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Abstract 
 

This paper presents a Facial Expression recognition [FER] approach using Pyramid Gabor features 
and Complete Fisher Kernel Linear Discriminant Analysis (CKFD). Based on the frequency locality 
of Gabor filters, we propose new pyramid Gabor features for FER, which can be extracted by two 
phases: multi-frequency channel decompositions and Gabor filtering with single frequency. 
Experiments show the proposed Pyramid Gabor features can reach better performance than 
traditional Gabor features in facial expression analysis and involve much less computations. Based 
on kernel principal component analysis (KPCA) and Fisher linear discriminant analysis (LDA), a 
complete Kernel Fisher Linear Disciminant Analysis was presented recently, which can carry out 
discriminant analysis in “double discriminant subspace”. This paper expands the complete KFD to 
the field of facial expression recognition. We find the irregular information subspace is more 
dicriminant than the regular information subspace.  
 
Keyword: Pyramid  Gabor features, Kernel Method, Fisher Linear Discriminat Analysis  

I. Introduction 
 
Gabor features have been widely applied in the field of computer vision because of its powerful 
analysis ability in the conjoint time-frequency domain. Some neurophysiological evidences [1,2] 
have been found that suggest the filter response profiles of human main class of linearly-responding 
critical neurons are best modeled as a family of self-similar 2D Gabor wavelet. The evidences 
confirmed the validity of Gabor features. Previous researches [3-6] have suggested the Gabor 
features analysis is one of most successful and affective methods in the fields of facial recognition, 
facial features extraction, and facial expression analysis. 
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In the field of face analysis, principle component analysis (PCA) and linear discriminant analysis 
(LDA) are two classical tools widely used for data reduction and feature extraction. It is generally 
believed [7] that when it comes to solving problems of pattern classification, LDA outperform PCA, 
because LDA optimizes the low-dimensional representation of the objects with focus on the most 
discriminant feature extraction while the latter achieves simply object reconstruction. However, 
many LDA-based algorithms suffer from the so-called “small sample size problem” (SSS) [16] 
which exists in high-dimensional pattern recognition tasks, where the number of available samples is 
smaller than the dimensionality of the samples. The most famous solution to the SSS problem is to 
utilize PCA concepts in conjunction with LDA (PCA plus LDA)[7,8]. The effectiveness of the 
method has been demonstrated by [7,8,9,10]. However, to the problems with a highly nonconvex 
and complex distribution, like facial expression recognition (FER) problem, people believe a better 
solution to this inherent nonlinear problem could be achieved using nonlinear methods, such as the 
so-called kernel machine [11,19,20].  
 
Recently, a complete Kernel Fisher Discriminant (CKFD) algorithm was presented by Jian Yang in 
[11], which can be used to carry out discriminant analysis in “double discriminant subspace”.  
Unlike current kernel fisher linear analysis, it takes advantage of two kinds discrminant information: 
irregular information (in the null space of the within-class scatter matrix) and irregular information 
(outside of the null space)[11]. So this paper uses it to compare the performances of two kinds of 
information in FER. 
 
In this paper, we present a new Pyramid Gabor features extraction method for the representation of 
facial expression. The pyramid Gabor features are integrated with the CKFD for facial expression 
recognition. Experiment shows that the proposed Pyramid Gabor feature can reach better 
performance and involve much less computations than the traditional Gabor features under the frame 
work of PCA+LDA and CKFD. We also found that the irregular information subspace of CKFD is 
more discriminant for facial expression recognition than regular features subspace. 

II. Feature Extraction 
 
In computer vision, multi-frequency channel decompositions are interpreted through the concept of 
multi-resolution[17]. Generally, the targets that we want to recognize have very different spatial 
resolution. However, it is impossible to define a prior an optimum resolution to a given images. As 
to facial expression images, expression analysis maybe needs the different features corresponding 
with the different resolutions. On the other hand, a set of multi-frequency, different orientation 
Gabor features can supply the representation of spatial locality, frequency locality and orientation 
selectivity for a given facial images [5,6]. In fact the Gabor features is characterized with different 
resolution information. This is one of the reasons why Gabor feature can successfully be applied in 
face and facial expression recognition [3-6]. Inspired from the frequency locality of the Gabor 
features, in this paper, we proposed new Gabor features based on multi-frequency channel 
decompositions with pyramid algorithm. In each single frequency channel of a facial image, the 
features were extracted by a set Gabor filters with single frequency but different orientation. 
Experiments show that the features extracted by the method can reach better performance than the 
traditional Gabor features and involved much less computations. 
 

