
Hyung Joon Kook
Compilation of Domain Principles into Inference Operators for Science Tutoring

Compilation of Domain Principles into Inference
Operators for Science Tutoring

Hyung Joon Kook

Department of Computer Engineering, Sejong University, Seoul, Korea
kook@sejong.ac.kr

Abstract

The nature of learning in science is to study the principles of the domain and
apply them to solving problems. Consequently, a tutoring system in a scientific
domain should possess an adequate methodology to deal with this principle.
Due to the diversified contexts of various scientific domains, however, the
techniques developed for tutoring in one scientific domain do not necessarily
transfer well to other domains. We developed a tutoring architecture for geome-
try where the domain principles are automatically converted to inference opera-
tors for use by the domain-independent, inferential portion of the tutoring sys-
tem, which automatically generates the solutions to problems at tutoring time
based on the inference operators. The system also has a potential for providing
personalized feedback. The proposed design is expected to apply to additional
tutoring domains other than geometry, where problem solving is also based on
stepwise application of domain principles.

Keywords: Science tutoring, inference operators, knowledge compilation.

1 Introduction

Learning in science is a process made up of studying a finite set of general principles
and then developing the skills to apply them in an infinite variety of situations. A
computer tutor in science should, therefore, possess an adequate strategy to represent
and to use the principles in tutoring. Although such a strategy is expected to be com-
monly applicable to various scientific domains, a technique developed for tutoring in
a domain cannot always be applied directly to other domains because each scientific
domain is taught and learned in a context radically different from any other. For ex-
ample, learning in mechanics involves reasoning about physical objects, motions,
forces, etc., while the main contexts of plane geometry are figures, angles, etc.

We have set as our long-term research goal the development of a modular science
tutoring architecture, in which the common, sharable strategies of science tutoring are
built in and modifiable independently of the domain-specific knowledge supplied by
the domain authors. We believe that authoring of domain-specific knowledge must be

 20

International Journal of Information Technology, Vol. 11, No. 7, 2005

facilitated in a human-friendly interface that is designed to minimize the burden on
the human author who supplies the knowledge (e.g., concepts and principles) of the
domain. More importantly, the requirement for the tutoring architecture suggests that
the system should provide a mechanism for compiling the knowledge of the domain
into a format suitable for tutoring during the reasoning part of the teaching process.

As an important step toward our long-term research goal, we have designed one
such compilation mechanism and built on it with a tutoring system for geometry prob-
lem solving called CyberTutor. In our design, stored principles in geometry are com-
bined with a specific problem (selected for tutoring) to automatically produce a ho-
mogeneous set of logical consequences, called inference operators. These operators
are subsequently used by the domain-independent, inferential component of the sys-
tem for tutoring on that specific problem. This paper reports on the design and the
implementation of the tutoring system with a focus on the working mechanisms of the
inference operators and the benefits of using them.

The essence of the proposed tutoring architecture is also expected to be applicable
to other scientific domains. Although geometry has been a popular domain for nu-
merous intelligent tutoring systems research [1], [6], [7], few of the system have yet
reached the level of building a modular architecture like the one we are developing. A
major obstacle to such modularization seems to be that, in geometry the domain
knowledge is taught and learned in a unique context, i.e., the figure, an application
that is uncommon in other domains. In the following sections, we will show how the
geometry principles exemplified by figures can be represented in the computational
framework, and how the principles can be compiled into a set of inference operators
to use in the inferential part of the tutoring system. Next, we will present the working
mechanism of the inferential components of the tutoring system. That aspect will be
followed by a demonstration of a sample tutoring session by CyberTutor. Finally, af-
ter a discussion of some future research, conclusions will be presented.

2 Modeling Geometry Principles

As in other scientific domains, principles are the main contents of learning in geome-
try. Students are taught to study them and then apply them to solving various prob-
lems. Unlike other domains, geometry principles are usually presented with figures to
graphically describe the contexts of the principles. Therefore, it is crucial for any
computer geometry tutor to be able to deal properly with figures.

