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Abstract 

Improving the performance of the state-of-the-art Mandarin speech recognition 
system for non-native speech remains a challenging task because of wide varie-
ties of non-native accents. The recognition accuracy of the baseline models 
trained by Standard Mandarin Corpus was drastically low for the non-native 
speakers from Naxi and Lisu in Yunnan than for the native ones. To verify that 
the acoustic deviation is one of important factors affecting the performance of 
recognizer, maximum likelihood linear regression (MLLR) was adopted both 
alone and in combination with maximum a posteriori (MAP) with the Linguis-
tic Minorities Accents Mandarin Speech Corpus which collected by our labora-
tory. It is shown that when MLLR and MLLR + MAP are used, the correct 
rates increase evidently. 

Keyword: Mandarin speech recognition, non-native speaker, Naxi accent, Lisu 
accent, speaker adaptation, MLLR, MAP. 

1   Introduction 

Over the past decade, there have been tremendous efforts on large vocabulary con-
tinuous speech recognition for Chinese. Among the multifarious Chinese dialects, 
Mandarin (or Putonghua) has received the most research and commercial interests, 
given its huge speaker population and the unique role as the official standard of spo-
ken Chinese. Nevertheless, there has been an obvious and ever increasing demand for 
speech recognition technology that can deal with Chinese dialects and non-native 
Mandarin, spoken by foreigner or the speakers from the minority areas in China. The 
reasons are at least two-fold. Firstly, more and more foreigners learn Chinese and 
speak Mandarin with foreign accent. Secondly, most of the national minorities in 
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China, such as Naxi, Dai, Zang etc., have their languages, so they speak Mandarin 
with their native language accents. Non-native specific investigation is not only justi-
fiable but also necessary for the advancement of Chinese speech recognition technol-
ogy. 

Although the current speech recognition systems work very well for native talkers, 
their performance degrades dramatically when recognition is performed on speech 
with heavy non-native accents [1]. One reason is because the non-native speakers’ 
pronunciation differs from those native speakers’ pronunciation observed during 
system training. A number of methods for handling non-native speech in speech rec-
ognition have been proposed. The most straightforward approach is to use the non-
native speech from the target language spoken by the group of non-native speakers 
for recognizer training [2]. However the problem of this method is that the non-native 
speech data is only rarely available. Another approach is to apply general speaker 
adaptation techniques such as MLLR (Maximum Likelihood Linear Regression) and 
MAP (Maximum A-Posterior) on speaker-independent models to fit the characteris-
tics of a non-native accent [3].  

The model based adaptation schemes are divided into three families: parameter 
transformation based adaptation using maximum likelihood linear regression (MLLR) 
and similar schemes; the maximum a posteriori (MAP) adaptation family; and a fam-
ily related to speaker clustering methods or speaker-space methods. The strengths and 
weaknesses of these methods are considered and a number of hybrid schemes have 
appeared which combine the above methods in various ways [4]. 

For this study, we implement a number of acoustic modeling techniques to com-
pare their performance on non-native speech recognition. Here we restrict our study 
to non-native Mandarin speech spoken by speakers from Naxi and Lisu in Yunnan, 
China. In more detail, we explore how the acoustic models can be adapted to better 
handle the non-native speech. To verify that the acoustic deviation is one of important 
factors affecting the performance of recognizer, MLLR was adopted both alone and 
in combination with MAP.  

This paper is organized as follows. The speech corpus is presented in section 2. In 
section 3, we describe the baseline HMM models of our experiments. Section 4 de-
scribes the MLLP and MAP algorithm. Detailed experiments and results on acoustic 
models adaptation are given in section 5. Section 6 concludes with summary of our 
work. 

2   Speech Corpus 

In this study, two speech corpora shown in Table 1, one native speech corpus and one 
non-native speech corpus, are used. 

