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Abstract 
 

This paper explores the application of feature selection by the Correlation based Feature Selection 
(CFS) algorithm on the problem of classification of E.coli promoters using neural networks, Support 
Vector Machines (SVM) and Extreme Learning Machines (ELM). It was found that even though in 
general the classification accuracy can be reduced by a statistically significant amount, in real terms 
this was only a few percent. The results also indicate some interesting characteristics of the features 
used in E-coli promoters. A comparative study with three typical classifiers was carried out in this 
study.   
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I. Introduction 
The number of features representing data depends on what is being observed, from a few features for a 
mechanical system, to several thousands for biological sequences [1]. As the number of features 
increases, the volume of the feature space grows exponentially, this is called the Curse of 
Dimensionality [2]. 

Consequently, significant effort has been put into the area of feature selection algorithms (FSA’s), 
which aim to reduce the number of features that are needed to perform the tasks, but still maintain or 
even improve the learners’ performance. In general the goal is to remove irrelevant and redundant 
features from the data. By reducing the feature space, it can increase learning speed, increase learner 
performance (e.g. classification accuracy and generalization), can make the learners model more easily 
understood, and reduce the learners’ storage requirements [3]. FSA’s can be grouped into two main 
categories, i.e., classifier independent and classifier dependent. A classifier independent approach is 
the filter approach which preprocesses the training data to determine the best feature subset to use. 
Then the classifier is trained and tested on the data set only using the features found by the FSA. The 
advantage of the filter methods is that they are generally computationally efficient. 

The wrapper approach is a classifier dependent FSA and uses a specific learning algorithm, such as 
decision trees, and ANN’s, to evaluate the feature subset via the performance of the learner. This has 
the advantage of selecting features that are suited to the specific learner, and hence generally result in 
higher learner performance, e.g. accuracy. However as the learner needs to rerun for each new subset, 
it is computationally costly, and does not scale well to large numbers of features. Consequently we 
only examine a filter type FSA. 
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Research into the application of FSA’s to biological sequences has been growing, for example they 
have been applied to DNA sequence classification [4], splice site prediction [5] and gene expression 
profiles [6]. 

One biological problem is the identification of a promoter region within a DNA sequence. A 
promoter is a region of DNA, recognised by and a binding target for Ribonucleic Acid (RNA) 
polymerase, which then starts transcription of the coding region at the Transcription Start Site (TSS). 
Using biochemical or genetic means to identify the promoter regions and pinpoint the binding site(s) at 
which the RNA polymerase comes into contact with the DNA is difficult. For this reason, previous 
techniques for identification of the promoter regions are based on statistical and alignment techniques. 
Research by [7], [8] and [9] compiled increasingly larger number of promoter regions of E.coli. Using 
statistical methods, they identified two major consensus sequences, which consist of two hexamers (6 
base pairs (bps)) long. The first consensus sequence is TATAAT and is approximately 35 bps 
upstream from the TSS, (labelled -35 hexamer). The second consensus sequence is TTGACA and is 
approximately 10 bps upstream from the TSS (labelled -10 hexamer). 

Previous researchers have applied ANN’s to the problem of promoter recognition [10], [11] and 
[12], achieving promoter recognition in the 90% range and false positive rates of around 5-10%. 
However, there is not a significant amount of work on the application of FSA’s to the problem of 
promoter recognition in E.coli. 

In this paper, we applied four different feature extraction methods to the E.coli DNA, namely 
CODE-4, 19 High Level Features, and the structural DNA profiles GC Trinucleotide frequency and 
Stacking Energy. We then compare the classification results of three different classifiers, 
backpropogation neural network, Support Vector Machines (SVM) and the Extreme Learning 
Machine (ELM), using the full feature set and the feature subset. 

II. Methods 

A. Data 
We used a pool of 872 E.coli (K12 strain) promoter sequences [13]. The promoter sequences were 
taken from 60 bases upstream of the TSS, to 21 bases downstream of the TSS. Three different types of 
non-promoter DNA sequences were used. The first type was randomly generated DNA sequences with 
the same base frequency as the target DNA (random-prom). The second type was taken from the gene 
coding regions of the E.coli K12 strain [13], with 872 sequences selected from the pool of 
approximately 4400 known genes, starting 100 bps downstream of the TSS (gene). The third type used 
was randomly generated sequences, but using the same base frequencies of occurrences as the 872 
gene DNA sequences, (random-gene). From these non-promoters （NPs）, six data sets are created 
which are given in Table I. 
 

