) ( ) ( )T T T Td c c b z A T t T t A b
dt
ξ µ ξ ξ⎡ ⎤= − − + −⎣ ⎦  (10) 

 ( ) ( ) ( ) ( )T T T Tdz b c b z AT t T t A z c
dt

µ ξ⎡ ⎤= − − − + −⎣ ⎦  (11) 

E. Neural Network Architecture 
The architecture of the recurrent neural network is shown as follows: 
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Fig. 1. the architecture of the recurrent neural network 
Equations (10) and (11) can be converted into the equations as follows: 

 

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

1
1 2

2
1 2

1 1

2 2

T T T T T T

T T T T T

du cc A T t T t A v b v A T t T t b
dt
du bc v bb AT t T t A v AT t T t c
dt

v u
v u

µ µ µ

µ µ µ

=− + + +

= − + +

=
=

 (12) 

The annealing neural network consists of 6  lateral connected neurons, as shown in figure 1, 
which is determined by the number of decision variables such as ( ),zξ , ( )1 2u ,u  is a column 

vector of instantaneous net inputs to neurons, ( )1 2v ,v  is a column output vector, and equals 

to ( ),zξ . The lateral connection weight matrix is defined 

as ( )( )
( )( )

11 12

21 22

T T T

T T T

cc T t A A bw w
w w bc bb T t AA

µ µ

µ µ

⎡ ⎤− +⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥− +⎣ ⎦ ⎣ ⎦

, the biasing threshold vector of the neurons is 

defined as ( ) ( )
( ) ( )

1

2

T T

T

A T t T t b
AT t T t c

ϑ µ
ϑ µ

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
. By adjusting ,µ η and β , the weight matrix and the biasing 

threshold vector can be adjusted. Therefore, the annealing RNN control process is shown as 
figure 2. 

Neural
Network

( )x f x ,u=& ( )y F x=

1
s

( )x ,α θθ

θ&

x

yu
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Fig.2. Block diagram of the annealing RNN control process 

 

IV. Convergence Analysis 
 
We analyze the stability of the proposed annealing RNN controller in the section. 
Lemma 1[5]: Suppose that nf :D R R⊂ →  is differentiable on a convex set 0D D⊂ . Then f  is 
convex on 0D  if and only if 

 ( ) ( ) ( ) ( )Tz y f y f z f y− ∇ ≤ − , 0y,z D∀ ∈  (13) 

where ( )f y∇  is the gradient of ( )f y . 
Lemma 1 has been proved at length in [5]. 
Lemma 2: The optimal solution to the programs (6) and (7) are ξ ∗  and z∗ , respectively, if and 
only if ( ) 0E v∗ =  and 

 ( ) ( ) ( )T
v v E v ,t E v ,t∗ − ∇ ≤ −  (14) 

where ( )TT Tv ,zξ∗ ∗ ∗= and ( )TT Tv ,zξ= . 

Proof: Form the definition of the energy function (8), it can easily find that ( ) 0E v ∗ =  if and 

only if v∗  is the optimal solution of (6) and (7). Since for all v , the energy 
function ( ) 0E u ,t ≥ is continuously differentiable and convex. Therefore, we have the 
conclusion of the Lemma 2 from Lemma 1. 
Theorem: The annealing recurrent neural network defined in (12) is globally stable and 
converges to the optimal solutions of the program (6) and (7). 
Proof: Without loss of generality, let 1µ = . Consider the following Lyapunov function: 

 ( ) ( ) ( )1
2

T
V v v v v v∗ ∗= − −  (15) 

Where ( )TT Tv ,zξ∗ ∗ ∗= , and ξ ∗ , z ∗  are the optimal solutions to the programs (6) and (7), 
respectively. From Lemma 2 and the equation (9), we have 

 ( ) ( ) ( ) ( ) 0
T TdV dV dv dvv v v v E v E v

dt dv dt dt
∗ ∗⎛ ⎞= = − = − ∇ ≤ − ≤⎜ ⎟

⎝ ⎠
 (16) 

Since ( ) 0E v ≥ , according to the Lyapunov’s theorem theory, the neural network defined in 

(12) is Lyapunov stable. From Lemma 2, ( ) 0E v ∗ =  if and only if ( ) 0E v ∗∇ = . Hence v∗  
makes 0v =&  and 0V =& , and therefore the neural network defined in (12) converges to its 
equilibrium points, and then ( )J θ  converges to its minimum point. Soθ θ ∗= , the output y  
of the system (1) equals to the optimal solution ( )y F θ∗ ∗= . 
Since ( )E v ,t  is continuously differentiable and convex for all v , the local minimum is 
equivalent to the global minimum. The annealing RNN defined in (12) is thus globally stable 
and converges to the optimal solutions of the programs (6) and (7). The proof is completed. 