A geometry principle is usually stated as a logical proposition about a figure repre-
senting the context in which the principle is applicable. Such a figure contains a set of
geometrically-meaningful information, which may be divided into its components,
quantities and relations. The components are the objects, such as points, lines, and
figures like triangles and circles. The quantities are the quantitative attributes associ-
ated with the components, such as lengths, angles, perimeters, and areas. The relations

 21

Hyung Joon Kook
Compilation of Domain Principles into Inference Operators for Science Tutoring

A B○

are the configurations among the components, such as ‘Point A is on Circle C’ and
‘Direction of Line AB is shifted to the right from that of line BC’. The collection of
the components, the attributes and the relations may be referred to as contexts, since
they serve as the contextual backgrounds for the higher-level concepts and proposi-
tions of the domain.

A natural way to represent a geometry principle in a computational framework is to
employ the notion of model, which is a declarative data structure with slots to hold the
contexts as well as the proposition. These models correspond to the notion of the
models in the ACT-R theory of [1]. Figure 1a shows an example principle, followed
by the corresponding model in Figure 1b. It is important that an authoring system fa-
cilitate an automated environment for generating models, since manually encoding a
large number of these models would be too tedious and time-consuming. The drawing

C ○ D

“Alternate interior angles between parallel lines are equal”

Fig. 1a. A Geometry Principle

(MODEL M25
(PRINCIPLE “Alternate Interior Angles between Parallel Lines

are Equal”)
(COMPONENTS

(POINTS (A) (B) (C) (D))
(LINES (AB (ENDS A B)) (BC (ENDS B C)) (CD (ENDS C D))))

(QUANTITIES
 (ANGLES (ABC (SIDES AB BC)) (BCD (SIDES BC CD))))
(RELATIONS
 (SHIFT (DIRECTION AB BC))
 (SHIFT (DIRECTION CD BC)))
(PROPOSITION
 (AB // CD → ABC = BCD))

)

Fig. 1b. A Model Corresponding to the Principle in Figure 1a

 22

International Journal of Information Technology, Vol. 11, No. 7, 2005

interface we are building enables an author to supply geometry principles by drawing
figures and entering propositions in a user-friendly way; i.e., the contexts of the mod-
els are specified automatically, as the author draws the figures using a series of mouse
actions [4].

3 Compilation of Models into Inference Operators

As an embodiment of a general principle, a model should be applicable to many prob-
lems that can be presented in terms of a various set of labels and constant values. For
the finite set of general models to deal effectively with an infinite variety of problems,
the notion of knowledge compilation [2] is employed. Here the models are compiled
upon the specific contexts of a problem to produce a set of inference operators. These
operators are context-specific since they are obtained by converting the general con-
texts used in the model into the particular contexts of a problem (e.g., labels used in
the figure). The compilation process applies only to those models whose contexts
match the problem contexts. As a consequence, the range of the principles covered by
the resultant operators is confined to only those principles that are contextually rele-
vant to that specific problem.

The contexts having been matched already, these operators need not carry contex-
tual information and thus can consist only of the propositions in the forms instantiated
for the problem at hand. Figure 2b shows some of the inference operators produced
for the sample problem in Figure 2a. We can see that the operators shown here solely
consist of compilations from relevant models, corresponding to such principles as
“(P1) Alternate interior angles between parallel lines are equal”, “(P2) If two sides
of a triangle are equal, then the base angles are equal”, “(P3) The sum of the angles
in a triangle is 180”, “(P4) Lengths of two radii of a circle are equal”, “(P5) The
sum of two supplementary angles is 180”, “(P6) Exterior angle of a triangle is equal
to the sum of opposite inner angles” etc. Note that, some operators included in this
operator set are apparently unusable ones (e.g., OPR1,2,4,5,7,8), since their left-hand
side propositions do not hold. Still these operators are legitimate as far as the contexts
are concerned and in fact are useful for capturing misconceptions in the inference
steps that students can take.

4 The Inference Engine

The inference operators that are obtained resemble the production rules in [1], as both
are derived from declarative knowledge of the domain. But the operators are tactically
more useful in several respects. First of all, the search space is greatly reduced since

 23

Hyung Joon Kook
Compilation of Domain Principles into Inference Operators for Science Tutoring

B

A

the models (i.e., the principles) that are irrelevant to the sample problem have been
pruned out during compilation.

