
International Journal of Information Technology     Vol. 11, No. 8, 2005  

 
 
 
 
 
 
 
 
 
 
 

 
 

 
The 
is m
pres
moti
can 
integ
moti
that 
have
bind
 
Key

I. In
 
The 
whic
phas
func
repr
upst
othe
bind
func

Se
liter
may
expe
the s
Met
succ
bact

In
for s
evol

       
A Novel Computational Based Method for Discovery of 
Sequence Motifs from Coexpressed Genes 
College of Computer Science and Technology, Jilin 
University, Changchun 130012, P. R. China 

Wengang Zhou, Hong Zhu, Guixia Liu, Yanxin Huang, 
Yan Wang, Dongbing Han, Chunguang Zhou 

wgzhou@email.jlu.edu.cn, cgzhou@jlu.edu.cn  

Abstract 

transcriptional regulation of gene expression is a key mechanism in the functioning of the cell. It 
ostly affected through acting element binding to specific sequence motifs. In this paper, we 
ent a computational based approach to select the most relevant information for searching binding 
fs from the long upstream regions. First, we demonstrate that evolutionary computation method 
be used for the discovery of binding motifs. Then we propose a novel algorithm IPSO-GA by 
rating an improved particle swarm optimization with genetic algorithm to search sequence 
fs from coexpressed genes regulated by the NF-kb transcription factor. Experiment results show 
the proposed algorithm can find the binding motifs efficiently. Some of these discovered motifs 
 been determined by the experiment and other potential motifs can more probably present novel 
ing motifs that are not discovered yet.  

word: Transcription Factor, Binding Motif, Particle Swarm Optimization, Genetic Algorithm.  

troduction 

regulation of gene expression in the eukaryotic cell happens at several different levels among 
h the transcriptional one is the most important. Some researchers have proposed that the next 
e of genomics is to comprehend the entire functional elements [1]. Two of the most important 
tional elements are cis-acting or trans-acting element, usually a protein that stimulates or 
esses gene transcription, and a recognition site, usually a short sequence motif that is located in 
ream of the coding region. Nowadays, the availability of several fully sequenced genomes and 
r experimental data has made the more complete understanding of regulation elements and their 
ing motifs become possible [2]. It will also permit a deeper comprehension of the potential 
tions of individual genes. 
veral computational methods for discovery of binding motifs have been proposed [3-5] in the 

ature. A widely used strategy for identification of regulatory elements is that coexpressed genes 
 share common regulatory elements. So we can identify binding motifs from a set of genes 
rimentally known or presumed to be coregulated [6], for example, these genes are involved in 
ame biological process or show similar mRNA expression profiles in microarray experiments. 

hods such as consensus, Gibbs motif sampler, BioProspector and ANN-SPEC [7-9] have 
essfully applied this strategy in finding regulatory elements from lower organisms such as 
eria and yeast. 
 this paper, we present a computational based approach to select the most relevant information 
earching binding motif from the long sequences of upstream regions. First, we demonstrate that 
utionary computation method can be used for motif discovery. Then we propose a novel hybrid 
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algorithm IPSO-GA by integrating an improved particle swarm optimization (IPSO) with genetic 
algorithm (GA) to search sequence motifs from coexpressed genes regulated by the NF-kb 
transcription factor. Experiment results show that the proposed algorithm can find the binding motifs 
efficiently. Some of these discovered motifs have been determined by experiment and other potential 
motifs are previously unknown. These putative motifs can more probably present novel binding sites 
that are not discovered yet. In general, the results are highly encouraging. 

II. Database 
 
TRANSFAC [10] is the largest and most commonly used database on eukaryotic cis-acting 
regulatory DNA elements. It catalogs eukaryotic transcription factors and their known binding sites 
that cover the whole range from yeast to human. The TRANSFAC data have been generally 
extracted from the original literature, occasionally they have been taken from other compilations 
which is appropriately indicated. TRANSCompel database is originated from the COMPEL [11] and 
provides the information of composite regulatory elements which contain two closely situated 
binding sites and actually are minimal functional units providing combinatorial transcriptional 
regulation for distinct transcription factors.  

