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Abstract 

 have developed a gene prediction program GeneKey. When trained with the widely used dataset 
lected by Kulp and Reese, GeneKey can achieve high prediction accuracy for genes with 
derate and high C+G contents. However, the prediction accuracy is much lower for CG-poor 
es. To tackle this problem, we construct a new LCG316 dataset composed of gene sequences 
h low C+G contents. For CG-poor genes, the prediction accuracy of GeneKey when trained with 
G316 dataset has been improved prominently. Further statistical analysis demonstrates that some 
cture features, such as splicing signals and codon usage, of CG-poor genes are quite different 

m that of CG-rich ones. The combination of the two datasets enables GeneKey to get high and 
anced prediction accuracy for both CG-rich and CG-poor genes. The results of this work imply 
t careful construction of training dataset is very important for improving the performance of 
ious prediction tasks. The GeneKey program is available at http://infosci.hust.edu.cn. 

ywords:   DNA sequence, prediction of gene structure, prediction of protein coding region 

Introduction 

curate computational identification of eukaryotic gene structures is still a challenging problem in 
informatics. This problem has attracted extensive researches and various approaches and a 
ber of computational tools for eukaryotic gene identification have been developed [1-13]. Some 

these tools have been widely used to identify putative genes in uncharacterized DNA, and have 
yed a significant role in the genome annotation of human and other model organisms [14, 15]. 

th more and more gene-finding programs becoming available, the evaluation of such programs 
 also been reported for several times [16, 17]. These evaluations suggest that the accuracy of 
e-finding programs is inclined to be dependent on the C+G contents of DNA sequences. 

cording to the systematic evaluation made by Rogic et al. [17] with a carefully selected test set, 
 HMR195, the prediction accuracy of some well-known gene-finding programs is significantly 
er for DNA sequences with low C+G contents. However, as human and other mammalian 
omes [14, 15, 18] contain a considerable part of DNA sequences with low C+G contents, it is 

portant to accurately identify the locations and structures of CG-poor genes. 

gene prediction program is composed of two parts: a computational model and a training dataset 
 determining the parameters of the model. Various computational models such as the Hidden 
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Markov Model (HMM) have been used in gene prediction programs. A widely used training dataset 
is the set of gene sequences collected by Kulp and Reese, which have been used to determine the 
parameters of many gene prediction models. We have developed a eukaryotic gene prediction 
program, called GeneKey (http://infosci.hust.edu.cn), in which we used a multistage optimization 
model configuration to process various kinds of information and to deal with different sub-problems 
associated with the identification of genes and protein-coding regions [12]. When trained with the 
Kulp-Reese dataset, GeneKey can get higher prediction accuracy than other programs for DNA 
sequences with C+G content >40%, however, the prediction accuracy is much lower for DNA 
sequences with C+G content <40%. 
 
In this study, in order to improve the prediction accuracy for CG-poor genes, we construct a new 
LCG316 dataset composed of 316 human gene sequences with low C+G contents. Both the LCG316 
dataset and the Kulp-Reese dataset are used to train our gene prediction program GeneKey, and the 
independent dataset HMR195 is used to test the prediction accuracy. The results demonstrate that, 
for CG-poor genes, the prediction accuracy of GeneKey when trained with the LCG316 dataset is 
much higher than that when trained with the Kulp-Reese dataset. To make clear the course of this 
improved performance, further statistical analysis is carried out, and it is found that some features of 
gene structure, such as splicing signals and codon usage, obtained from the LCG316 dataset are 
quite different from that obtained from the Kulp-Reese dataset, means that the LCG316 dataset can 
reflect the structural features of CG-poor genes better than the Kulp-Reese dataset. The combination 
of the two datasets enables GeneKey to get high and balanced prediction accuracy for both CG-rich 
and CG-poor genes. 

II. Methods 
 

A. Sequence Datasets 
We employ the HMR195 dataset (http://www.cs.ubc.ca/-rogic/evaluation/) as the test set in this 
work. This dataset, which consists of 195 human and rat gene sequences, was constructed 
specifically for the evaluation of gene prediction programs [17]. 
 
