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Abstract 
propose a new anchor-based model for global multiple alignment of whole genome sequences. 
model includes three main phases. Firstly, an enhanced suffix array method is employed to find 
ors. Next, a novel chaining strategy, which is based on the dynamic programming technique and 
ongest common subsequence idea, calculates an anchor-chain for the weighted anchors. Lastly, 
progressive multiple alignment method is used to close the gaps between the anchors. The 
osed chaining procedure is based on evolutionary theory and can align whole genome sequences 
nly for close homologs, but also distant species. Combined with the exact suffix array approach, 

model can compute partially accurate solutions and generate a high-quality alignment result in 
s of computation and biology.  

word: multiple genome sequence alignment, anchor-based alignment, enhanced suffix array, 
iple heaviest common subsequence.  

Introduction 

 the benefit of advanced biotechnology, large numbers of whole genome sequences have been 
piled. To compare whole genome sequences, biologists increasingly need alignment methods 
are both efficient enough to handle large numbers of long sequences, and accurate enough to 

ectly align the conserved biological features of distant species present in the sequences. Aligning 
le genome sequences is a fundamentally different problem than aligning short sequences. 
ntly, intensive research activities have been devoted to this problem. Many available whole 
me alignment software systems have been developed [5]. MUMmer [8] detects and aligns every 
rence between two microbial genomes. DIALIGN is combined with CHAOS [4], which was 
loped for rapid identification of chains of local pairwise sequence similarities, to handle large 
complicated genome sequences. MGA [9] is a widely used program to produce a global multiple 
ment for closely related whole genomes. MAUVE [7] is the first alignment system that 
rates analysis for large-scale evolutionary events with traditional multiple sequence alignment. 
D [2] is a global alignment program for large genomic regions up to the megabase range and 
VID [3] is developed based on AVID to assemble multiple genome sequences according to a 
ressive ancestral alignment that incorporates preprocessed constraints. So far, most programs 
 efficiently in aligning small numbers of closely related genome sequences. Very few genome 
ment programs can align distant homologs, and they usually cannot work efficiently for large 
bers of genome sequences. Recently, the tools that can align not only close homologs, but also 
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distant ones, are desired by the biologists, because they can test how related the species are to obtain 
the idea of evolution process, i.e., which species come out first. This idea may lead biological 
suppositions to the evolution in the future. The tools also can help to test the probability of different 
species sharing the same ancestor in order to making a prefect evolutionary tree. The program can 
also help biologist to design primer for PRC (polymorphism chain reaction), which is an important 
method used for the work of genetics and molecular biology. In order to make up for the lack of 
methods for aligning distantly related genome sequences, we propose a new strategy with biological 
reasons: the genome sequences from close homologs are first selected for assembly, and then 
distantly related genome sequences are appended to the anchor alignment iteratively. Together with 
our chaining algorithm involving evolutionary theory, this model generates a more accurate and 
meaningful anchor-chain in terms of computation and biology. It assembles flexible genome 
sequences and leads to a high-quality alignment result. 

II.   An Overview of Our Chaining Algorithm 

2.1   Our Ideas and Their Origins 

The anchor-based alignment approach divides initial large alignment problems into smaller, more 
manageable ones and combines program speed and sensitivity [4], which is a good solution for 
whole genome sequence alignment tasks. The procedure of the anchor-based whole genome 
alignment can be divided into three phases [5]: 
1. Computation of all the anchors; 
2. Computation of an optimal anchor-chain of collinear non-overlapping anchors: the anchors that 

form the basis of the alignment; 
3. Alignment of the regions between the anchors. 

We propose a chaining algorithm as one part of our model in the second phase. The algorithm 
uses the dynamic programming technique and is based on the standard Longest Common 
Subsequence idea [6]. 

The quality of a whole genome alignment method is measured not only by the running efficiency, 
but also by the biological significance [3] [4]. Therefore, it is important to involve biological ideas to 
improve the alignment quality and practicality. We place a weight on every anchor in order to find a 
biologically more correct anchor-chain. We believe that this idea can help our alignment model 
obtain a more meaningful result. After some helpful talks with biologists, we determined that our 
weight tends to be related to the length of the anchor. This is based on biological evolutionary theory. 
If the large-scale sequences are assumed to be whole genome sequences, every anchor can be 
considered a conserved nucleotide block. According to evolutionary theories such as natural 
selection, the longer the block is, the more important the evolutionary information and structure it 
might contain. The reason for this is that only very valuable nucleotide blocks can survive during 
those significant sequence changes that result from selective pressures. During evolution, there are 
likely certain important reasons to keep some nucleotide blocks that do not easily change. According 
to this idea, the longer the block is, the heavier the weight we put on it. 