V. Simulation Results 
 

Consider a simplified tight formation flight model consisting of two Unmanned Aerial 
Vehicles[6].  
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⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

&

&

&

&

 (17) 

with a cost function given by 
 ( ) ( )( ) ( )( )2 2

1 310 0 5 9 590y t x t x t=− + − + +  (18) 

where 1x  is the vertical separation of two Unmanned Aerial Vehicles, 2x  is the differential of 

1x , 3x  is the lateral separation of two Unmanned Aerial Vehicles, 4x  is the differential of 3x  
and y  is the upwash  force acting on the wingman. It is clear the maximum point is 1 0x∗ =  and 

3 9x∗ = − where the cost function ( )y t  reaches its maximum 590y ∗ = . 
A control law based on sliding mode theory is given by: 

 
( ) ( )

( ) ( )

1 1 1 2

1 1 1 2 1 1 1 1

2 2 3 4

2 3 2 4 2 2 2 2

20 9

35 15

s x x
u x s x k sign s

s x x
u x s x k sign s

σ
σ θ

σ
σ θ

= +⎧
⎪ = + − − −⎪
⎨ = +⎪
⎪ = + − − −⎩

 (19) 

where 1 2,σ σ  are two sliding mode surfaces, 1 1 2 2s ,k ,s ,k are positive scalar constants, 1 2,θ θ  are 
two extremum seeking parameters, which  an annealing recurrent neural network is used to 
seek at the same time.  
Remark: The control law is given in (19), which is based on sliding mode theory. We 
choose ( )i i isign sσ θ−   ( )1 2i ,=  so that 1x and 3x  entirely traces 1θ and 2θ  in the sliding mode 

surfaces respectively, and the system will be stable at 1θ
∗  and 2θ

∗  finally. 
Applying the annealing recurrent neural network to the system (17), the initial conditions are 
given as ( )1 0 2x = − , ( )2 0 0x = , ( )3 0 4x = − , ( )4 0 0x = , ( )1 0 2θ = − , ( )2 0 4θ = −  and the 
parameters: 11 1 0.η = , 12 1 0.η = , 13 0 03.η = , 11 0β = , 12 0β = , 13 0 01.β = , 21 1 0.η = , 22 1 0.η = , 

23 0 09.η = , 21 0β = , 22 0β = , 23 0 01.β = , 1 2 15s .= , 2 3 35s .= , 1 2 1k k= = , 1 0.235µ = , 

2 0.019µ = , respectively. The simulation results are shown from figure 3 to figure 9. 
Where, ( )1,2i iµ =  are the main factors of scaling the convergence rate of the recurrent neural 
network, if they are too big, the error of the output will be introduced; on the contrary, if they 
are too small, the convergence rate of the system will be slow. The range of 

( )1,2; 1,2,3ij i jη = =  is [ ]0,1 , the corresponding ijη  of the seeking object ( )J θ  ought to 

approach 1 . ( )1,2; 1,2,3ij i jβ = =  are the main factors of scaling the annealing rate of ( )T t , 
the values of ijβ  should not be too big, otherwise the system will be unstable. Certainly, the 
values of those parameters should be verified by the system simulation. 
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Fig. 3. the result of 1θ                                              Fig. 4.  the control law 1u  

 

              
Fig. 5.  the result of the state 1x                                         Fig. 6.  the result of 2θ  

 

             
Fig. 7.  the control law 2u                                       Fig. 8.  the result of the state 3x  

 

   
Fig. 9.  the result of the output y  

 
Where, solid lines are the results applying ESC with the annealing RNN; dash lines are the 
results applying ESC with sliding mode[7]. Comparing those simulation results, we know the 
dynamic performance of the method proposed in the paper is better than that of ESC with 
sliding mode. The “chatter” of the output doesn’t exist in figure 4 and 7, which is very harmful 
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in practice. Moreover the convergence rate of ESC with the annealing RNN can be scaled by 
adjusting the weight matrix. 

VI. Conclusion 
 

The method of combining an annealing recurrent neural network with ESC improves the 
dynamic performance of the system greatly. At the same time, the disappearance of the 
“chatter” of the system output and the switching of the control law are beneficial to 
engineering applications. 
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