The native Mandarin speech data are extracted from the Mandarin Dictation Cor-
pora supported by China National Hi-Tech Project 863. We used the utterances from 
87 speakers (38 males and 49 females) to train the baseline HMM models. The non-
native Mandarin speech data are extracted from the Linguistic Minorities Accents 
Mandarin Speech Corpus (LMAMSC), which collected by our laboratory. The Chi-
nese sentence prompts of the LMAMSC were the same sentences as the first corpus. 
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Recordings were made with a high-quality head-mounted microphone in a quiet labo-
ratory environment. The data was digitized at 16 bits per sample and a sampling rate 
of 16 kHz. The all speakers are from minority areas in Yunnan and their native lan-
guages are not Chinese. The non-native accents are obvious when they speak Manda-
rin. 

Table 1. Speech corpus overview 

Corpus Accent Partition Speakers Sentences 
Project 863 Native Training 87 39800 
  Testing 11 5700 
LMAMSC Naxi  6 3600 
 Lisu  6 3600 

3   Baseline System 

3.1   Training 

All recognition experiments described in this paper use the HTK Toolkit [5]. The 
acoustic models of the baseline system for native Mandarin speech are trained on the 
native corpora data. The whole training procedure closely follows the one outlined in 
the Microsoft Mandarin Speech Toolbox [6]. The feature used is a 39order feature 
vector, consisting of 12 MFCCs (Mel Frequency Cepstral Coefficient), energy, and 
their first and second order differences. The feature vector is calculated using a win-
dow size of 25ms and a step size of 10ms. The whole training procedure should be 
divided into two stages: monophone and triphone. In each stage, there are always two 
steps, which are repeated iteratively: estimation and realignment. The process begins 
with the training of the monophone models, followed by training of the triphone mod-
els. For predicting unseen triphone in recognition, the parameter of tied-state triphone 
should be estimated.  

Table 2. Initial and tonal final units [6] 

Initial b, c, ch, d, f, g, ga, ge, ger, go, h, j, k, l, m, n, p, q, r, s, sh, 
t, w, x, y, z, zh 

Tonal final a(1-5), ai(1-4), an(1-4), ang(1-5), ao(1-4), e(1-5), ei(1-4), 
en(1-5), eng(1-4), er(2-4), i(1-5), ia(1-4), ib(1-4), ian(1-5), 
iang(1-4), iao(1-4), ie(1-4), if(1-4), in(1-4), ing(1-4), 
iong(1-3), iu(1-5), o(1-5), ong(1-4), ou(1-5), u(1-5), ua(1-
4), uai(1-4), uan(1-4), uang(1-4), ui(1-4), un(1-4), uo(1-5), 
v(1-4), van(1-4), ve(1-4), vn(1-4) 

 
In this study, we train the acoustic models based on syllables. The basic acoustic 

units used for recognition are shown in Table 2. The baseline acoustic model was 
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designed to be tonal since tone is an important feature of the Chinese language. After 
the monophone models are trained, all possible triphone expansions based on the full 
syllable dictionary are performed. This results in a total of 270,998 triphones. Out of 
these triphones, 24,127 triphones actually occur in the training corpus. After perform-
ing several iterations of embedded reestimation, we use the decision tree based clus-
tering capability of the HTK toolkit to tie similar states of triphones to each other. 
After clustering, the number of unique Gaussian mixtures is reduced to 16,112. We 
then use the HTK toolkit’s Gaussian splitting capability to incrementally increase the 
number of Gaussians mixture to 8. 

3.2   Testing 

After the acoustic models of the baseline system for native Mandarin speech are 
trained, we perform a set of recognition experiments. The standard HTK decoder 
HVite was used for the experiment. 

We first performed syllable decoding without language model based on a syllable 
loop word net. This recognition task puts the highest demand on the quality of the 
acoustic models. All 1677 syllables are listed in the network and any syllable can be 
followed by any other syllable, or they may be separated by short pause or silence. 
Secondly, we have included a syllable bigram language model that had been esti-
mated from the training set syllable transcription with the tool HLstats. Since recog-
nizing Chinese tones is a very difficult task, we have also calculated results that do 
not count tone misrecognitions as errors (shown in the following Tables as the Base 
syllable correct). 