We refer to this chaining procedure as a problem of finding the Multiple Heaviest Common 
Subsequence (MHCS) or the Multiple Maximum Weight Common Subsequence (MMWCS), which is 
the common subsequence with maximum weight in multiple weighted sequences. 

2.2   Computational Complexity 

Given a finite sequence , a subsequence of S is any sequence that consists of S 
with k terms deleted, for . Given a set 

1 2, , ..., mS s s s=< > 'S
[0, ]k m∈ 1 2{ , ,..., }rR S S S= of sequences, a Common Subsequence 
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is a sequence that is the subsequence of each sequence 1 2  in R. In the weight set 
,  are the real numbers associated with each character in those sequences.  

, ,..., rS S S

1 2{ , ,..., }tW w w w= 1 2, ,..., tw w w
 
Definition 1 Multiple Maximum Weight Common Subsequence (MMWCS) problem or Multiple 
Heaviest Common Subsequence (MHCS) problem: Given a multiple sequence set 1 2  
with a particular weight w assigned to every character of each sequence S, what is the common 
subsequence with the maximum weight, i.e., what is the MHCS(R)? 

{ , ,..., }rR S S S=

 
The instance is: given a set of sequence 1 2{ , ,..., }pR S S S=  and a weight set 1 2  

for the alphabet of R, 
{ ( ), ( ),..., ( )}tW w x w x w x=

( )RΣ , whose size ( )W = ∑ R . Clearly 1 2( ) ... pR m m m∑ ≤ + + + , where i im S= . 
( )MHCS R  represents the weight of the heaviest common subsequence of R.. 

The decision version of the problem is: given an integer k , a listing of the sequences in R  and a 
listing of the weights in W, is ( )MHCS R k≥ ? 

 
Theorem 1 (COMPLEXITY) The decision version of the Multiple Heaviest Common Subsequence 
problem belongs to NP-Complete. 
 

Proof: First, it is easy to see that MHCS NP∈ , since a nondeterministic algorithm need only guess 
a k and check in polynomial time whether the weight of the heaviest common subsequence is larger 
than or equal to k, after the weights have been assigned to the alphabets. 

Next, we use the restriction technique. We restrict the MHCS problem for  of arbitrary size 
by allowing only instance with weight 1 in 

( )R∑
( )R∑ . Then, the restricted MHCS problem becomes the 

Longest Common Subsequence (LCS) problem for ( )R∑  of arbitrary size. In other words, the LCS 
problem is a special case of the MHCS problem. When an arbitrary number of sequences are 
considered, the LCS problem has been proved to be NP-Complete [13]. 

Therefore, the Multiple Heaviest Common Subsequence (MHCS) problem is NP-Complete. 

2.3   Algorithm Description 

The MHCS problem is NP-Complete, which means that no polynomial time algorithm exists for this 
problem unless P = NP. Moreover, with regard to the theory of parameterized complexity, an 
approach to attack intractable problems mainly developed by Doweny and Fellows, the fixed 
alphabet longest common subsequence parameterized in the number of strings (FLCS) has recently 
been proved to be W[1]-hard [14]. Therefore, we can say that, in general, no exact polynomial-time 
algorithm can find an exact anchor-chain from arbitrary numbers of weighted sequences. However, 
traditionally, for all the genome alignment programs, the number of the input sequences is forced to 
be limited to ignore the computational complexity. We limit the numbers of the input genome 
sequences, therefore, this algorithm can find the result in polynomial time. We propose an algorithm 
for solving the MHCS problem with the idea of extending the dynamic programming technique of 
the standard longest common subsequence method [12]. 

The running time of calculating the weight of the MHCS is Θ ( 1X .length 
⋅ 2X .length ⋅ … k⋅ X .length ) and the running time of printing the MHCS is (Θ 1X .length + 2X .length 
+  + ⋅ ⋅ ⋅ kX .length ) [12]. 

2.4   Implement and Results 

The algorithm is implemented by JAVA and the running results show that different weights assigned 
to different characters of the input sequences lead to different output solutions [12]. 
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III.   The Whole Procedure of Our Model 

3.1 Our Ideas and Their Origins 

The input of whole genome alignment model is usually assumed to be relatively conserved genome 
sequences. 

In the first phase, we use the enhanced suffix array method to find the conserved blocks among 
the input genome sequences. Because these conserved blocks are more likely to belong to the global 
alignment, they are used as anchors for assembling the multiple genome alignment. 