It contains 256 experimentally validated composite elements from which we choose one 
transcription factor, nuclear factor kappa B (NF-kb) as test example. This transcription factor is 
chosen because its binding mechanism is well studied and it represents the families with multiple 
family members binding to slightly different binding motif, thus increasing the difficulty of motif 
search. The nine genes regulated by transcription factor NF-kb with known sequence motifs in their 
1kb upstream region are shown in table 1. In our experiment, the 1kb regions upstream to the 
transcription start site for each of these genes are searched for binding motifs discovery. 
 

Table 1. Genes with experimentally validated Oct binding sites 
TF Gene  name Access. no Species Binding motif 
NF-kb 
NF-kb 
NF-kb 
NF-kb 
NF-kb 
NF-kb 
NF-kb 
NF-kb 
NF-kb 

ELAM-1 
Interferon-beta 
Serum amyloid A2 
Serum amyloid A1 
Interleukin-6 
Serum amyloid A3 
ICAM-1 
GM-CSF 
Interleukin-2 

C00097 
C00099 
C00100 
C00101 
C00152 
C00153 
C00155 
C00156 
C00165 

H. sapiens 
H. sapiens 
H. sapiens 
R. norvegicus 
H. sapiens 
M. musculus  
H. sapiens 
M. musculus 
H. sapiens 

GGGGATTT 
GGGAAATT 
GGACTTTC 
GACTTTCC 
GGATTTTC 
GAAATGCC 
GAAATTCC 
GAAATTCC 
GTAGTTCC 

III. IPSO-GA 
 
Particle swarm optimization (PSO) method is an evolutionary computation technique first developed 
by Kennedy and Eberhart [12, 13] in 1995. It starts with the random initialization of a population of 
individuals (particles) in the search space and works on the social behavior of the particles in the 
swarm. Therefore, it finds the global best solution by simply adjusting the trajectory of each 
individual towards its own best location and towards the best particle of the swarm at each 
generation [14, 15]. Each particle in the search space is adjusted by dynamically altering the velocity 
of each particle according to its own flying experience and the flying experience of other particles. 

The position and the velocity of the  particle in the n-dimensional search space can be 
represented as  and 

thi
),,,( 21 iniii xxxX L= ),,,( 21 iniii vvvV L=  respectively. Each particle has its best 

position  correspond to the personal fitness obtained at time t . The global best ),,,( 21 iniii pppP L=
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particle is denoted by which represents the fittest particle found so far at time t . The velocity and 
position vector is calculated according to the following equations: 

gP

))()((()))()((())()1( 21 tXtPrandctXtPrandctVwtV igiiii −⋅⋅+−⋅⋅+⋅=+                             (1) 
)()()1( tVtXtX iii +=+                                                                 (2) 

Where  and  are constants and are known as acceleration coefficients, w  is called the inertia 
weight, rand() generates random numbers in the range of [0, 1]. 

1c 2c

We propose a novel algorithm IPSO-GA by integrating an improved particle swarm optimization 
(IPSO) with genetic algorithm (GA). An additional local search operation with two proposed 
operators is introduced in IPSO. Nine offspring individuals are produced by using the two operators 
for each parent individual before updating its position. Then the best individual is chosen from the 
total ten individuals to replace the original one. After the update of velocity and position for each 
particle, we execute the crossover operation which is a basic process in genetic algorithm (GA) in a 
predefined probability to increase the diversity of population. We use the single point crossover. The 
details are shown in section 4. 

IV. Discovery of Sequence Motif Using IPSO-GA 
 
It is well known that evolutionary computation is fit for solving combinatorial optimization problem. 
We will specify that identification of binding motif can be formulated as a combinatorial 
optimization problem. Hence, the application of the proposed novel algorithm IPSO-GA for 
discovery of binding motifs appears to be promising. Sequence motif consists of a set of windows 
with one window for each sequence. We can choose one window from each sequence, and then the 
aim of our algorithm is to find the optimum combination of these windows that can maximize the 
fitness function. The number of possible combination (search space) is computed according to the 
following formula:  

Sdlp )( −=                                                                       (3) 
Where  is the length of the sequences, d  is the width of the window being used, and l s  is the 
number of sequences. The algorithm is implemented in Matlab 6.5. The sequence information is 
used to calculate a nucleotide likelihood matrix based on which fitness is measured. 