Two training datasets are used in this study. One is the Kulp-Reese dataset and the other is the 
LCG316 dataset constructed in this study. The Kulp-Reese dataset 
(http://www.fruitfly.org/seq_tools/datasets/Human/), which consists of 462 non-redundant 
multi-exon genes, is a benchmark data set and has been widely used to train many powerful 
gene prediction algorithms. The LCG316 dataset comprises 316 human gene sequences with 
C+G content < 45% and can be divided into two parts. One consists of 98 CG-poor gene 
sequences taken from the Kulp-Reese dataset. The other contains 218 carefully selected CG-
poor human gene sequences, which have no significant sequence similarity between each other 
and with the gene sequences in both the HMR195 and the Kulp-Reese dataset. 
 
Note that each sequence in the training and test datasets contains a single gene without 
alternatively spliced forms. Some additional consistency constraints are also enforced, e.g. 
there should be no in-frame stop codons in the annotated coding regions, and the splicing 
signals should match the minimal consensus (GT for donor splicing sites and AG for acceptor 
splicing sites). 
 

B. The GeneKey Program 
We have developed a program, called GeneKey, for the prediction of protein coding regions 
and gene structures in eukaryotic DNA. A four-stage optimization model configuration is 
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adopted in GeneKey to process various kinds of information and deal with different sub-
problems associated with the identification of genes and protein-coding regions [12].  
 
The first stage is called “feature modelling”. Four statistical features are currently used in the 
Genekey, including the signals of functional sites (donor splicing sites, acceptor splicing sites, 
translation initiation sites and termination sites), codon usage preference, length distributions 
of exon regions, and the correlation between the C+G content of exons and the adjacent introns. 
Different models are used for identifying these features in GeneKey. For example, the WMM 
(Weight Matrix Model) is used to recognize the translation initiation and termination sites; the 
WAM (Weight Array Model) is employed to detect acceptor splicing sites and donor splicing 
sites; the in-frame hexamer usage model is applied to score the coding potential of a DNA 
fragment according to the di-codon usage. 
 
The second stage is called “unit modelling”. Six basic units of the gene structure are currently 
considered in the GeneKey, including the single exon, internal exon, initiation exon, 
termination exon, intron and intergenic region. LDA (Linear discriminant analysis) method is 
used to model these basic units by combining related feature models created in the first stage. 
For example, the internal exon model is the weighted linear sum of such feature models as 
acceptor splicing site, donor splicing site, codon usage, length distribution of internal exons, 
and the C+G content distribution, where the weight coefficients are determined by the LDA 
method.   
 
The third stage is called “gene modelling”, including the modelling of single exon genes and 
multi-exon genes. The model of single exon gene is the same as that of single exon built in the 
second stage. The model of multi-exon gene, however, is the weighted linear sum of such unit 
models as the initiation exon, internal exon, termination exon and intron, where the weight 
coefficients are also determined by the LDA method. 
 
The last stage is called “genome modelling”, which aims at dealing with long DNA sequences 
containing many genes. The genome model is the weighted linear sum of such gene and 
element models as the single-exon gene, multi-exon gene and intergenic region, where the 
weight coefficients are also calculated by the LDA method. 
 
Given a training dataset, all the parameters of above models are determined stage by stage. The 
genome model is then used as the objective function to predict the most possible gene 
structures in uncharacterized DNA sequences, which is implemented with the dynamic 
programming approach.  
 

C. Experiments and Performance Evaluation 
We use the Kulp-Reese dataset and the LCG316 dataset to train the models of GeneKey 
respectively, and then use the HMR195 dataset to test the prediction performance of GeneKey. 
The performance is evaluated at both the nucleotide level and exon level.  
 
At the nucleotide level, let TP be the number of correctly predicted coding nucleotides, TN be 
the number of correctly predicted non-coding nucleotides, FP be the number of incorrectly 
predicted coding nucleotides, and FN be the number of incorrectly predicted non-coding 
nucleotides. Then the prediction accuracy is measured by the sensitivity Sn = TP/(TP+FN), 
specificity Sp = TP/(TP+FP), and the approximate correlation AC defined by 
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At the exon level, let ETP be the number of predicted exons which are identical to the 
corresponding real exons, EFP be the number of predicted exons which are not real exons, 
EFN be the number of real exons that are not correctly predicted. Then the prediction accuracy 
is measured by sensitivity ESn = ETP/(ETP+EFN) and specificity ESp = ETP/(ETP+EFP). 