A. Traditional Gabor Feature 
 
Gabor wavelet is a Gaussian function modulated by complex exponentials that provides the 
best trade-off between time -resolution and frequency-resolution. The general functional form 
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of the 2-D Gabor filter is specified in [14] and [15], which is given by the following equation 
[14]: 
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x denotes the pixel position in the spatial domain, vuk ,
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defines the width and the 
orientation of Gaussian window, which can be denoted as ( )′=

→

uvuvvu kkk φφ sin,cos,  ,where 
v

v fkk max=  and 8πφ uu = , δ  is the ratio between the width of the Gussia and the wavelength 
of the complex exponential wave, the term of )2exp( 2δ−  compensates for the DC value 
because the cosine component has nonzero mean (DC response) while the sine component has 
zero mean. 
 

The Gabor features of a face image )(
→

xI  are extracted by convolving it with the family of 
Gabor filters: 

)(*)( ,,

→→

= xIxG vuvu ϕ                                                    (2) 

where )(,

→

xG vu  denotes the corresponding Gabor features with orientation u and scale v. The 

image )(
→

xI  can be thus represented by a set of Gabor coefficients )(,

→

xG vu . Figure 1 gives an 
example of the Gabor representations of a human face at different scales and orientations. 
 

B. Multi-frequency Channels Decomposition with Pyramidal Algorithm 
 
A multi-resolution decomposition is also an image decomposition in frequency channels of 
constant bandwidth on a logarithmic scale [17]. The approximation of a signal at a resolution r  
is defined as an estimate of derived from measurements r per unit length. These measurements 
are computed by uniformly sampling at a rate [17]. The series of decompositions using 
pyramidal algorithm that can be illustrated in Figure 2. 
 
 

 
 
Fig. 1. (a). Input facial image (b). The magnitudes of the Gabor representationsof a face 
imagewith 3 scales and 8orientations, and the size of original face is 128×96 
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Fig. 2. Decomposition of ),(0 jiI into different low resolution image ),(1 jiI and ),(2 jiI by 
Laplacian pyramid, where ),(0 jiI is input image, ),(1 jiI and ),(1 jih are the low and high 
frequency components of ),(0 jiI  respectively, ),( jig  is a low-pass filter, ),(2 jiI ),(2 jih have the 
similar meaning. 
 

C. Pyramid Gabor Features 
 

The classical pyramidal implementation of multi-resolution transforms can be regarded as a 
kind of discrete wavelet decomposition in some sense. Therefore, it is reasonable that using the 
pyramidal algorithm to the extract Gabor features will not affect the essential of the feature. In 
equation (1), if giving a certain parameter v , the filter: )(,

→

xvuϕ  only extracts the Gabor features 
centering frequency vk . Because of the local frequency selectivity property of Gabor features, 
the Gabor features characterize vk can be extracted in the frequency channel as long as there is 
the information centering vk  in the channel. As to an input image, )(0

→

xI , Gabor features 
characterize ik (where i  is a constant ) may be extracted in a component of )(0

→

xI  as long as the 
spectrum of the component encompasses the frequency scope localized by Gabor filter with 
centering frequency ik .  
 
Based on the above idea, we proposed a new pyramid Gabor feature extraction algorithm 
which is given as follows: 
 
Step 1: Using the pyramidal algorithm to decompose the input image )(0

→

xI to different channels: 
)(1

→

xI , )(2

→

xI …. )(
→

xI n
 as shown in figure 1. 

 
Step 2: In every low frequency channel, extract the pyramid Gabor features by a set Gabor 
filters with single frequency but different orientation.  )(*)( ,,

→→

= xIxG iiuiu ϕ  where i  is constant and 
the spectrum of )(

→

xI i
 should encompass the frequency scope localized by )(,

→

xiuϕ . 
 