A. Encoding 
In this experiment, we use a fixed sequence motif window size of eight. A single candidate solution 
represents a set of windows randomly placed over the 1kb upstream sequences with only one 
window per sequence. Thus the  particle is initialized as a nine dimensional vector with the 
following form: .where  is a random number from 1 to 
993 (because the sequence length is one thousand and the window size is equal to eight) and it 
represents the initial position of the  window. The details are shown in figure 1. 

thi
),,,,,,,,( 987654321 iiiiiiiiii xxxxxxxxxX = ikx

thk
 

C00097: GCATGCGCCACCATGCCCAGCTAATTTTGTATTTTTTTTAGAG 
C00099: TGCCTTCTGAGTTCTCCATCCCACCCTGGTTGTTTTTTTTCTAT 
C00100: TGAGGAAATGACCGGTATAGTCAGGAGCTGGCTTTTTTTTTGC
C00101: ACACGTGGATCTGTGGGACCCTCCACCCACACAAAAGCAAAA
C00152: TGCCACAAGGTCCTCCTTTGACATCCCCAACAAAGAGGTGAG 
C00153: TCCTGCTATAGGGCCAGGAAAACAAAGATGAGCATGCCATTT 
C00155: CGTGATCCTTTATAGCGCTAGCCACCTGGGGGCCAAGGGGCG 
C00156: CAGCCTCAGAGACCCAGGTATCCCATAATGGTACAGATAGCA
C00165: TTGTGGCAGGAGTTGAGGTTACTGTGAGTAGTGATTAAAGAG 

Fig.1. The individual = (8, 22, 31, 17, 6, 23, 13, 27, 10) represents the set of red windows iX
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B. Local Search 
For the purpose of enlarging search space and intensifying the ability of local search, we have 
developed two variation operators: window position change and A+T percentage measure. Before 
updating the position of each individual (particle), we use the two operators to generate nine 
offspring solutions for each individual and select the best one from the total ten individuals (one 
parent and nine offspring) to replace the original individual. We first generate a random number 
from the range [1, 3] which decides to how many times we use the two operators. Each time an 
operator is required, the choice on the type of variation operators is made according to the user-
defined probabilities for each operator. This process is repeated until the maximum times are 
reached. The main pseudo-code is summarized in figure 2. 
 

For each individual Pj with 1≤j≤popsize in the population P 
initialize n=1; 
while n<=9 do   
generate a random number ntime from the range [1, 3]; 
for i=1 to ntime 
if  rand() < 0.2 
choose one window at random from parent individual; 
use the window position change operator; 
else use the A+T percentage measure operator;  
end 
increase n; 
calculate the fitness value for the ten individuals; 
select the individual lbest with the maximum fitness; 
replace the original individual Pj with lbest; 
end 

end 
Fig. 2. The main steps of the local search procedure for each individual in the population 

 
One window in the parent solution is chosen randomly for modification. When we use the 

window position change operator, the window is moved either to the left or to the right across the 
1kb upstream region with equal probability. A choice of new window position is chosen at random 
from the range [1, n], where n represents the maximum number of nucleotides in that direction. In 
our experiment, n is equal to 993 (sequence length - window width + 1) with the sequence starting 
from the 5’ end. We propose the A+T percentage measure operator by getting some hints from the 
known binding motif information as shown in table 1. It is obvious that these motifs have higher 
A+T percentage. Then the windows with higher A+T percentage are more probable binding motif. 
When a single window is chosen at random from an individual in the population, the average A+T 
percentage is computed for all windows except the window being modified. Then a percentage 
similarity to this average is calculated for all possible windows in the full 1000 nucleotide sequence 
for the window being modified. All the window positions are stored with A+T similarity equal to or 
greater than a user-defined threshold. We set the threshold to 1 in all the experiments. From this set 
of window positions, a new location for the window being modified is chosen with equal probability. 
 