The baseline syllable recognition results on the test set of 5,700 sentences from 11 
native speakers are shown in Table 3 and the results on the test set of two non-native 
accents speech, 600 sentences from 6 Naxi speakers and 600 sentences from 6 Lisu 
speakers, are shown in Table 4. As expected, the recognition accuracy of baseline 
models is drastically low for the non-native speakers. 

Table 3. Recognition results on the native test set 

 Base syllable correct (%) Tonal syllable correct (%) 
Without LM 82.4 63.8 
With LM 93.0 91.3 

 

Table 4. Recognition results on the non-native set without language model 

Accent Base syllable correct (%) Tonal syllable correct (%) 
Naxi 39.4 23.1 
Lisu 33.8 19.4 
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4   Speaker Adaptation 

In speaker adaptation, acoustic models that have been trained for general speech are 
adjusted so that they better model the speech characteristic of a specific condition. 
Those adaptation techniques do not have to be limited to speaker adaptation; general 
models can be specialized to compensate for differences in acoustic environment or 
the characteristic of a group of speakers.  

Speaker adaptation techniques can be used in various different modes. If the true 
transcription of the adaptation data is known then it is termed supervised adaptation, 
whereas if the adaptation data is unlabelled then it is termed unsupervised adaptation. 
In the case where all the adaptation data is available in one block, e.g. from a speaker 
enrollment session, then this termed static adaptation. Alternatively adaptation can 
proceed incrementally as adaptation data becomes available, and this is termed in-
cremental adaptation. 

4.1   Model Adaptation Using MLLR 

Maximum likelihood linear regression or MLLR computes a set of transformations 
that will reduce the mismatch between an initial model set and the adaptation data [5] 
[7]. More specifically MLLR is a model adaptation technique that estimates a set of 
linear transformations for the mean and variance parameters of a Gaussian mixture 
HMM system. The effect of these transformations is to shift the component means 
and alter the variances in the initial system so that each state in the HMM system is 
more likely to generate the adaptation data. 

The transformation matrix used to give a new estimate of the adapted mean is 
given by 

ˆ .Wµ ξ=  (1) 

Where, W  is the  transformation matrix (where n  is the dimensional-
ity of the data) and 

( 1n n× + )
ξ  is the extended mean vector,  

1 2 n[    ... ] .Twξ µ µ µ=  (2) 

Where  represents a bias offset whose value is fixed (within HTK) at 1. w
 

Hence W  can be decomposed into 

[  ] .W b A=  (3) 

Where A  represents a  transformation matrix and b  represents a bias vec-
tor. 

n n×
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The transformation matrix W  is obtained by solving a maximization problem us-
ing the Expectation-Maximization (EM) technique. This technique is also used to 
compute the variance transformation matrix. 

This adaptation method can be applied in a very flexible manner, depending on the 
amount of adaptation data that is available. If a small amount of data is available then 
a global adaptation transform can be generated. A global transform (as its name sug-
gests) is applied to every Gaussian component in the model set. However, as more 
adaptation data becomes available, improved adaptation is possible by increasing the 
number of transformations. Each transformation is now more specific and applied to 
certain groupings of Gaussian components. For instance the Gaussian components 
could be grouped into the broad phone classes: silence, vowels, stops, glides, nasals, 
fricatives, etc. The adaptation data could now be used to construct more specific 
broad class transforms to apply to these groupings. 

MLLR makes use of a regression class tree [7] to group the Gaussians in the 
model set, so that the set of transformations to be estimated can be chosen according 
to the amount and type of adaptation data that is available. The tying of each trans-
formation across a number of mixture components makes it possible to adapt distribu-
tions for which there were no observations at all. With this process all models can be 
adapted and the adaptation process is dynamically refined when more adaptation data 
becomes available. 

The regression class tree is constructed so as to cluster together components that 
are close in acoustic space, so that similar components can be transformed in a similar 
way. Note that the tree is built using the original speaker independent model set, and 
is thus independent of any new speaker. The tree is constructed with a centroid split-
ting algorithm, which uses a Euclidean distance measure. The terminal nodes or 
leaves of the tree specify the final component groupings, and are termed the base 
(regression) classes. Each Gaussian component of a model set belongs to one particu-
lar base class.  