Table 1:  Details of the data sets used in this paper, where size is the number of bases. 
Label Prom Region N(bps) Size Non-prom Size Total 
Random Promoter -60 to +21 81 872 rand-prom 872 1774 
Gene -60 to +21 81 872 gene 872 1774 
Random-Gene -60 to +21 81 872 rand-gene 872 1774 
Random-Gene Half -60 to +21 81 872 1/2 rand-gene 436 1308 
All NPs -60 to +21 81 872 All NPs 2616 3488 
All NPs Third -60 to +21 81 872 1/3 All NPs 870 1742 
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B. Feature Extraction 

1. CODE 4 
The nucleotides of DNA are represented by four symbols, {A, T, C, G}, and are encoded using four 
binary bits, where A→0001, T→0010, G→0100 and C→1000. This scheme is commonly referred to 
as CODE-4 encoding. As each base is represented by four binary bits, to represent a sequence of length 
N, requires 4N input nodes of the ANN. 

2. 19 High Level Features 
The following are definitions for the high level features of a DNA sequence as outlined in [14], and 
formally defined in [15]; 

Features 1 to 12 - Helical Parameters. 
 Table. 2 lists the 12 different patterns as defined in [16], where R and Y denotes purine (A and G) and 
pyrimidine (C and T) respectively and each feature takes on the number of times a non-overlapping 
pattern occurs. 

Features 13 and 14 - Site Specific Information. 
 Feature 13 is the number of times the gtg_motif occurs in a DNA sequence S, where it does not 
overlap. Feature 14 is the number of times the gtg_pair motif occurs, where the spacer is a multiple of 
10±1 bases from the beginning of each motif. 

Table 2:  Features 13 and 14 
Feature Label Pattern 

13 gtg_motif GTG or CAC 
14 gtg_pair gtg_motif spacer gtg_motif 

Features 15 to 16 - Local Secondary Structure. 
 The local secondary structures are characterised by the presences of tandem and invert repeats. Let S 
be a sequence of N bases, drawn from an alphabet of {A,T,C,G}. msssS ,...,, 21= , where si is a base at 

position i in S. The reverse of S is denoted . The complement of a base is the nucleotide that binds 
to it on the opposite strand of the DNA sequence and is denoted as si, e.g. if , then si=T. The 

complement of a sequence is denoted 

1−S
Asi =

S . 

Feature 15 - Tandem repeats. 
A tandem repeat is a sequences of nucleotides that occurs twice on the same DNA strand. We define an 
imperfect tandem repeat with no gaps between repeating sequences as T=UV, where the subsequences 
U and V are expressed as  and muuuU ,...,, 21= mvvvV ,...,, 21= . The period p of T is the minimum 
integer such that  for some i [17]. The mismatch between subsequences U and V is given by 

the hamming distance, 
pii vu +=

( ) cVUd =, , where c is the number of mismatches. The no-gap condition is met 
iff  and . 11 vu = mm vu =

Feature 16 - Inverted repeats. 
 An inverted repeat is a sequence of nucleotides that is found to be repeated in the reverse order on the 
opposite strands of the DNA double helix. We define an imperfect inverted repeat as I = UV, where 
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muuuU ,...,, 21= , , and the number of mismatches is given by the hamming distance mvvvV ,...,, 21=

cVUd =− ),( 1 . 
Given a sequence S, all repeats of the same type are found and the size of the repeat n and number 

of matches b=n-c are recorded. Then the probability of one or more of the repeats being found is 
calculated using the process detailed in [15], and the smallest probability is used for the feature value. 

Features 17 to 19 - DNA compositions 
 The AT content, AG/TC ratio and AC/TG ratio are given in (1), (2) and (3) respectively. 

N
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where A, C, G and T are the number of adenines, cytosines, guanines and thymines respectively, and N 
is the total number of nucleotides in the sequence window. 

3. DNA Structural Profiles. 

For a sequence NssS ,= ,....1 , with N bases, its profile P(S) is given by  where p(.) is the 
DNA property value for a given set of bases, 1≤i≤N-k+1 and k is the number of nucleotides used to 
calculate its value. So for properties based on dinucleotides, k=2 and for trinucleotide properties, k=3. 
We used the DNA structural profiles GC trinucleotide frequency count and Stacking energy [18], 
please see [19] for further information. 