C. Fitness Function 
We introduce two criteria: similarity and complexity [16] for evaluating the individuals. Since we 
aim to get the sequence motif, similarity between these short sequences must be satisfied. But 
complexity of sequences should also be considered so that avoid low complexity solutions, for 
example, the two sequences ‘AAAA’ and ‘AAAA’ are very similar in fact they are identical, but it is 
not a meaningful motif. So the total fitness of each individual is calculated according to the 
following formula: 
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)()()( 21 iComplexitywiSimilaritywiFitness ×+×=                                        (4) 
Where  and  are used to balance the importance of similarity and complexity. Their values are 
adjusted according to many experiments and fixed during the evolution. In our experiment, =0.6 
and =0.4 have generated better results. But we do not make sure these settings will be effective 
for other transcription factor binding sites motif identification. 

1w 2w

1w

2w

There are many methods to calculate similarity [17, 18]. In this paper, we first get a likelihood 
matrix by calculating the frequency of A, T, G, and C at each column. The greatest value of each 
column in the likelihood matrix is subtracted from 1 and the absolute value of the result is stored. 
Then we calculate the sum of each column in the subtraction matrix and a difference of 1 minus the 
sum is got. The sum of the difference value for each column is the final similarity.  

The average complexity for all windows represents the total complexity score for each individual 
solution. Complexity of a window can be calculated according to the following formula: 

=Complexity !                                                           (5) /!
10log ind ∏

Where  is the number of nucleotides of type ,in i },,,{ CGTAi∈ . For example, =1, =2, =1 
and =0 respectively correspond to the sequence ‘ATTG’. In the worst case, a window sequence 
has only one type of nucleotides, then its complexity is equal to zero. 

An Tn Gn

Cn

 
D. Update and Crossover 

The velocity V of each individual is initialized in the first generation as a seven-dimensional vector 
and each element in the vector has the range [1, 8]. Then V can be updated according to the Eq. (2) 
and X can be updated according to Eq. (1). We limit the maximum and the minimum velocity for 
each particle in order to avoid missing the global optima or entrapping in the local optima soon. So 
any window in the individual can move two window widths at most one time either to the left or to 
the right. In addition, the position X should be modified when the particle escapes from the boundary. 
The pseudo code for modifying velocity and position is shown in figure 3. 
 

For each particle in the population p 
Calculate V according to Equation (1); 
for k=1 to 9 
if >16 then =16; if <-16 then =-16;  ikV ikV ikV ikV
end 
end 
Update X according to Equation (2); 
for k=1 to 9 
if  <1  then =1; elseif >993 then =993;  ikX ikX ikX ikX
end 
end 

end 
Fig. 3. Pseudo code for the modification of velocity V and position X 

  
From the observation of simulation experiment, we notice that there may be some duplicate 

individuals in each generation. These duplicate solutions can induce the premature convergence on 
the local optima, so it is important to maintain the variance of the population. We propose a single 
point crossover operation to increase the diversity of population. After updating the X value for all 
the individuals, two individuals chosen at random with equal probabilities from the population are 
executed the crossover operation in a user-defined probability. Then a random crossover point is 
selected from the range [1, 9]. The two individuals’ information is exchanged after this crossover 
point. The details are shown in figure 4. 
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             Particle  I Particle  J 
Xi=(120,877,63,598,316,207,915,108,419) Xj=(367,82,710,581,182,676,236,524,153) 
Seq. 1 (120,127) GTGGTGGG Seq. 1 (367,374) ATGTTAAA 
Seq. 2 (877,884) TAGAGAGA Seq. 2 (82,89) TCCACTTG 
Seq. 3 (63,70) GCAGCCCA Seq. 3 (710,717) GTTATGGG 
Seq. 4 (598,605) ACGTGCGT Seq. 4 (581,588) AAGAAGAA 
Seq. 5 (316,323) CACACACT Seq. 5 (182,189) ACCTCTGG 
Seq. 6 (207,214) AATCCCAC Seq. 6 (676,683) ATCCCACT 
Seq. 7 (915,922) GGCAGGGA Seq. 7 (236,243) TTACCGTT 
Seq. 8 (108,115) GAAGAGTC Seq. 8 (524,531) GTAGGTAG 
Seq. 9 (419,426) GGTGGACA Seq. 9 (153,160) AGTCTGAA 