 
Fig. 1. A binary regression tree [5] 

Figure 1 shows a simple example of a binary regression tree with four base classes, 
denoted as { }. During “dynamic” adaptation, the occupation counts 
are accumulated for each of the regression base classes. The diagram shows a solid 
arrow and circle (or node), indicating that there is sufficient data for a transformation 

4 5 6 7, , ,C C C C
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matrix to be generated using the data associated with that class. A dotted line and 
circle indicates that there is insufficient data. For example neither node 6 or 7 has 
sufficient data; however when pooled at node 3, there is sufficient adaptation data. 

In the HTK, the amount of data that is “determined” as sufficient is set by the user 
as a command-line option to HEAdapt. HEAdapt uses a top-down approach to trav-
erse the regression class tree. Here the search starts at the root node and progresses 
down the tree generating transforms only for those nodes which 

1. have sufficient data and 
2. are either terminal nodes (i.e. base classes) or have any children without suffi-

cient data. 
In the example shown in figure 1, transforms are constructed only for regression 

nodes 2, 3 and 4, which can be denoted as ,  and . Hence when the trans-
formed model set is required, the transformation matrices (mean and variance) are 
applied in the following fashion to the Gaussian components in each base class: 

2W 3W 4W

2 5

3 6 7

4 4

{ }     
{ , }
{ }     

W C
W C C
W C

→⎧ ⎫
⎪ ⎪→⎨ ⎬
⎪ ⎪→⎩ ⎭

 (4) 

At this point it is interesting to note that the global adaptation case is the same as a 
tree with just a root node, and is in fact treated as such. 

4.2   Model Adaptation Using MAP 

Model adaptation can also be accomplished using a maximum a posteriori (MAP) 
approach [5] [8]. This adaptation process is sometimes referred to as Bayesian adap-
tation. MAP adaptation involves the use of prior knowledge about the model parame-
ter distribution. Hence, if we know what the parameters of the model are likely to be 
(before observing any adaptation data) using the prior knowledge, we might well be 
able to make good use of the limited adaptation data, to obtain a decent MAP estimate. 
This type of prior is often termed an informative prior. Note that if the prior distribu-
tion indicates no preference as to what the model parameters are likely to be (a non-
informative prior), then the MAP estimate obtained will be identical to that obtained 
using a maximum likelihood approach. 

For MAP adaptation purposes, the informative priors that are generally used are 
the speaker independent model parameters. For mathematical tractability conjugate 
priors are used, which results in a simple adaptation formula. The update formula for 
a single stream system for state j and mixture component m is 

ˆ .jm
jm jm jm

jm jm

N
N N

τµ µ
τ τ

= +
+ +

µ  (5) 

Where τ  is a weighting of the a priori knowledge to the adaptation speech data 
and N is the occupation likelihood of the adaptation data, defined as, 
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t
1 1

( ) .
rTR

r
jm jm

r t

N L
= =

= ∑∑  (6) 

Where, jmµ  is the speaker independent mean and jmµ is the mean of the observed 

adaptation data and is defined as, 

1 1

1 1

( )

( )

r

r

TR
r r
jm t

r t
jm TR

r
jm

r t

L t o

L t
µ = =

= =

=
∑∑

∑∑
 (7) 

Where, the following notation is used in above equations 
R  the number of the training observation sequences 

rT  the number of observations of sequence r 
rO  observation sequence r, 1 r R≤ ≤  

r
to  the observation of sequence r at time t, 1 rt T≤ ≤  

( )r
jmL t  the occupancy probability for state j and mixture component m at 

time t of sequence r 
As can be seen, if the occupation likelihood of a Gaussian component ( ) is 

small, then the mean MAP estimate will remain close to the speaker independent 
component mean. With MAP adaptation, every single mean component in the system 
is updated with a MAP estimate, based on the prior mean, the weighting and the ad-
aptation data. Hence, MAP adaptation requires a new “speaker-dependent” model set 
to be saved.  

