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Abstract 
 
In this paper, a superresolution algorithm using the minimum entropy criterion is presented to 
improve the depth resolution of Optical Coherent Tomography (OCT) signals. The proposed method, 
which is an improved minimum entropy deconvolution (MED) technique, exploits the second order 
statistics(SOS) of the coherence function as an extra constraint in the procedure of entropy 
minimization. We denote the proposed method as IMED. The classical MED performs the 
deconvolution by maximizing an entropy norm with respect to the coefficients of a linear operator. 
In comparison, IMED not only performs the deconvolution, but also recovers the missing 
frequencies by maximizing the norm in respect to them using a nonlinear iterative algorithm.  
 
Keyword: OCT(Optical Coherent Tomography); Superresolution; Deconvolution.  

I. Introduction 
 
OCT is an emerging imaging technology with applications in biology, medicine, and materials 
investigations. Attractive features include high cellular-level resolution, real-time acquisition rates, 
and spectroscopic feature extraction in a compact noninvasive instrument. OCT has been applied to 
a wide range of biological, medical, and materials investigations. To improve the depth resolution of 
OCT signals, the spectral width needed to be expanded by hardware or numerical methods[1-6]. 
There are two major numerical methods, spectral shaping methods[2-4] and deconvolution 
techniques[4-6]. 
The minimum entropy deconvolution, which is developed primarily for seismic signals 
deconvolution[7], has been developed for blind equalization in wireless communication systems, 
image deconvolution and period estimation et al.. It is seen that a large existing higher order 
statistics (HOS) based blind equalization algorithms are directly related to the scale-invariant cost 
function used in the MED [8]. Higher order statistics (HOS) have been applied successfully to the 
problem of blind deconvolution, mainly because of their ability to preserve the true system phase, 
and their robustness to additive Gaussian noise of unknown covariance [9]. Since the MED operator 
is linear, it can not recover the missing frequencies. An improved MED method with frequency-
domain constraints (FMED)[10] is proposed to recover the missing frequencies. 
It is seen that HOS estimator has higher variance and SOS estimator has lower one[9]. In its 
applications in seismic signal processing, the classical MED is sensitive to the length of the inverse 
filter, strong reflections in the reflectivity sequence and to what extent the sparsity assumption of the 
reflectivity sequence is satisfied [7]. To overcome the above limitations of the classical MED, by 
supposing that the SOS of the coherence function can be obtained from the OCT signals, the 
proposed IMED exploits the SOS of the coherence function as an extra constraint in the procedure of 
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entropy minimization. Furthermore, IMED adopts the same algorithm used by FMED to recover the 
missing frequencies. Applications of our method on experimental OCT signals show that promising 
results can be obtained. 

II. Method 
 
The OCT signal can be modeled as a linear shift invariant system(LSI)[5,6]. In our problem, the 
main objective is to reconstruct the reflectivity sequence ( )s t , which is distorted by a band-limited 
LSI system (coherence function), from the received OCT signal ( )x t , which can be represented as: 

( ) ( )* ( ) ( )x t b t s t n t= + , (1) 

where  is the impulse response of the system, *  denotes the convolutional product, and  is 
the additive Gaussian noise. 
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where is the sample number of the reflectivity sequence, and N
^
( ) ( )* ( )s t f t x t= . 

(3) 

It is well known that the measure defined in Eq. (2) is the normalized kurtosis[8].By setting a fixed 
length of the IF  as , the classical MED algorithm written in matrix notation is expressed as ( )f t L

( )Rf g f= , (4) 

where  is the Toeplitz matrix of the OCT signal R ( )x t with size L L×  and the vector ( )g f  is the 

cross-correlation between vectors  and 
3^

( ) ( )c t s t= ( )x t . Eq. (4) must be solved through an iterative 
algorithm: 

( ) 1 ( 1)( )n nf R g f− −= , (5) 

where the upper index n  denotes iteration number. In each iteration, the system is solved with 
Levinson’s algorithm. The initial value of the IF is . (0) (0,0,0,...,1,...,0,0,0)f =

To overcome the above limitations of the classical MED, by supposing that the SOS of the 
coherence function can be obtained from the OCT signal, the proposed IMED exploits the SOS of 
the coherence function as an extra constraint in the procedure of entropy minimization. Furthermore, 
IMED adopts the same algorithm used by FMED to recover the missing frequencies. It is known that 
the auto-correlation of the coherence function can be estimated by windowing the auto-
correlation of the OCT signal 

( )b i
( )x i : 

2 2( ) ( ) ( )b xm j m j d j= , (6) 

where  is a normal 1D window (e.g., Gaussian, boxcar) function centered at zero time, 
, where q  is the coherence function length, and the auto-correlation of the OCT signal 

( )d j
q j q− < < ( )x i  

is defined: 
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2 ( ) ( ) ( )x

i

m j x i x i j= +∑ . 
(7) 

We can estimate the amplitude spectrum ( )B ω of the coherence function using the auto-correlation 
obtained by Eq. (6): 

{ } 1/ 2

2( ) ( )bB FFT m jω = , (8) 

where { }FFT  is 1D Fourier transform. 
We will assume that the frequency range of the coherence function  is [ ,( )b t ]L Hω ω , and its amplitude 
spectrum ( )B ω  in the frequency range [ , ]L Hω ω  is known. In each iteration, we replace the amplitude 
spectrum of IF obtained by (5) as  the reciprocal of ( )B ω , in other words, the maximization of the 
entropy norm is subjected to the following constraint: 

{ }1( ) [ , ], ( ) 0
( ) L HF B

B
ω ω ω ω ω

ω
= ∈ > . 