Crossover point = random number from the range [1, 9] = 7 
Xi’=(120,877,63,598,316,207,236,524,153) Xj’=(367,82,710,581,182,676,915,108,419)
Seq. 1 (120,127) GTGGTGGG Seq. 1 (367,374) ATGTTAAA 
Seq. 2 (877,884) TAGAGAGA Seq. 2 (82,89) TCCACTTG 
Seq. 3 (63,70) GCAGCCCA Seq. 3 (710,717) GTTATGGG 
Seq. 4 (598,605) ACGTGCGT Seq. 4 (581,588) AAGAAGAA 
Seq. 5 (316,323) CACACACT Seq. 5 (182,189) ACCTCTGG 
Seq. 6 (207,214) AATCCCAC Seq. 6 (676,683) ATCCCACT 
Seq. 7 (236, 243) TTACCGTT Seq. 7 (915,922) GGCAGGGA 
Seq. 8 (524,531) GTAGGTAG Seq. 8 (108,115) GAAGAGTC 
Seq. 9 (153,160) AGTCTGAA Seq. 9 (419,426) GGTGGACA 

Fig. 4. Crossover operation. Two particles Xi and Xj represent a set of short sequence fragments which are 
extracted from the nine upstream sequences (C00097, C00099, etc.) 

V. Experiment Results 
 
The proposed IPSO-GA is run twenty times with a population size of 30 in our experiment. It is 
terminated when the maximum generation of 600 is arrived each time. The three parameters in the 
Eq. (1) are set to as follows:  = =2, =0.6. These parameters are tuned repeatedly with respect 
to the observation from the experiment results. In table 2, the solution with highest fitness in all the 
runs is shown. It is similar with the known sequence motifs in table 1. The different ones compared 
with known binding motifs are marked with bold font. 

1c 2c w

 
Table 2. The best solution found in all runs during evolution 

Accession no Location Binding motif 
C00097 
C00099 
C00100 
C00101 
C00152 
C00153 
C00155 
C00156 
C00165 

(747,754)
(861,868)
(288,295)
(946,953)
(889,896)
   (20,27) 
(859,866)
 (829,836)

 (28,35)

GGGGATTT 
GGGAAATT 
GGACTTTC 
GACTTTCC 
GGATTTTC 
GAAATGCT 
GAAATTCC 
GAGATTCC 
GTAGTGAT 

 
Other better solutions are grouped by similar binding motif for all sequences and are shown in 

table 3. These putative motifs for each sequence are slightly different from the known motif. It is 
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reasonable because one transcription factor can bind to many different sites and only part of these 
sites has been validated. Capturing the information included in these putative motifs is as important 
as capturing the known motifs. These results will be helpful to identify binding motifs in vivo.  
 

Table 3. Putative binding sites discovered by IPSO-GA 
Accession no Putative motif 

C00099 
C00100 

C00097,C00101 
C00152 
C00153 
C00155 

C00156,C00165 

GCTCAATT, 
GGACCCGC,
GACTCCCA, 
CACTTTTC, 
TAAACACA, 
GAGATTCC, 
GAGCTTGC, 

GGGAGAAG 
GTGATTTT 
AGTGATTG 
GGAAACTC 
CAAGTTCC  
GCATTTCT 
GACCTTAT 

 
The problem of sequence motif discovery from coexpressed genes may be dealt with exhaustive 

search method if the sequence length is relative short. However, for the nine sequences with 1000 
nucleotides, the search space of exhaustive method will be nearly (according to Eq. 3). We can 
get the near optimum solutions by using our algorithm in most of the runs with a small search space 
about . 

2710

510

VI. Conclusion 
 
In this paper, we present a computational based approach to select the most relevant information for 
searching binding motif from the long sequences of upstream regions. First, we demonstrate that 
evolutionary computation method can be used for motif identification. Then we propose a novel 
hybrid algorithm IPSO-GA by integrating an improved particle swarm optimization (IPSO) with 
genetic algorithm (GA) to search sequence motifs from coexpressed genes regulated by the NF-kb 
transcription factor. Experiment results show that the proposed algorithm can find the binding motifs 
efficiently. Some of these discovered motifs have been determined by experiment and other potential 
motifs are previously unknown. These putative motifs can more probably present novel binding sites 
that are not discovered yet. In general, the results are highly promising. 
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