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Abstract 
 
Many complex systems may best be described as networks, which we can use graph theory to 
analyze their topological properties. In an organism, protein-protein interactions may also be 
mapped into complex network. Here we use random graph theory to analyze seven different 
organism protein interaction networks. Three topological properties (degree distribution, 
clustering coefficient and average shortest path) were used to characterize these networks. 
The logarithm of the node degree distribution vs. the logarithm of the node degree plot 
shows that all seven species follow a power-law distribution quite well. In addition, we also 
obtained the relatively high clustering coefficient of these protein interaction networks. The 
distance between two nodes of these protein interaction networks indicates that it is quite 
short comparing with the large network size. The plot of the logarithm of the frequency vs. 
the shortest path length also indicates that the shortest path length distribution follows a 
normal distribution quite well. 
 
Keyword: protein-protein interaction, network, random graph theory  

I. Introduction 
 
The completion of genome sequencing projects gives us a chance to analyze organisms on a genome 
level for the first time. The challenge became how to understand the roles of a huge number of gene 
products and their interaction to create an organism. In parallel to an ever-increasing number of 
genomes becoming available, some high-throughput protein-protein interaction detection methods 
have also been introduced in the past couple of years that produce a huge amount of interaction data. 
Such methods include yeast-hybrid systems [1] [2] [3] [4], protein complex purification method 
using mass spectrometry [5] [6], correlated messenger RNA (m-RNA) expression profiles [7], 
genetic interactions [8], and in silico interaction predictions derived from gene fusion [9], gene 
neighborhood [10], and gene co-occurrences or phylogenetics profiles [11]. Traditionally, protein 
interactions have been studied individually by genetic, biochemical and biophysical techniques. But 
with the speed that new proteins are being discovered and predicted increases, the yeast two-hybrid 
(Y2H) method has been proposed for high-throughput interaction-detection [1]. Consequently, these 
protein interaction detection methods have led to the discovery of thousands of interactions between 
proteins [2] [3]. These data generated from these methods can be represented graphically as an 
interaction network in which the nodes represent proteins and pirewise interactions are denoted as 
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edges. Topological analysis of this network can help us to understand the inner working principle of 
cells [12] and how the protein interaction networks evolve [13] [14] [15]. Here we used graph theory 
based analysis to describe the topological structure of this network. Three topological properties 
(node degree, average shortest path and clustering coefficient) were used to characterize these 
protein interaction networks. 
 

II. Material and Methods 
 

A. Data Collection  
The Database of Interacting Proteins (DIP) [16] [17] [18] [19] is a curated database 
containing information about experimentally determined protein-protein interactions. We 
analyze the DIP (Apr. 24 and Apr. 17, 2005) for seven different organisms, i.e., S. cerevisiae, 
D. melanogaster, C. elegans, H. pylori, H. sapiens, E. coli and M. musculus. In Table.1 we 
list the statistics of the numbers of proteins, and the number of interactions in our analysis 
for the seven organisms. 

Table 1. The statistics of DIP database for S. cerevisiae, D. melanogaster, C. elegans, H. pylori, H. 
sapiens, E. coli and M. musculus 

Organism Proteins Interactions 

S. cerevisiae(CORE) 2640 6600 

D. melanogaster 7451 22819 

C. elegans 2638 4030 

H. pylori 710 1420 

H. sapiens 1065 1369 

E. coli 553 761 

M. musculus 329 286 

 
 
For the sake of minimizing experimental uncertainty, we used the CORE subset of DIP database, 
which contains the pairs of interacting proteins identified in the budding yeast, S. cerevisiae that 
were validated according to the criteria described in [16] [17] [18] [19]. 

 
B. Theory and Methods 

A graph is usually denoted by G , or by ( , )G V E , whereV is the set of nodes and E V V⊆ × is 
the set of edges of G . We often use n to represent | |V , and m to represent | |E . We also use 

( )V G to represent the set of nodes of a graph G , and ( )E G to represent the set of edges of a 
graph G . Nodes joined by an edge are said to be adjacent. A neighbor of a node v is a node 
adjacent to v . We denoted by ( )N v the set of neighbors of node v  (referred to as the neighbor-
hood of v ), and by [ ]N v the closed neighborhood of v , which is defined as [ ] ( ) { }N v N v v= U . 
The degree of a node is the number of edges incident with the node. A graph is complete if it 
has an edge between every pair of nodes. Such a graph is also called a clique. A complete 
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graph on n  nodes is commonly denoted by nK . A path in a graph is a sequence of nodes and 
edges such that a node belongs to the edges before and after it and no nodes are repeated; a 
path with k nodes is commonly denoted by kP . The path length is the number of edges in the 
path. The shortest path length between nodes u and v is commonly denoted by ( , )d u v . The 
diameter of a graph is the maximum of ( , )d u v over all nodes u and v . If a graph is discon-
nected, we assumed that its diameter is equal to the maximum of the diameters of its con-
nected components. 

B.1. Degree distribution 

Generally, degree is the simplest and the most intensively studied one-vertex characteristic. 
Degree, k , of a vertex is the total number of its connections. From the adjacent matrix, one 
can obtain a histogram of k  interactions for each protein. Dividing each point of the 
histogram with the total number of proteins then ( )P k  can be produced. In a random 
network [20] [21], the edges are randomly connected and most of the nodes have degree 
close to k< > . The degree distribution is generally a Poisson distribution, i.e., ( ) ~ kP k e− , for 
k <<  k< >  and k >>  k< > . In many real networks, degree distribution has no well-defined 
peak but has a power-law distribution [23] [24]. Such networks are referred to as scale-free 
network. The power-law form of the degree distribution implies that the networks are 
extremely inhomogeneous. In the scale-free network, there are many nodes with few edges 
and a few nodes with many edges. In general, the highly connected nodes play a crucial role 
in the functionality of the network. 