III. Results 
 
When trained with the Kulp-Reese dataset and tested with the HMR195 dataset, the prediction 
accuracy of GeneKey for genes with different C+G contents, which are measured by the 
approximate correlation AC at the nucleotide level and (ESn+ESp)/2 at the exon level, is given in 
Table 1. Also shown in this table are the accuracies of 7 famous gene prediction programs (FGENES, 
GeneMark.hmm, Genie, Genscan, HMMgene, Morgan, and MZEF), which are evaluated by Rogic 
et al. with the same test dataset [17]. The HMR195 dataset is partitioned into 4 groups according to 
the C+G contents of gene sequences. Group 1 consists of 14 genes with C+G content < 40%; Group 
2 consists of 69 genes with C+G contents ranging from 40% to 50%; Group 3 consists of 93 genes 
with C+G contents ranging from 50% to 60%; and Group 4 consists of 19 genes with C+G content ≥ 
60%. For each group, AC and (ESn+ESp)/2 are averaged over all gene sequences in it. 
 

Table 1. Prediction accuracy of GeneKey (trained with the Kulp-Reese dataset) and other 7 programs 

Program C+G < 40% 40% ≤ C+G < 50% 50% ≤ C+G < 60% CG ≥ 60% 
 AC (ESn+ESp)/2 AC (ESn+ESp)/2 AC (ESn+ESp)/2 AC (ESn+ESp)/2
GeneKey 0.85 0.64 0.92 0.74 0.91 0.79 0.94 0.79 
FGENES 0.84 0.70 0.81 0.64 0.85 0.71 0.87 0.66 
GeneMark 0.79 0.48 0.80 0.46 0.87 0.62 0.85 0.48 
Genie 0.85 0.69 0.85 0.60 0.92 0.75 0.87 0.79 
Genscan 0.94 0.80 0.91 0.66 0.91 0.74 0.88 0.70 
HMMgene 0.91 0.76 0.90 0.73 0.92 0.79 0.91 0.77 
Morgan 0.65 0.29 0.72 0.49 0.69 0.43 0.69 0.37 
MZEF 0.66 0.71 0.65 0.50 0.70 0.62 0.58 0.53 

 
It can be seen from Table 1 that the overall performance of GeneKey when trained with the Kulp-
Reese dataset is comparable to other 7 well known gene prediction programs. Particularly, for those 
genes with C+G content ≥ 40%, the prediction accuracy of GeneKey is better than other programs at 
both the nucleotide level and exon level, demonstrating the efficiency of the multilevel optimization 
models used in Genekey. For genes with C+G content < 40%, however, the prediction accuracy of 
GeneKey is much lower than that for genes with C+G content ≥ 40%, also lower than that of some 
gene finding programs such as Genscan and HMMgene.  
 
As shown in Table 2, for genes with C+G content < 40%, GeneKey achieves a much higher 
prediction accuracy when trained with the LCG316 dataset than with the Kulp-Reese dataset. The 
sensitivity/specificity is improved to 0.97/0.96 from 0.80/0.93 at the nucleotide level, and jumps to 
0.85/0.88 from 0.53/0.76 at the exon level. Compared with the results of other 7 programs, GeneKey 
has the best prediction performance. A dramatic improvement is made for the exon level prediction 
accuracy in terms of (ESn+ESp)/2 (0.86 versus 0.80 for the best program Genscan), and a small 
improvement is also made for the nucleotide level prediction accuracy in terms of the approximate 
correlation AC (0.96 versus 0.94 for Genscan). Combining Table 1 and 2, we can see if the GeneKey 
is trained with the LCG316 dataset to predict genes with C+G content < 40% and trained with the 
Kulp-Reese dataset to predict genes with C+G content ≥ 40%, then, GeneKey has better 
performance at both the nucleotide and exon levels than the other 7 gene finding programs for all 4 
groups of gene sequences in the HMR195 dataset. 
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Table 2. Prediction accuracy of GeneKey for genes with C+G content lower than 40%, when trained with two 
different datasets 