In fact, a typical problem in a scientific domain, including geometry, can usually
be solved using only a few principles. Additionally, the time-taking process of context
matching is completed with compilation; hence the interactive performance of the

D

C

E

Given ∠ACB = 30 and ∠ADB = 40, find ∠CAD.

40
?

30

Fig. 2a. A Sample Problem

(OPR1) BC // AE → ∠ACB = ∠CAE (P1)
(OPR2) BD // AE → ∠ADB = ∠DAE (P1)
(OPR3) AB = AC → ∠ABC = ∠ACB (P2)
(OPR4) AC = BC → ∠BAC = ∠ABC (P2)
(OPR5) BC = AB → ∠ACB = ∠BAC (P2)
(OPR6) AB = AD → ∠ABD = ∠ADB (P2)
(OPR7) BD = AB → ∠ADB = ∠BAD (P2)
(OPR8) AD = BD → ∠BAD = ∠ABD (P2)
(OPR9) ∠ABC + ∠ACB + ∠BAC = 180 (P3)
(OPR10) ∠ABD + ∠ADB + ∠BAD = 180 (P3)
(OPR11) AB = AC (P4)
(OPR12) AB = AD (P4)
(OPR13) AC = AD (P4)
(OPR14) ∠BAC + ∠CAE = 180 (P5)
(OPR15) ∠BAD + ∠DAE = 180 (P5)
(OPR16) ∠CAE = ∠ACB + ∠ABC (P6)
(OPR17) ∠DAE = ∠ADB + ∠ABD (P6)

Fig. 2b. Some of the Inference Operators Produced for the Problem in Figure 2a

 24

International Journal of Information Technology, Vol. 11, No. 7, 2005

system is enhanced still further. In this section we will describe how these operators
are used in the inference processes.

CyberTutor employs three types of inference strategies: propositional, algebraic,
and quantitative. The propositional inference is the common backward inference
about the propositions in the working memory: i.e., the inference operators and the set
of propositions given in the problem. When a student enters a problem-solving step in
the form of an assertion, that student’s step is taken as a hypothesis and set as the goal
to be proved by the system. In the goal-driven search, the propositions in the working
memory are then searched for matches. For those inference operators whose RHS’s
match the goal, the system tries to match their LHS propositions, possibly by sub-
goaling them until the initial goal is proved or unproved. If proved, the student’s step
is taken as valid; otherwise, it is considered to be invalid.

Besides propositions, real problem solving in geometry often involves algebra.
Students may enter a step in the form of an algebraic expression which is not deriv-
able from a direct application of the propositional inference described above. Such a
situation is handled by the algebraic inference mechanism of CyberTutor. For in-
stance, a student’s step, “X = 30” is taken as valid if the propositions in the working
memory include, e.g., “X + Y = 180” and “Y = 150”.

The algebraic inference takes more time than the propositional inference does,
since it involves solving simultaneous equations. In order to minimize performance
degrade, this inference is used only as a complement to the propositional inference. In
particular, it is employed only when the following two conditions are met: first, that
the propositional inference cannot proceed any further, and secondly, that there has
been a change in the working memory since the last algebraic inference was per-
formed (i.e., if there is nothing new in the working memory, performing the algebraic
inference would also bring about nothing new).

If both the propositional and the algebraic inferences fail to validate the goal hy-
pothesis, the system resorts finally to the quantitative inference, provided that the goal
hypothesis consists of an algebraic expression involving quantities. In such a case, the
system extracts the quantities from the expression and sets each quantity as the sub-
goal of the subsequent inference. For the sub-goal quantity generated, the inference
proceeds as follows. If the sub-goal quantity is X and there is a proposition in P(X)
form, i.e., consisting solely of X (e.g., “X = 30”) in the working memory, then the
sub-goal is satisfied (i.e., solved for).

If no proposition exists in P(X) form, two alternative methods are attempted. The
first method applies when there is a proposition in P(X,…) form, i.e., consisting of X
and other quantities (e.g., “Z = X – Y”). In this case, the inference proceeds using
those other quantities (e.g., Y and Z) as sub-goals. In other words, a detour is taken
when the inference on the desired quantity comes to a dead end. The second method
applies when there is an inference operator whose RHS proposition consists of the
quantity X. In this case, that same RHS proposition of the operator is set as the sub-
goal hypothesis. This strategy is useful since the chances are that validating this sub-

 25

Hyung Joon Kook
Compilation of Domain Principles into Inference Operators for Science Tutoring

goal hypothesis would probably help to solve for the desired quantity. For example,
when the desired quantity is X and the inference operator is “LHS → X = Y”, setting
“X = Y” as the sub-goal hypothesis and subsequently validating it would probably be
a one-step progression to solve for X.