jmN

One obvious drawback to MAP adaptation is that it requires more adaptation data 
to be effective when compared to MLLR, because MAP adaptation is specifically 
defined at the component level. When larger amounts of adaptation training data 
become available, MAP begins to perform better than MLLR, due to this detailed 
update of each component (rather than the pooled Gaussian transformation approach 
of MLLR). In fact the two adaptation processes can be combined to improve per-
formance still further, by using the MLLR transformed means as the priors for MAP 
adaptation (by replacing jmµ  in equation (5) with the transformed mean of equation 

(1)). In this case components that have low occupation likelihood in the adaptation 
data, (and hence would not change much using MAP alone) have been adapted using 
a regression class transform in MLLR. 
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5   Experiments and Results 

HTK provides two tools to adapt continuous density HMMs, offline supervised adap-
tation using MLLR and/or MAP. If MLLR and MAP adaptation is to be performed 
simultaneously using HTK in the same pass, then the restriction is that the entire 
adaptation must be performed statically. In this section, we describe the approaches 
that we tried and compare their performance. 

5.1   MLLR 

To evaluate the acoustic model adaptation performance, we carry out the supervised 
static MLLR experiments. All phones were classified into 65 regression classes. The 
tool HHEd was used to build a binary regression class tree, and to label each compo-
nent with a base class number. Both diagonal matrix and bias offset were used in the 
MLLR transformation matrix. Adaptation set size ranging from 30 to 500 utterances 
for each speaker was tried. Results are shown in the Table 5. It is shown that when 
the number of adaptation utterances reaches 30, the all relative correct rates increase 
based on speaker independent (SI) system are more than 33%. 

Table 5. Performance of MLLR with different adaptation sentences 

Number of adaptation sentences 0 30 100 500 
Naxi Base syllable correct (%) 39.4 52.7 53.8 57.9 
 Relative correct increase based on SI (%) -- 33.8 36.5 46.9 
 Tonal syllable correct (%) 23.1 37.7 37.8 42.4 
 Relative correct increase based on SI (%) -- 63.2 63.6 83.5 
Lisu Base syllable correct (%) 33.8 58.4 60.7 65.2 
 Relative correct increase based on SI (%) -- 72.8 79.6 92.9 
 Tonal syllable correct (%) 19.4 40.0 41.3 47.3 
 Relative correct increase based on SI (%) -- 106 113 144 

 

Table 6. Performance of combined MLLR and MAP with different adaptation sentences 

Number of adaptation sentences 0 30 100 500 
Naxi Base syllable correct (%) 39.4 63.9 59.3 82.9 
 Relative correct increase based on SI (%) -- 62.2 50.5 110 
 Tonal syllable correct (%) 23.1 51.9 43.7 77.7 
 Relative correct increase based on SI (%) -- 125 89.2 236 
Lisu Base syllable correct (%) 33.8 70.0 65.6 88.8 
 Relative correct increase based on SI (%) -- 107 94.1 163 
 Tonal syllable correct (%) 19.4 55.0 46.3 82.9 
 Relative correct increase based on SI (%) -- 184 139 327 
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5.2   Combined MLLR and MAP 

The results of combined MLLR and MAP are shown in the Table 6. It is shown that 
when the number of adaptation utterances reaches 500, the base syllable correct rates 
are more than 82% and the tonal syllable correct rates are more than 77% for both 
Naxi and Lisu accent speakers. 

6   Summary 

In this paper, a new non-native accents speech corpus of dictation Mandarin for 
LVCSR has been described. Based on the corpus, we explore how the acoustic mod-
els can be adapted to better recognize the non-native speech. The results show that 
there are many problems such as adaptation method, the non-native pronunciation 
patterns that remain to be investigated. While this speech appears significantly more 
difficultly to recognize than native Mandarin, we expect performance on this task to 
benefit from progress in speaker adaptation in general with more non-native accents, 
such as Bai, Yi, Zang, Dai etc. in Yunnan, China. In future, it will be necessary to 
improve speaker adaptation system by incorporating more extensive knowledge of 
speaker variation at both the acoustic and the pronunciation level. 
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