Nucleotide level Exon level Training dataset Sn Sp AC ESn ESp (ESn+ESp)/2 
Kulp-Reese set 0.80 0.93 0.85 0.53 0.76 0.64 
LCG316 set 0.97 0.96 0.96 0.85 0.88 0.86 

 

IV. Discussion 
 
Most of the previous studies on eukaryotic gene prediction have focused on the improvement of 
modeling and computational techniques rather than on the improvement of training datasets. In this 
work, we have improved the prediction accuracy of gene finding programs by constructing suitable 
training datasets. Some of gene prediction programs, including Genie, HMMgene, and GeneKey, 
trained with the Kulp-Reese dataset usually get lower prediction accuracy for CG-poor genes than 
those genes with average or high C+G content. So there may be a significant distinction between the 
structural features of CG-poor genes and that of genes with average or high C+G contents, and the 
Kulp-Reese set may not sufficiently reveal the structural characteristics of CG-poor genes. That is, 
unsuitable selection of training set is probably the main cause of low prediction accuracy for gene 
sequences with low C+G contents, although other factors such as modeling techniques may also 
have some influences. These ideas are confirmed by our experimental results. When GeneKey is 
trained with the LCG316 dataset, a new dataset composed of 316 human gene sequences with low 
C+G content, and tested with the same HMR195 dataset, the prediction accuracy for CG-poor gene 
sequences are much higher than that when trained with the Kulp-Reese dataset. The underlying 
cause for the improved accuracy is that the LCG316 dataset can reflect the structural features of CG-
poor genes better than the Kulp-Reese dataset, which can be seen from the following analysis.  
 

A. Codon Usage 
Codon usage is one of the most important features used for the prediction of protein coding 
regions and gene structures. Codon usage frequencies are different in the coding regions of 
gene sequences with different C+G contents. One of the important reasons that Genscan has 
substantially higher accuracy than other gene prediction programs for CG-poor genes is that a 
subset of 638 cDNAs with low C+G contents has been used for training the program. 
 
We compared the trinucleotide statistics based on the Kulp-Reese dataset and the LCG316 
dataset. The results are given in Table 3, which demonstrate that the codon usage frequency 
distribution for the Kulp-Reese dataset is extremely different from that for the LCG316 dataset. 
Furthermore, the C+G content distribution at three codon positions is also analyzed. The C+G 
contents of the first, second, and third codon position in the coding regions of genes in the 
Kulp-Reese set are 59.3%, 43.6 %, and 67.1%, respectively. However, in the coding regions of 
genes in the LCG316 set, the C+G contents of the first, second, and third codon position are 
52.6%, 39.3%, and 48.0%, respectively. The average C+G content of the coding regions of 
genes in the Kulp-Reese set is 63.3%, while the average C+G content of the coding regions of 
genes in the LCG316 dataset is only 46.6%. Note that the in-frame hexamer usage model is 
used in GeneKey to estimate the likelihood of a DNA sequence coding for a protein in terms of 
codon usage preference. The higher C+G contents in the coding regions of genes in the Kulp-
Reese dataset makes GeneKey, when trained with the Kulp-Reese dataset, get a lower 
prediction accuracy for CG-poor genes. 
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Table 3. Codon usage in Kulp-Reese dataset /LCG316 dataset (per 1000 codons) 