(9) 

To recover the frequencies outside [ , ]L Hω ω , we adopt the nonlinear algorithm using by FMED [10]. 

Denoting the frequency spectrum of the reflectivity sequence obtained by Eq. (3) as 
^
( )S ω , and that 

of the vector  as 
3^

( ) ( )c t s t= ( )C ω , we obtain the estimation of the reflectivity sequence 
'^
( )s t  with 

frequencies outside [ , ]L Hω ω  in the following way: 
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where α is an energy adjusting factor to make sure that the amplitude spectrum of reflectivity 
sequence is consistent before and after the spectrum extending: 
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The whole flowchart of IMED is as follows: 

1. The algorithm is initialized by letting . (0) (0,0,0,...,1,...,0,0,0)f =

2. Inverse filter ( )F ω  is computed by Eq. (5). 
3. Amplitude spectrum of inverse filter ( )F ω  is updated by Eq. (9) while its phase spectrum 

is remained. 
4. The estimated the reflectivity sequence 

^
( )s t  is computed by Eq. (3). 

5. Extend frequency range of the estimated reflectivity sequence 
'^
( )s t  by Eq. (10), and 

replace 
^
( )s t  as 

'^
( )s t . 

Convergence is checked by pre-setting conditions and a new iteration starts in step 2. 

III. Results 
Computer simulations are conducted to illustrate the performance of the proposed approach. We 
evaluate the sparsity of the input sequence by the ratio between the number of zeros ZN and the 
length of the whole sequence : N
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ZNS
N

= . 
(12) 

An example with synthetic signal is shown in figure 1. Figure 1a shows the impulse response of the 
channel. Figure 1b and 1c show the first 200 samples of input sequence with and the 
corresponding output sequence respectively. The length of the output sequence is 600 samples. 
Figure 1d and 1e show the first 200 samples of  

0.4S =

 
 

Fig. 1. Simulation for noiseless signal case. (a) Impulse response of system. (b) Input sequence of system. (c) Output sequence of 
system. (d) Estimation of the input sequence by MED. (e) Estimation of the input sequence by IMED 
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the estimated input sequences by MED and IMED after 10 iterations respectively. The frequency 
range used in IMED in this experiment is [1 . It is seen that IMED can obtain better result 
than does MED. 

4 ,67 ]Hz Hz

To illustrate the behavior of the algorithm under noisy conditions, Gaussian noise has been added to 
the synthetic signal shown in figure1 with a signal-to-noise ratio of 25dB. The noisy signal is shown 
in figure 2a. Figure 2b and 2c show the first 200 samples of the results obtained by MED and IMED 
respectively. 

 
 

 
 

Fig.2. Simulation for noisy signal case. (a) Output sequence of system with 25dB additive noise. (b) Estimation of the input sequence 
by MED. (c) Estimation of the input sequence by IMED 

The original OCT image shown in Fig. 3a is used to evaluate IMED. Fig. 3b shows the result after 
resolution improvement by our method. The sections marked by rectangle in Fig. 3a and 3b are 
depicted in Fig. 3c and 3d respectively. It is seen that the resulted OCT images obtained by our 
method give more details because of the resolution improvement. 
 
In Fig. 4, we evaluate our method using a OCT profile. OCT signals before (left) and after (right) 
resolution improvement are given in the first row, and two zoomed segments are shown in the 
second row. The envelopes of the OCT signals shown in the first two rows are shown in the third 
and fourth rows respectively. It is seen that the waveforms in the resulted OCT signals (envelope) 
are becoming narrow and sharp. In the fourth row, we frame the waveforms corresponding to a 
reflective surface before (left) and after (right) resolution improvement by two green rectangles. And 
the width of the left rectangle is about 2.1 times of that of the right one. In the bottom row, the 
amplitude spectra of the OCT signals shown in the first row are given. As we expected, IMED 
recovers OCT signals with some frequencies that are missed in the original OCT signals. 
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Fig. 3. OCT images (a) before and (b) after resolution improvement, (c) and (d) are the zoomed sections of areas marked by the 
rectangles in (a) and (b) respectively 

Ⅳ. Conclusion 
 
This paper presented a superresolution technique, IMED, to improve the depth resolution of OCT 
signals. The proposed method, which is an improved minimum entropy deconvolution technique, 
exploits the second order statistics of the coherence function as an extra constraint in the procedure 
of entropy minimization. In comparison with MED, IMED not only performs the deconvolution, but 
also recovers the missing frequencies by maximizing the norm in respect to them using a nonlinear 
iterative algorithm. 
We have applied IMED on synthetic signals based on convolution model and experimental OCT 
signals. It is seen that IMED outperforms MED in both situations. In the case of experimental OCT 
signals, the envelope width of the coherence function after resolution improvement is about 0.48 
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times of that of the original one, and thus the OCT depth resolution is improved by a factor of 2.1 in 
our experiments. 
In this work, we assume that the coherence function is invariant, to extend this work for variant 
coherence function case is under way. 

 
 

Fig. 4. Top two rows: the OCT signals before (left) and after (right) resolution improvement. The 3th and 4th rows: the envelopes of 
the OCT signals shown in the first two rows. The bottom row: the amplitude spectra of the OCT signals shown in the first rows 
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