)},..,({ kii ssp +

C. Feature Selection 
After examining a very wide range of filter type FSAs, we selected the Correlation bases Feature 
Selection (CFS) algorithm [20] which has the advantage using both class-feature and feature-feature 
correlations to measure the merit of a given subset of features using a heuristic. The CFS method, first 
calculates the correlation coefficient between both the feature to class and features to features. Then 
using a search algorithm, explores the feature subspace and evaluates the optimality of each subset by 
using a heuristic, given in Eq. (4). 

ff

cf

rkkk
rk

J
)1( −+

=  (4) 

where  and  are the average class-feature correlation and feature-feature correlation values 
respectively. Hence, the merit function will have larger values for feature subsets that have features 
with strong class-feature correlation and weak feature-feature correlation. However, even if a set of 
features has strong class-feature correlation, if there is strong feature-feature correlation the merit 
value will be degraded. 

cfr ffr

We used the best-first search algorithm as given in [21], using forward search. The search stops if it 
does not find a subset with a better merit value after 5 branch expansions. As CFS can use any 
correlation function we tried Symmetrical Tau (ST), Symmetrical Uncertainty (SU) and Relief-F (RF). 
To begin the definition of these correlation functions, we first define the contingency table from which 
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they are calculated. The aim of statistical methods, such as chi-square test, is to determine if a variable 
B is correlated with variable A. A contingency table, Tab. 3, is used to relate the two variables, where 
variable A has α categories, B has β categories, and ai and bj are particular category of A and B 
respectively. 

Table 3:  Contingency  table. 
A B 
 b1 b2 ... bβ Total 

a1 c11 c12  c1β c1+ 

a2 c21 c22  c2β c2+ 

M M M M M M 
aα cα1 cα2  cαβ cα+ 

Total c+1 c+2 ... c+β n 

  
Hence, the probability for a given value of a∈A or b∈B can be expresses as follows. 
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1. Symmetrical Uncertainty 
The information measure usually determines the information gain from using a feature. The 
information gain (IG) is the difference between the prior uncertainty and the expected posterior 
uncertainty when including variable ai. The problem with information gain is that it is biased towards 
features with more values, as well as needing the values to be normalised [22]. A measure that 
overcomes these problems is symmetrical uncertainty [23] and is defined below: 
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where H(A), H(B), and IG is defined below.  
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Hence, Eq. (6) can be written as, 
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In practice, H(A), H(B) and H(A,B) can be rewritten to use the values in the contingency table. 
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Variable A and B that has a SU=1 have strong correlation, whilst if SU=0 there is no correlation. 

2. Symmetrical Tau 
The problem with the most commonly used statistical, and information theory based feature selection 
methods, such as Chi-square criterion, Asymmetrical Tau, Information Gain and Gini indexing 
criterion, is that they tend to favour features with more values. To overcome this problem, [24] 
proposed the Symmetrical Tau. In the case of a multinomial sampling model, the maximum likelihood 
estimator of τ is given in (7). 
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When there is perfect association between variables A and B, T=1. Whilst if T=0 there is no 
association. 

3. Relief-F 
The Relief algorithm can be reformulated so that it can be applied to any two variables [20]. 
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where ReliefA can have a value between 1 for strongly correlated and -1, strongly uncorrelated, and 
Gini' is defined as: 
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These formulas are rewritten use the contingency table, 
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Then for the Gini' equation: 
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As relief is asymmetrical, the correlation between two variable are calculated where one variable is 
A and the other is B, this is then reversed and the average taken for symmetrical relief. 

D. Classifiers 

1. Neural Network 

We used a feed-forward neural network and explored the optimal topology of the network by varying 
the number of neurons in the single hidden layer by varying the ration between the number of hidden 
neurons and the number of features. All networks were fully connected, with logarithmic sigmoid 
activation functions for the hidden neurons and the single output neuron. All weights and biases were 
randomly initialised in the range of [-0.01,0.01] and training was performed using the batched Scaled 
Conjugate Gradient (SCG) algorithm. We trained the ANN until it reached or exceeded a particular 
classification accuracy as measured by the F-measure on the training data, for this we tried an accuracy 
target of 0.85, 0.90 and 0.95. 