Considering that geometry problems often accompany algebra, it is indispensable
for the system to handle unknown quantities in the methods described above. As we
cannot determine which of the two methods are better, both methods are employed so
as to work independently of each other in the present implementation.

Previous research on geometry tutoring has concentrated mainly on purely-proving
types of problems, while ignoring the algebraic aspects involved in problem solving.
In fact, many geometry problems often demand algebraic manipulations in the course
of the problem solving, and some problems even ask to solve for the value of an un-
known quantity. Using a separately built-in algebraic manipulation module would not
suffice, since such a “black box” module would not allow the tutor to access the in-
formation about the algebraic inference performed within it. One of the achievements
of our research is the generalization of the tutoring scope to cover problems involving
the algebraic and the quantitative inferences in a way that is transparent, and there-
fore, accessible for tutoring.

5 Demonstration of CyberTutor

Based on the diverse inferential strategies presented in the preceding section, Cyber-
Tutor provides the student with an interactive environment for geometry problem
solving. The interface is shown in Figure 3. As the student chooses a problem, it loads
into the system. At load-time, the problem is compiled with the system’s library of
geometry models to produce a set of inference operators. Then, the problem tutoring
session begins. It is worth mentioning here that we are in the process of developing a
graphic interface that will facilitate the student entering a problem outside the library
of problems, i.e., one supplied by the student himself. The strength of the proposed tu-
toring framework is that it is applicable not only to the selection of stored problem,
but also to a wider range of problems, since the solution procedures for the problems
are not stored along with the problems in the library, but generated dynamically dur-
ing the problem solving.

As shown in Figure 3, a problem tutoring session comprises a series of stepwise in-
teractions between the student and the tutor. Student problem solving is monitored so
that each step entered by the student is checked for validity. This validity check is
performed by using the backward inference mechanism on the propositions in the
working memory, and if necessary, the algebraic and quantitative inference mecha-
nisms as well.

 26

International Journal of Information Technology, Vol. 11, No. 7, 2005

Fig. 3. CyberTutor Interface

Benefits of using the proposed design framework include the system’s ability to
adapt to the differing skill levels of students. A less-skilled student’s step is usually
traced by a single step or two inference steps of the system. On the other hand, a step
involving a longer chain of inferences made by a more skilled student can also be
traced by applying multiple inference steps. Most of the previous systems in this area
of skills tutoring have confined the steps to a primitive length of inference, and by do-
ing so, they failed to model the variety of individual skill levels in this respect.

6 Future Research

At the present time, the design and implementation of our tutoring system concen-
trates on building basic blocks: the knowledge compilation schemes, the inferential
frameworks, and the skeletal tutoring architecture built around core design principles.
There are other research areas that we are working on currently to improve and extend
its functionality.

In an interactive tutoring environment, it is important for the system to be able to
track student steps and then provide appropriate feedback [3], [5]. In its present im-
plementation, CyberTutor checks each student step for its validity, and the result of
that check is simply reported to the student. We are in the process of improving the
system to offer a help when requested by the student. A tutor’s step may serve as a

 27

Hyung Joon Kook
Compilation of Domain Principles into Inference Operators for Science Tutoring

good help as long as it is given at the right level of the student’s skill ability. In doing
so, justification of a tutor’s steps should also be facilitated.

We believe the proposed system design is well suited to accommodate such feed-
back facilities. Using its ability to solve the problem, the system can be made to gen-
erate partial steps of problem solving, hopefully at a level corresponding to the stu-
dent’s skill level. When the student asks for an explanation of the tutor’s step, the
system can respond with the operator used for generating the step. However, the ex-
planation mechanism may have to be repeated, if requested, by back-chaining on the
operators used. Below is one possible dialog segment, in which the tutor responds to
the student’s why question with an explanation derived from (OPR1) in Figure 2b.