Codon Frequency Codon Frequency Codon Frequency Codon Frequency 
AAA 17.68/35.35 AAG 35.53/31.48 GGC 30.69/16.21 GTG 32.96/23.22
ACA 11.23/17.76 ACG 7.15/4.56 GTC 16.20/12.58 TAG 0.00/0.00 
AGA 8.01/15.18 AGG 11.02/10.96 TAC 18.30/13.72 TCG 5.07/2.70 
ATA 4.43/10.41 ATG 21.75/23.38 TCC 18.42/14.55 TGG 13.69/10.60
CAA 9.49/17.89 CAG 36.16/30.83 TGC 14.19/9.62 TTG 10.27/15.66
CCA 13.87/18.16 CCG 8.20/3.96 TTC 24.42/17.27 CCT 17.52/18.08
CGA 5.93/6.82 AAC 20.92/19.71 AAT 12.76/25.18 CGT 5.39/4.48 
CTA 5.43/8.22 ACC 22.58/14.99 ACT 10.90/16.16 CTT 9.71/16.23 
GAA 22.82/41.28 AGC 20.45/15.50 AGT 8.14/15.15 GAT 17.95/28.57
GCA 13.20/17.99 ATC 23.95/18.37 ATT 12.42/21.30 GCT 19.28/20.50
GGA 14.37/20.9 CAC 15.47/12.35 CAT 8.08/14.10 GGT 12.50/11.94
GTA 5.15/9.24 CCC 24.88/12.49 CGG 12.72/6.68 GTT 8.19/15.09 
TAA 0.00/0.00 CGC 16.14/5.74 CTG 50.76/27.42 TAT 10.20/15.86
TCA 7.81/14.46 CTC 22.04/14.98 GAG 45.38/31.56 TCT 11.14/18.43
TGA 0.00/0.00 GAC 28.52/22.35 GCG 9.78/4.58 TGT 8.12/12.24 
TTA 3.27/10.66 GCC 35.80/19.54 GGG 17.86/12.26 TTT 13.50/22.26

 
To access the influence of the coden usage difference given in Table 3, the in-frame hexamer 
usage model used in GeneKey is trained with the LCG316 and Kulp-Reese set separately, and 
tested on Group 1 sequences of the HMR195 dataset. This test set is composed of positive 
samples and negative samples. The positive samples include all the internal exons, while all the 
pseudo-exon sequences extracted from intron regions are considered as the negative samples. 
The testing results demonstrate that the in-frame hexamer usage model performs much better in 
the recognition of coding regions of CG-poor genes when trained with the LCG316 set (Data 
not shown). 
 

B. Splicing Signals 
The acceptor and donor splicing signals are the most critical information for the prediction of 
exact exons. We have analyzed splicing signals of genes with the LCG316 and the Kulp-Reese 
datasets, respectively. The results show that there is a strong similarity in donor splicing site 
profiles except for the third downstream position (as shown in Table 4), but a significant 
difference in the acceptor splicing site profiles between the two datasets (as shown in Table 5). 
There is a CT-rich region upstream the acceptor splicing sites in the genes of the Kulp-Reese 
dataset. In this region, C+T content is much higher than A+G content, and the frequencies of C 
and T are almost the same. In the genes of LCG316 dataset, however, the frequency of T is 
much higher than the 3 other nucleotides.  
 
To access the influence of the splicing signal difference given in Table 5, the WAM acceptor 
model used in the GeneKey is trained with the LCG316 dataset and the Kulp-Reese dataset 
respectively, and the performances are evaluated on Group 1 sequences of the HMR195 dataset. 
The results demonstrate that the WAM acceptor model achieves a better performance trained 
with LCG316 dataset than with the Kulp-Reese dataset (data not shown), which contributes to 
the improved prediction accuracy of GeneKey for CG-poor genes, especially the exon level 
accuracy. 

V. Conclusion 
 
We have developed a gene prediction program GeneKey, which can achieve high prediction 
accuracy for genes with moderate and high C+G contents, but the prediction accuracy of which is  
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Table 4. Donor splicing site profiles of Kulp-Reese dataset /LCG316 dataset 

Position P(A) P(C) P(G) P(T) 
-3 0.33/0.36 0.36/0.33 0.19/0.18 0.12/0.13 
-2 0.59/0.64 0.14/0.10 0.13/0.11 0.14/0.15 
-1 0.09/0.13 0.03/0.03 0.79/0.77 0.08/0.08 
1 0.00/0.00 1.00/1.00 0.00/0.00 0.00/0.00 
2 0.00/0.00 0.00/0.00 0.00/0.00 1.00/1.00 
3 0.49/0.72 0.03/0.02 0.46/0.23 0.02/0.03 
4 0.71/0.73 0.08/0.05 0.12/0.09 0.09/0.14 
5 0.07/0.10 0.05/0.04 0.84/0.77 0.05/0.08 
6 0.15/0.19 0.16/0.12 0.22/0.14 0.47/0.55 