2. Support Vector Machine 
For the SVM classifier, we used an implementation by [25], using a radial basis function (RBF) for the 
kernel we explored the effect of the cost and γ on the test accuracy by using a grid search of the cost 
and γ parameters as suggested by [26] to find the optimal values. 

3. Extreme Learning Machine 
The Extreme Learning Machine (ELM) is a single hidden layer feedforward neural network using a 
unique training algorithm that allows the ELM to learn classification problems many orders of 
magnitude faster than tradition ANN training algorithms [27]. We used a sigmoidal activation function 
and explored the effect of the number of neurons in the hidden layer by using different ratios of the 
number of features in the training and test data. 

E. Performance Evaluation 

The performance of the three classifiers was measured using a confusion matrix and derived 
F-measure (8), and accuracy (9) metrics. From the confusion matrix, Table 4, a promoter that is 
correctly classified is called a true positive (TP), whilst a promoter classified as a non-promoter is 
called a false negative (FN). A non-promoter that is correctly classified is called a true negative (TN) 
and an incorrectly classified non-promoter is called a false positive (FP). The definition of the 
confusion matrix was found in a number of sources and checked with the reference [28]. 

Table 4:  Confusion matrix 
Predicted Class Actual Class 

Promoter Non-Promoter 
Promoter TP FN 

Non-promoter FP TN 
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Where recall and precision are defined in equations (10) and (11) respectively. 
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The accuracy of classifying each class is given by the promoter and non-promoter sensitivity in (12) 
and (13). 
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F. Training and Testing Process 

The six data sets were processed using the four different feature extraction methods as outlined above. 
For each feature type, the data was equally split randomly into training and testing sets (ie, hold-out 
method), which was repeat ten times so that each classifier can be trained and tested ten times to gain a 
more reliable estimate of performance. CFS was applied to each data set to determine an optimal 
feature subset using each of the correlation functions, finally each classifier was then trained and tested 
on the full feature set and the subset of features for comparison. 

III. Results and Discussion 

A. Features Selection Results 

Tables 5, 6, 7 and 8 presents the ratio between cfr  and over all features, the number of features 
selected and the merit value calculated from Eq. (4), for all six data sets and the three correlation 
functions. 

ffr

In the next sections we examine more closely which features were selected for each data set by 
looking at the histogram of features selected for each data set. The maximum number of times a given 
feature can be selected is ten, as there are ten sets of training and test data. 

Table 5:  CFS results for feature type: CODE 4 
NP SU ST RF 

rcf/rff Merit |X| rcf/rff Merit |X| rcf/rff Merit |X| 
Random-Promoter 0.3827 0.0599 28.20 0.4991 0.0755 27.40 0.6277 0.0655 28.20

Gene 1.4788 0.2057 58.50 1.9004 0.2549 58.20 2.4151 0.2207 69.00
Random-Gene 1.0058 0.1168 69.30 1.3089 0.1463 69.70 1.6729 0.1270 83.90

Random-Gene Half 0.9701 0.1218 60.20 1.1917 0.1447 63.50 2.1557 0.3063 76.20
All types 0.4724 0.0647 29.40 0.5595 0.0733 28.20 0.2286 0.2291 56.50

All Types Third 1.1575 0.1450 62.60 1.5015 0.1813 63.50 1.9224 0.1592 72.90 
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Table 6: CFS results for feature type: 19 high level  

NP SU ST RF 
rcf/rff Merit |X| rcf/rff Merit |X| rcf/rff Merit |X| 

Random-Promoter 0.1552 0.1709 1.00 0.2730 0.3060 2.00 0.2043 0.2131 2.00
Gene 0.1954 0.1713 1.00 0.3291 0.3015 1.10 0.2487 0.2071 1.10

Random-Gene 0.2068 0.1802 2.00 0.3427 0.3082 1.00 0.2584 0.2164 1.00
Random-Gene Half 0.2003 0.1720 2.00 0.3152 0.2911 1.30 0.2128 0.2003 1.20

All types 0.1127 0.1205 1.00 0.1988 0.2248 1.90 0.1391 0.1328 2.00
All Types Third 0.1968 0.1713 1.40 0.3301 0.3003 1.30 0.2481 0.2061 1.70