In the second phase, we first weigh the anchors based on their lengths. Next, we use our chaining 
algorithm to find the heaviest common subsequence as the anchor-chain. Then, all the anchors are 
assembled based on this anchor-chain. In our model, we propose a novel alignment method to 
assemble the anchors. This method will make our model more flexible for different input sequences 
and user requirements. After consulting with biologists who are currently using sequence alignment 
tools to help their evolutionary experiments, we realize that a tool for aligning the genome sequences 
of distantly related species and assembling large numbers of genome sequences are desired. 
Therefore, we use a different aligning structure to assemble the anchors. For small numbers of 
closely related genome sequences, this model uses our chaining algorithm to find the anchor-chain 
and obtain an alignment from all anchors, which is the same as most alignment programs. However, 
when the inputs are many genome sequences from distantly related species, the model will use a new 
strategy: it asks users to choose the genome sequences that are from close homologs (i.e. from 
closely related species). Then, it uses the chaining algorithm to find an anchor-chain from these 
chosen sequences. Afterward, those unselected anchor sequences append to the anchor alignment 
iteratively based on the anchor-chain. This idea makes our model suitable for aligning not only 
closely related genome sequences but also distantly related ones, and it helps our model to align 
even large numbers of input genome sequences. Moreover, this method will lead to an evolutionary 
more correct and meaningful anchor-chain. Because the inputs are genome sequences, every anchor 
found in the first phase consists of nucleotides. For closely related species, these nucleotide blocks 
are very likely to represent the same or similar traits that are beneficial to evolutionary research. 
However, for distantly related species, though the constituent nucleotides are the same, these blocks 
may not represent similar traits. In evolution, the anchors/nucleotide blocks from the closely related 
species may come from the same ancestor and be very meaningful, but those from the distantly 
related species may be just a result of unexpected mutation. If the anchor-chain is computed from all 
the anchor/nucleotide blocks from both closely related and distantly related genome sequences, the 
procedure will chain the anchors that have the same components together; however, this anchor-
chain may only have structural meaning but not any evolutionary meaning. Hence, for genome 
sequences at any evolutionary distance, our strategy produces an evolutionary more correct anchor-
chain that leads to a high-quality alignment result. 

In the last phase, gaps between the anchors are further aligned by an existing progressive global 
multiple alignment tool to generate a detailed sequence alignment. 

3.2   Phase 1: Find Multi-MUMs as Anchors 

A MUM is defined a maximal unique match decomposition of two genomes in the program 
MUMmer [8]. In our model, we define the maximal unique match for multiple genomes as multi-
MUMs. Because of the assumption that input genome sequences are highly similar, a large number 
of multi-MUMs are assured to be identified. Aligning Multi-MUMs is the basic step for aligning 
multiple whole genomes. 
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Definition 2 A multi-MUM is a maximal unique match decomposition of multiple genomes. It 
occurs exactly only once in each sequence of a multiple sequence set and is not contained in any 
longer such sequence. The two characters bounding a multi-MUM must be mismatches in all the 
sequences. 

In order to find the multi-MUMs from the input genome sequences, we use the enhanced suffix 
array algorithm [1], which is a suffix array enhanced with a table for longest common prefixes. The 
enhanced suffix array method requires much less space than the widely used suffix tree method and 
much less time than other programs for genome analysis task [1]. 

Employing the enhanced suffix array algorithm to deal with four input sequences = abeadc, = 
edbcaba, = cabed and = dcabea, we detect four multi-MUMs: (ab), (c), (d), (e). Each of them is 
labeled with an integer from { , according to their positions in the first input sequence. 
Obviously, m is the number of the multi-MUMs and the integers are assigned as the indices of each 
of them. The indices are unique identifier of each multi-MUMs. In different input sequences, Multi-
MUMs appear in different order according to their positions but the indices are always unique. 

1S 2S

3S 4S
}1, 2,3,..., m

Therefore, each input sequence can be represented by the multi-MUMs and the gaps between 
them on a horizontal line. We use the corresponding index to represent each multi-MUM and ignore 
the gaps in this step. So, each input sequence can be transformed to a sequence consisting of the 
indices, which is defined as a multi-MUM index sequence. 

A multi-MUM index sequence for the input sequence  is denoted by iS iI . In the example, the four 
multi-MUMs are labeled as: 1=(ab), 2=(e), 3=(d), 4=(c). So the four input sequences can be 
transformed to four multi-MUM index sequences. 

 

 
Fig. 1. The multi-MUM index sequences of input sequences. 

3.3 Phase 2: Find the Multiple Heaviest Common Subsequence as Anchor-chain to Align 
Anchors 

The inputs of this phase are the multi-MUM index sequences that we got in phase 1. Based on the 
evolutionary relationship among the original genome sequences, certain numbers of multi-MUM 
index sequences are chosen to calculate the anchor-chain. We weight the multi-MUMs based on 
their length, and then use our chaining algorithm to find the heaviest common subsequence to be the 
anchor-chain. Different associated weights will result in different anchor-chains. The weights 
containing evolutionary information lead to a biologically more meaningful anchor-chain. 