Student: Hint please.
Tutor: Angles ∠ADB and ∠DAE are equal.
Student: Why?
Tutor: Alternate interior angles between parallel are equal.

It is given that lines AE and BD are parallel.
Therefore, angles ∠ADB and ∠DAE are equal.

Another area of improvement is the escape from the library of stored problems.

Students sometimes want to work with new problems from outside the library. Au-
thors of the problems don’t want to provide various solution procedures along with
the problems they supply, because doing so is tedious and error-prone. Accommoda-
tion of both demands depends on the tutoring system’s capability for automatic prob-
lem-solving and the interfacial supports. Within the proposed tutoring framework,
automatic problem solving is naturally supported by the inferential part of the system.
A user-friendly, graphical interface is under development with the aim of supporting
students and authors in entering such problems.

7 Concluding Remarks

We have reported a preliminary, but significant, result regarding building a tutoring
architecture for geometry tutoring. To tutor a problem, the problem is first compiled
with the domain principles stored in models to produce a set of inference operators.
Then, these operators are passed to the inference part of the system, which consists of
a set of domain-independent problem-solving strategies, namely propositional, alge-
braic, and quantitative inference strategies. They work together to assist the system’s
tutoring activities in a way accessible for pedagogy.

A typical solution to a science problem consists of only a few concepts and princi-
ples of the domain. A stored solution approach would be both unwise and useless. It is
unwise because the human author has the burden of specifying all problem-solving
steps for each problem, and remains useless because the system is still not prepared to

 28

International Journal of Information Technology, Vol. 11, No. 7, 2005

deal adequately with the off-the-track steps students can take. In the proposed design,
the solution steps are not pre-stored in the library, but rather generated automatically
at tutoring time in the form of the inference operators.

The system’s capability to track student steps, including a step made of multiple in-
ferences, is important for building individual models of students. In this respect, we
believe the proposed design has a solid potential for providing a personalized learning
environment, if combined with an appropriate feedback facility. Overall, the proposed
design principle is expected to be applicable to various scientific domains other than
just geometry, where the nature of problem solving is a stepwise inference that also
uses domain principles as the search operators.

References

[1] Anderson, J. R., Boyle, F., Corbett, A., Lewis, M.: Cognitive Modeling and Intelligent Tu-
toring. Artificial Intelligence Vol. 42 (1990), pp. 7-49.

[2] Cadoli, M., Donini, F. M.: A Survey on Knowledge Compilation. AI Communications 10:
3-4 (1997), pp. 137-150.

[3] Koedinger, K. R., Anderson, J. R.: Reifying Implicit Planning in Geometry: Guidelines for
Model-Based Intelligent Tutoring System Design. In Lajoie, S. P., Derry, S. J. (eds.): Com-
puters as Cognitive Tools. Erlbaum (1993), pp. 15-45.

[4] Kook, H. J.: Automatic Specification of Figures in Geometry for Tutoring. In MICAI-2005:
The 4th Mexican International Conference on Artificial Intelligence (2005) (Submitted).

[5] Matsuda, N., VanLehn, K.: Modeling Hinting Strategies for Geometry Theorem Proving. In
UM-2003: Proceedings of the 9th Conference on User Modeling (2003), pp. 373-377.

[6] McDougal, T., Hammond, K.: Representing and Using Procedural Knowledge to Build Ge-
ometry Proofs. In AAAI-1993: Proceedings of the 11th National Conference on Artificial In-
telligence (1993), pp. 60-65.

[7] Mitrovic, A., Koedinger, K. R., Martin, B.: A Comparative Analysis of Cognitive Tutoring
and Constraint-Based Modeling. In UM 2003: Proceedings of the 9th Conference on User
Modeling (2003), pp. 313-322.

Hyung Joon Kook received B.S. degree from Seoul National
University in 1979, and received M.S. and Ph.D. degrees in
Computer Science at the University of South Carolina at Co-
lumbia and the University of Texas at Austin, USA, in 1983
and 1989, respectively. Since 1989, he has been with the De-
partment of Computer Engineering, Sejong University in
Seoul, Korea, where he currently is an associate professor. His
research interests are in the areas of artificial intelligence, ex-
pert and knowledge-based systems, intelligent agents and in-
telligent tutoring systems.
29

