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Abstract 
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A. Euclidean distance (Normalized Vector) 
The Euclidean distance was calculated based on the normalized dispersion in expression level of 
each gene across the measurement points (s.d./mean). This normalized expression level is obtained 
by subtracting the mean across the measurement points from the expression level of each gene, and 
dividing the result by the standard deviation across the time points: 
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where x is the normalized expression level, x is a vector of expression data of a series of N 
conditions in gene X, and x is the mean of X.  

 
B.  Correlation coefficient 

The correlation coefficient was calculated as[9] 
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  is the mean of observations on G , and X,Y are the vectors of expression data of a series of N 
conditions for gene X, and Y, respectively.  
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C. Mutual information 

The mutual information between gene X and gene Y was calculated as [10]  
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of N conditions in gene X, and  is the joint entropy of genes  and Y  defined as[10] ( , )H X Y X
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where ( , )p x y  is the joint probability of  and Y .  X
 
Note that the number of distinct expression patterns in a neighbor list increases as the threshold 
becomes large and vice versa. We counted the number of distinct gene expressions in a neighbor 
gene list at different proximity thresholds. The thresholds were selected so that the number of 
distinct expression patterns ranged from 50 to 300 by intervals of 10.  

 
D. Simple threshold clustering: neighbor gene lists 

We applied a simple threshold clustering method to the data after the calculation of the 
proximity/distance between all pairs of two gene expressions by each of the four measures. For each 
gene expression pattern, we generated a list of neighbors. In this context, "neighbor" means the 
genes that have similar expression patterns and it does not mean either physical location of the genes 
in the genome or similarity of DNA sequences. An element of the neighbor gene list is a set that 
contains genes within a proximity threshold (radius) from a reference gene (center) (Fig. 2). In other 
words, the genes in a set show similar expression patterns to the reference gene expression pattern 
and the degree of similarity is within the proximity threshold from the reference gene expression 
pattern.  
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Fig. 1. Simple threshold [r] clustering. A sample of a neighbor gene list in a two-dimensional scheme. The real dimensionality is 79 
(the number of measurement points). A neighbor gene    list consists of n sets. A set contains gene expression patterns within a 
threshold distance [radius] from a reference gene expression pattern [center]. 

E. Geometrical learning 
Authors are responsible for the accuracy and completeness of the content including the reference 
lists. Number citations consecutively in square brackets[1]. The sentence punctuation follows the 
brackets [2]. Numbered references should appear at the end of the article and should consist of the 
surnames and initials of authors, title of article, name of journal, year, volume, first and last page 
numbers. 
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which contains a radius parameter r  and the distance between X  and the line segment 1 2X X as 
follows: 
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We select a parameter D ,the distance between the two contiguous selected expression pattern in . 
From we choose a set 
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Algorithm: 
Let  denote the filtered set that contains the expression pattern which determine the network 
and  denote the original set that contains all the expression pattern in the order. 

S
X

Begin 
1.Put the first expression pattern into the result set S  and let it be the fiducial expression 
pattern , and the distance between the others and it will be compared. Set ={ }.bs S bs max bs s=  
and  max 0d =
2. If no expression pattern in the original set X ,stop filtering. Otherwise , check the next 
expression pattern in , then compute its distance to ,i.e., X bs bd s s= − . 
3. If ,goto step 6. Otherwise continue to step 4. maxd d>
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4. If d ε< ,set maxs s= , , goto step 2. Otherwise continue to step 5. maxd = d
5. Put  s  into the result set: = ,and let =S { }S s∪ bs s , maxs s= , and . Then go to step 2. maxd = d

6. If max 2d d ε− > , go to step 2. Otherwise put  into the result set: S = ,and let 
= ,

maxs
max{S s∪ }

bs maxs max maxd s s= −  go to step2. 

 
 

Fig. 2. The three case of the algorithm 
 
The above algorithm constructs the one dimensional topological framework of the HSN. The other 
key task is to determine r, the radius of the hyper-sphere moving along the framework. As before, we 
use S, a subset of X, to construct the framework. 

 

III. Results and Discussion 
 
Using Saccharomyces cerevisiae gene expression data, we compared the performances of the 
Geometrical learning -based similarity index and other similarity (or distance) measures in forming 
clusters that resemble those defined by functional categories or the presence of common regulatory 
motifs. A simple clustering method based on similarity thresholds was used for comparison. The 
clusters obtained using Euclidean distance, correlation coefficients, and mutual information were not 
significantly different. The clusters formed with the neural network-based index were more in 
agreement with those defined by functional categories or common regulatory motifs. Non-linear 
similarity measures such as the one proposed may play a role in complex microarray data analysis. 
Further studies are necessary to demonstrate their applicability beyond this "proof-of-concept" 
experiment. 

 
 

Fig.3. Comparison of performance based on motifs. On the x-axis: proximity thresholds are represented by the number of 
distinct expression patterns. On the y-axis:the performance in integrated performance score (IPS) is shown. The 
Geometrical learning-based measure was superior in all IPS scores (p 0:01 by the modified log-rank test). There was no 
significant statistical difference in the IPSs of the neighbor gene lists produced using neural networks (NN), correlation 
coefficients (CF), Euclidean distance (ED), mutual information (MI), and Geometrical learning. 
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IV. Conclusion 
   In this study, we developed a Geometrical learning-based measure of gene expression proximity 
and evaluated its performance in a single dataset. The clusters were based on simple proximity 
threshold cutoffs. We test these measures on data consisting of 79 measurements from 10 different 
experimental conditions. The cluster performance was evaluated based on the motif DNA sequences 
and MIPS functional categories. The performance is compared statistically. There is no significant 
difference among results obtained using Euclidean distance, correlation coefficients, mutual 
information and Geometrical learning. The performance of the geometrical measure is significantly 
different. Non-linear proximity geometrical learning methods such as the one derived from high 
dimension space may play a role in the analysis of gene expression data.  
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