 

Table 5. Acceptor splicing site profiles of Kulp-Reese dataset /LCG316 dataset 

Position P(A) P(C) P(G) P(T) 
-25 0.22/0.29 0.30/0.18 0.16/0.13 0.32/0.41 
-24 0.20/0.28 0.32/0.18 0.17/0.14 0.32/0.40 
-23 0.22/0.27 0.30/0.17 0.17/0.14 0.31/0.42 
-22 0.21/0.26 0.32/0.19 0.17/0.14 0.31/0.42 
-21 0.19/0.24 0.33/0.19 0.16/0.13 0.32/0.44 
-20 0.18/0.23 0.32/0.19 0.16/0.13 0.34/0.45 
-19 0.16/0.20 0.33/0.19 0.16/0.13 0.35/0.48 
-18 0.14/0.18 0.34/0.21 0.15/0.12 0.36/0.49 
-17 0.13/0.17 0.33/0.19 0.17/0.13 0.38/0.51 
-16 0.13/0.16 0.35/0.20 0.14/0.11 0.38/0.53 
-15 0.11/0.14 0.35/0.21 0.12/0.11 0.42/0.53 
-14 0.09/0.12 0.37/0.20 0.13/0.11 0.42/0.57 
-13 0.09/0.11 0.35/0.21 0.12/0.10 0.45/0.58 
-12 0.08/0.10 0.36/0.21 0.11/0.10 0.45/0.59 
-11 0.08/0.11 0.33/0.19 0.11/0.08 0.48/0.62 
-10 0.07/0.10 0.37/0.21 0.11/0.09 0.46/0.60 
-9 0.07/0.12 0.39/0.23 0.12/0.11 0.42/0.55 
-8 0.09/0.13 0.41/0.26 0.12/0.09 0.38/0.52 
-7 0.08/0.14 0.42/0.25 0.09/0.08 0.41/0.53 
-6 0.07/0.11 0.45/0.25 0.07/0.05 0.41/0.59 
-5 0.07/0.11 0.39/0.21 0.06/0.05 0.48/0.63 
-4 0.22/0.27 0.34/0.23 0.22/0.16 0.22/0.34 
-3 0.04/0.08 0.74/0.56 0.00/0.02 0.22/0.34 
-2 1.00/1.00 0.00/0.00 0.00/0.00 0.00/0.00 
-1 0.00/0.00 0.00/0.00 1.00/1.00 0.00/0.00 
1 0.23/0.28 0.14/0.13 0.53/0.46 0.10/0.13 
2 0.22/0.28 0.20/0.16 0.25/0.17 0.32/0.39 
3 0.24/0.30 0.25/0.19 0.25/0.21 0.26/0.31 

 
much lower for CG-poor genes when trained with the widely used dataset collected by Kulp and 
Reese. To tackle this problem, we constructed a new LCG316 dataset composed of gene sequences 
with low C+G contents, and we have demonstrated improved prediction accuracy for CG-poor genes 
by using this new training dataset compared to other methods. The combination of the two datasets 
enables GeneKey to get high and balanced prediction accuracy for both CG-rich and CG-poor genes. 
 
Obviously, not all of the genes have similar structure features, because of the function restriction. 
Statistical analysis demonstrates that some structure features, such as splicing signals and codon 
usage, of CG-poor genes are quite different from that of CG-rich ones.  

                                                                                                                                                                23



Yanhong Zhou, Huili Zhang, Lei Yang and Honghui Wan 
Improving the Prediction Accuracy of Gene Structures in Eukaryotic DNA with Low C+G COntents 

 
The results of this work imply that careful construction of training dataset is very important for 
uncovering underlying features and improving the performance of various prediction tasks. 
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