 
Table 7:  CFS results for feature type:: GC trinucleotide 

NP SU ST RF 
rcf/rff Merit |X| rcf/rff Merit |X| rcf/rff Merit |X| 

Random-Promoter 0.2154 0.0495 17.10 0.3019 0.0606 18.60 0.2644 0.0513 16.30
Gene 0.7746 0.1499 26.60 1.0584 0.1826 35.10 0.9161 0.1522 35.30

Random-Gene 0.9055 0.1669 29.10 1.2244 0.1998 39.10 1.0400 0.1640 33.90
Random-Gene Half 0.7975 0.1659 19.80 0.9974 0.1810 22.10 0.7651 0.1701 12.20

All types 0.2288 0.0555 5.70 0.2779 0.0602 6.00 0.3448 0.0682 33.00
All Types Third 0.8716 0.1664 26.80 1 1795 . 0.1997 33.90 1.0017 0.1648 33.10 

 
Table 8: CFS results for feature type: Stacking energy 

NP SU ST RF 
rcf/rff Merit |X| rcf/rff Merit |X| rcf/rff Merit |X| 

Random-Promoter 0.2130 0.0495 26.20 0.3903 0.0679 35.10 0.3257 0.0546 35.70
Gene 0.4632 0.1112 22.70 0.8357 0.1489 32.80 0.7015 0.1206 33.10

Random-Gene 0.4497 0.0996 28.10 0.8336 0.1408 39.40 0.7799 0.1271 44.30
Random-Gene Half 0.4032 0.1087 13.40 0.7194 0.1366 31.30 1.0879 0.1929 40.10

All types 0.2135 0.0433 17.10 0.3073 0.0489 26.50 -0.0901 0.0217 13.30
All Types Third 0.4231 0.1005 22.40 0.7763 0.1367 30.20 0.6940 0.1169 35.40

 

From the four tables, it can be seen that using the three types of correlation function, CFS 
successfully reduced the number of features for all data sets and feature types. However, the RF 
correlation function has a tendency to cause CFS to select a larger number of features and is evident 
from the histograms it is also less consistently selects features compared to SU and ST. Given the merit 
function essentially aims to find sets of features that have strong correlation with the class and low 
correlation between features, it is reasonable to use the ffcf rr  ratio over all features to indicate the 
general strength of a given data set to the classification problem. Hence, one would expect that a high 
ratio would indicate that the features have an overall strong correlation with the class and so the CFS 
should select more features as there is lower  and so should gain higher merit. On the other hand, 
given a lower ratio, CFS would select smaller feature sets as the high feature inter-correlation would 
make it difficult to find larger sets of features as the merit would be reduced. This trend is found to be 
true for the datasets as seen in the tables. Data sets with higher 

ffr

ffcf rr  ratios tend to have a larger 
number of features selected compared to those that have a smaller ffcf rr  ratios. Furthermore, SU and 
ST have smaller ratios compared to RF, and tend to select few features than RF. 

Looking at the result more carefully, the Random-Promoter consistently has a lower ffcf rr  ratio 
than the other non-promoter types. This suggests that the random DNA sequences with the same base 
frequency as the promoter, provide poor differentiation between target and non-target classes. All 
Types also has a low ratio, however given All Types 872 has a fairly high ratio, this low value would be 
due to the significantly larger proportion of non-promoter examples in the data set, hence washing out 
the distinction between promoter and non-promoter in the feature space. 
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For the high level encoding the CFS regularly selected feature 15 (tandem repeats), occasionally 
feature 16 (inverted repeats) and really feature 17(AT content). This suggests that the repeat structures 
are useful features with a strong class correlation, however, also with a strong correlation. 

For CODE-4, GC Trinucleotide frequency and Stacking Energy, it is evident that that the FSA 
tends to select features predominately around the biologically significant -10 region, and to a lesser 
extent the -35 region and TSS, indicating their importance at distinguishing promoters from 
non-promoters. 

B. Classification Results 
In this subsection, we report the performance of the three classifiers, and show the statistically 
significant improvement or degradation in test classification accuracy by ’+’ or ’-’ respectively, using 
a two-tailed t-test with α=0.05. Due to space consideration, the standard deviation of the results could 
not be shown. For the Neural network and ELM tables, we present the average ratio between the 
number of features and the number of hidden neurons over the 10 hold-out data sets. 