In the example here, we choose the first three sequences as the candidate sequences to compute 
the anchor-chain. “2” is weighed to the multi-MUM 1, “1” is weighed to the multi-MUM 2, “1” is 
weighed to the multi-MUM 3 and “1” is weighed to the multi-MUM 4. After running our program, 
we find the heaviest common subsequence of the first three sequences is the multi-MUM 1. 
Therefore, we choose the multi-MUM 1 to be the anchor-chain and assemble the three anchor-
computing sequences according to the selected anchor-chain. 

The multi-MUM index sequences, which are not selected to calculate the anchor-chain, are aligned 
according to this chain. That is: place the multi-MUMs, which have the same characters as the 
anchor-chain, to the anchor-chain column. Based on this procedure, an alignment for all the anchors 
is assembled.  
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Fig. 2. The alignment of the anchor-computing multi-MUM index sequences: Three anchor-computing multi-MUM index 
sequences 1 2 3, ,I I I  are aligned according to the selected anchor-chain multi-MUM 1. 

In the example, 4I  is appended to the alignment based on the multi-MUM 1. Accordingly, an 
alignment of all the four multi-MUM index sequences is obtained. 
 

 
Fig. 3. The alignment of all the multi-MUM index sequences: the fourth multi-MUM index sequence 4I  is appended to 
the alignment of the three anchor-computing multi-MUM index sequences according to the anchor-chain multi-MUM 1. 

Therefore, the alignment of the anchors/Multi-MUMs is: 
 

-- -- -- a b E d c 
e d c a b -- -- -- 
-- -- c a b E d -- 
 d c a b E   
        

Fig. 4. The alignment of all the anchors 

3.4 Phase 3: Close Gaps and Get Detailed Alignment 

The progressive global alignment program CLUSTAL W [15] is used to align the gap regions 
between the anchors to generate detailed alignment. Because the target sequences are whole 
genomes, which are large-scale sequences, a threshold is set for the maximum length of the gaps to 
evaluate whether they should be align or not. If the length of a gap is out of the threshold, the gap 
will be ignored. For our example, the alignment result is: 
 

-- -- -- -- a b E a d c 
e d b c a b -- a -- -- 
-- -- -- c a b E -- d -- 
-- d -- c a b E a -- -- 

        
Fig. 5. The alignment result:  the progressive global alignment method is used to align the characters in the gaps; 
together with the aligned anchors, the alignment result is obtained. 
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3.5 Time Complexity Analysis 

In the first phase, a suffix array can be directly constructed in linear time [10]. The lcp array and the 
ps array can be obtained from the suffix array in linear time [11]. Hence, in the first phase, 
constructing a suffix array and computing all the multi-MUMs of input sequences requires linear 
time: O(n), where n is the total length of all the input genome sequences. With the finite automata 
algorithm [6], the anchor sequences can be transferred to multi-MUM index sequence in linear time. 
In the second phase, the chaining algorithm for k multi-MUM index sequences works in  time, 
where m is the length of the multi-MUM index sequence. Then, it takes  time for the 
remaining  sequences to be appended to the alignment. The running time of the third phase 
depends on the threshold set by the user. 

( )kmΟ
( ' )k mΟ

'k

IV.  Conclusions and Future Work 

We presented a new anchor-based model for the global multiple alignment of whole genome 
sequences. Firstly, we proposed a chaining algorithm, which is based on the dynamic programming 
technique and weighs each anchor by a proper weight according to evolutionary theory. This 
algorithm finds the heaviest common subsequence among the weighted anchor sequences. Though 
we proved the MHCS problem is NP-complete, the algorithm works in polynomial time for limited 
sequence inputs. We verified that different associated weights lead to different results by implement. 
Lastly, we described the whole procedure of our alignment method: first, we employed the enhanced 
suffix array method to find anchors; next, we used our chaining strategy to find the anchor-chain and 
to generate the alignment of the anchors; finally, we used the progressive multiple alignment tool 
CLUSTAL W to close the gaps. In the second phase of this procedure, in order to make up for the 
lack of methods for aligning distantly related genome sequences, we proposed a novel strategy: the 
genome sequences from close homologs are selected to assemble first, and then distantly related 
genome sequences are appended to the anchor alignment iteratively. This phase produces a more 
meaningful and accurate anchor alignment in terms of both computation and biology. It helps our 
model to assemble more genome sequences at any evolutionary distance. Combined with the exact 
suffix array approach in the first phase, this model leads to a high-quality alignment result. 
   Often, a model can be modified and improved. We continue our research on improving and 
implementing this model to make it more efficient while retaining its accuracy. Furthermore, we 
plan to do the experiments with the real genomic sequences and compare the result to the existing 
systems and tools. The testing genomic sequences will be from not only close homologs, but also 
distant ones, which make more benefits for biological work. 
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