B.2. Clustering coefficient 
The second topological quantity, which is measurable, is known as the clustering coefficient 
[22] [24]. The coefficient is a measure of the tendency of the nodes of the network towards 
clustering. The clustering coefficient is generally defined in the following manner. Assume a 
specific node i  in the network is connected by ik  edges to other nodes. If all these first 

neighbors are located within a cluster, there would be ( 1)
2

i ik k −  edges between them. 

Consequently, the clustering coefficient iC  of node i  can be written as:  
2 .

( 1)
i

i
i i

EC
k k

=
−

                                  （1） 

where iE is the number of actual edges which exist between the ik  nodes. As a result, the 
clustering coefficient C  of the whole network can be obtained by taking an average over all 
the iC  values. 

B.3. Shortest path 

One may define a geodesic distance between two nodes u and v of a graph with unit length 
edges, which is the shortest-path length ( , )d u v , from the node u to the node v . It is necessary 
for us to introduce the distribution of the shortest-path lengths between pairs of nodes of a 
network and the average shortest-path length of a network. The average here is made over all 
pairs of nodes between which a path exists and over all realizations of network. 
The average shortest-path length is often called as the characteristic path length of a network, 
and it usually determines the effective linear size of a network, the average separation of 
pairs of nodes. 
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Here, we also calculated the maximal shortest-path length over all the pairs of nodes between 
which a path exists. In general, this characteristic will determine the maximal extent of a 
network. 

III．Results 
 In Figure 1, we plot the logarithm of the node degree distribution ( )P k  vs. the logarithm of the 
node degree k  for the seven organisms’ protein interaction networks, respectively. It is evidently 
seen from Figure 1 that the number of the proteins decreases with the number of degrees increases. 
That is, they follow an inverse relation law, which shows that proteins with high degree are rare in 
practice. From Figure 1, it can be also found that the log-log plot follows a straight line distribution 
with a negative slop. This result suggests that the protein interaction networks are scale-free 
networks. 

Table 2. Comparison of the clustering coefficients of protein interaction networks and random 
network for the seven organisms, where C is clustering coefficient. 

Organism Proteins d C measured C for random graph ( 410− )

S. cerevisiae(CORE) 2640 5.0 0.3315 9.5 

D. melanogaster 7451 6.2 0.0243 4.1 

C. elegans 2638 3.1 0.0634 5.8 

H. pylori 710 4.0 0.0755 28.2 

H. sapiens 1065 2.6 0.2056 12.1 

E. coli 553 2.8 0.6223 24.9 

M. musculus 329 1.7 0.1545 26.4 

 
Real world network also behaves strong clustering property. Here we calculated the average 
clustering coefficient of the seven networks. In Table.2 we gave the comparison of the 
clustering coefficients of protein interaction networks and random network for the seven organisms, 
where C is clustering coefficient. In addition, we also gained the relatively high clustering 
coefficient of these protein interaction networks. These results show that the protein-protein 
interaction networks behave also strong clustering property. Although we are mainly to focus 
on two-body interactions, the method can be completely extended to multi-body interactions 
in the protein interaction networks, where the clusters of proteins with many interactions will 
be also found [25]. 
 
Assume that the shortest-path length of the pairs of nodes for seven protein interaction networks is 
calculated. As a result, the shortest-path length distribution vs. the shortest path length for H. pylori 
is plotted in Figure 2. From Figure 2, it can be found that the distribution of the shortest path length 
follows the normal distribution quite well. Figure 3 shows the distribution of H. sapiens protein-
protein networks. In addition, we also calculated the characteristic path length and the longest path 
length of seven protein interaction networks. The results were shown in Table.3. From Table.3, we 
can find that the characteristic path length and longest path length are both relatively short 
comparing their large size of the protein interaction networks. 
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Fig. 1. Degree distribution of different protein interaction networks of the seven organisms. The 
power-law degree distribution is a robust feature of the protein-protein interaction networks of the 
seven organisms. 
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Fig.2. The shortest-path length distribution of 

H. pylori protein-protein networks. 
Fig. 3. The shortest-path length distribution 

of H. sapiens protein-protein networks. 
 

Table 3. The characteristic path length and longest path length of the seven organisms’ protein-
protein interaction networks. 

Organism Characteristic path length 

Longest path 

length 

S. cerevisiae(CORE) 5.0 13 

D. melanogaster 4.4 11 

C. elegans 4.8 14 

H. pylori 4.1 9 

H. sapiens 6.8 21 

E. coli 5.5 16 

M. musculus 3.6 9 

 

Ⅳ Conclusions and Discussions 

In this paper, we applied graph model theory to analyze the protein-protein interaction 
networks of seven organisms. Three topological properties were utilized to characterize the 
process of these protein-protein interaction networks. 
 
The experimental results show that degree distributions of the seven protein interaction 
networks calculated here all follow the power-law distribution quite well, which means that 
these protein interaction networks are scale-free network with a few nodes having high 
degree and the rest having low degree. Usually, real networks often show high clustering 
property. Clustering coefficient obtained here also indicate high clustering behavior for the 
seven protein interaction networks. In addition, it can be also found that the shortest-path 
length and the average shortest-path length calculated here is relatively small comparing with 
their large network size. This property is usually referred to as a small-world effect. 
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Although our work is to focus on two-hybrid interactions, it can be conjectured that our 
analyses on these data can help ones further understand the inner working principle of cells 
[12] and how the protein interaction networks evolve [13] [14] [15]. In addition, an 
interesting area tightly related to our work is that if two proteins share significantly large 
number of common partners, they could have close functional associations [26]. So we can 
utilize the topology of protein networks to predict protein function of unknown functional 
protein.  
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