It is clear that the CFS algorithm drastically reduces the number features for all features types and 
data sets. However, the merit function has been noted to be too aggressive in removing features that 
maybe valuable for classification [29]. This is evident for the 19 High Level features, where only one 
or two features are selected and the resulting classification accuracy is significantly reduced. In our 
previous work, we found that between 15 to 17 features were needed to gain an improvement in the 
classification accuracy [30], and the reason why the merit function of CFS selects so few features is 
because features 15, 16 and 17 generally have significantly larger correlations with the class than the 
other features for most data sets. 

For the three other feature types (CODE-4, GC-Trinucleotide frequency and Stacking Energy), 
even though the classification accuracy degrades, there are numerous cases of a statistically significant 
improvement in classification accuracy for different data sets. 

 
Table 9: Best test classification results for each feature type and classifiers,  

comparing to the full feature set with the subset chosen by CFS 
Neural Network SVM ELM Feature 

Type  NP Acc |X| NP Acc |X| NP Acc |X| 
Full G 89.07 324 G 88.92 324 G 78.23 324 CODE-4 CFS G 87.83 69 (RF) G 88.13 69 (RF) G 83.64 124.7 (RF)
Full RG 80.54 19 RG 80.88 19 RG 79.77 19 19 High 
CFS RG 79.21 2 (SU) RG 79.84 2 (SU) RG 79.28 2 (SU) 
Full RG 80.93 79 RGH 84.13 79 RGH 79.60 79 GC Tri- 

nucleotide CFS RG 80.37 39.1 (ST) RG 80.84 29.1 (SU) RG 80.21 39.1 (ST) 
Full G 79.44 80 G 81.01 80 AT 77.07 80 Stacking 

Energy CFS AT 79.27 36.5 (ST) RG 78.34 44.3 (RF) AT 77.35 26.5 (ST) 

 

From Table 9, the best results overall was with the neural network, on the Gene data set with 
CODE-4, achieving a test classification accuracy of 89.07% with the full feature set. The best 
classification accuracy using a subset of features was again with the Gene data set with CODE-4 using 
the SVM classifier, with a test classification accuracy of 88.13%. The best classification accuracy is 
generally achieved with either the Gene or Random-Gene data sets, which indicate that the gene DNA 
sequence can be more easily differentiated from the promoter compared to other types of 
non-promoters.  

The application of the CFS to CODE-4 feature type provided the best results, gaining the most 
number of statistically significant improved test classification accuracy compared to the full feature set. 
The reason for the other feature types suffering generally lower classification accuracy with the subset 
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of features selected by CFS, is that CODE-4 had a significantly larger number of features to begin with 
and so the reduction of redundant and irrelevant features had a more dramatic effect on the 
classification accuracy of the classifiers. 

Poor classification performance was seen for the All-Types data set as the promoter sensitivity  
was very low for all feature types and classifiers. This would be due to the higher ratio of 
non-promoters to promoters, hence the classifiers are able to classify non-promoters more strongly, 
than promoters. Furthermore, All-Types 872 does not suffer such low  for all classifiers, which 
shows the importance of the ratio between the target and non-target training examples. 

pS

pS

The type of non-promoter training examples strongly determines the classification accuracy. Gene 
and rand-gene non-promoters produced the best classification results, as we have found in previous 
studies, [15] and [19]. 

Examining the ratio between the number of features and the number of hidden neurons for ELM, it 
is evident that there is a higher ratio of hidden neurons to number of features for the features subsets 
compared to the classifier using all the features. This indicates that the features selected by the CFS 
contain possibly more complex information that requires a more complex model compared to the 
number of features. The neural network classifier showed a similar trend, however not as clearly. 

IV. Conclusions 
From the experimental results, features selection can drastically reduce the number of features that are 
needed to express the characteristics of E.coli promoters using a number of different feature types. We 
showed that in the case of CODE-4, GC-Trinucleotide and Stacking Energy structure profiles, the CFS 
algorithm selected features that had biologically significant importance, namely around the -10, -35 
and TSS regions. In general we found that the classification performance for the three classifiers we 
used, feed-forward neural network, SVM, and ELM, had a statistically significant reduction in 
accuracy, however this was only in the range of a few percent and at the benefit of quicker training and 
smaller classification models. We found that the merit function was very aggressive in selecting small 
subsets, at the expensive of classifier performance. In future work, we look at modifications to the 
merit function and alternative functions that do not have this problem. 
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