Step 3: Downsample )(1,

→

xGu )(2,

→

xGu )(3,

→

xGu
…by the different factor ir , then normalize and 

Concatenate the corresponding pyramid Gabor features from different channel into a 
discriminative feature X . 
 
In our experiments, the pyramid Gabor features parameters we used are chosen as 

πσ 2= , 4/max π=k , ,2=f ),2,1,0(∈v )7,...1,0(∈u , ),2,1,0(∈n )2,4,8(∈ir where n is index of pyramid 
algorithm decomposition. In another word: there are three sets of Gabor filters respectively 
characterized by vk , )(0,

→

xuϕ , )(1,

→

xuϕ , )(2,

→

xuϕ , the input image )(0

→

xI is decomposed to different channels: 
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)(1

→

xI , )(2

→

xI  and )(1

→

xh , )(2

→

xh . In fact the information of )(1

→

xh , )(2

→

xh  is encompasses in )(0

→

xI , )(1

→

xI , so 
the high-frequency components, )(1

→

xh , )(2

→

xh don’t be used to extract the features. 
 
Since the computation of the convolution is much more than pyramid decomposition and )(1

→

xI , 
)(2

→

xI  have low resolution, therefore experiments show that the proposed pyramid Gabor 
features involve much less computations than traditional Gabor features. 

III. Introduction of Complete Fisher Kernel Linear Discriminant Analysis 
 
In the field of high-dimensional pattern recognition, Principal Component Analysis (PCA) and 
Linear Discriminant Analysis (LDA) are two classical linear approaches used to reduce the 
dimensionality of the features for good recognition performance.  PCA can find a subspace whose 
vectors correspond to the maximum-variance directions in the original space. On the other hand, 
while LDA creates a linear combination of these which yields the largest mean differences between 
the desired classes. However, to the problems with complex distribution, like facial expression 
recognition (FER) problem, people believe that a better solution to this inherent nonlinear problem 
could be achieved using nonlinear methods, such as the so-called kernel machine. e.g. Kernel PCA. 
 
KPCA was originally developed by [19], which overcomes many limitations of its linear counterpart 
by nonlinearly mapping the input space to a high-dimensional feature space. Based on Cover’s 
theorem on the separatbility of patterns nonlinearly separable patterns in an input space are linearly 
separable with high probability if the input space is transformed nonlinearly to a high dimensional 
feature space [12]. Computationally, kernel PCA takes advantage of the Mercer equivalence 
condition and is feasible because the dot products in the high-dimensional feature space are replaced 
by those in the input space while computation complexity is related to the number of training 
examples rather than the dimension of the feature space. 
 
Based on KPCA and LDA, a Complete Kernel Fisher Discriminnant Framework was presented 
recently [11]. The complete KFD algorithm based the framework can take advantage of two kinds of 
discriminant information: regular and irregular to classify the patterns [11]. 

 
A. Outline of KPCA ]20,11[  

 
For a given nonlinear mapping Φ , the input data space nIR  can be mapped into the feature 
space H :  

;~: ΗΦ nIR       )(xx Φ→                                                      (3) 
 
As a result, a pattern in the original input space nIR  is mapped into a potentially much higher 
dimensional feature vector in the feature space H .  
 
In fact, KPCA is to perform PCA in the feature space H . However, it is difficult to do so 
directly because it is computationally very intensive to compute the dot products in a high-
dimensional feature space. Fortunately, kernel techniques can be introduced to avoid this 
difficulty. 
 
Given a set of M training samples ),...,( 21 qxxx  in nIR , the within-class matrix on the feature 
space H can be constructed by as following [11]: 
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Every eigenvector of Φ

tS  can be linearly expanded by ∑
=
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coefficients, denote ))()......(( 1 MxxQ ΦΦ= . Calculate the orthonormal eigenvectors mγγγ ,..., 21  of R 
corresponding to the m largest positive eigenvlaues, mλλλ ≥≥ ,...21 , where 

MMMM RRRRR 1~11~~1~ +−−= , where QQR T=~  and MMM M ×= )/1(1 . The orthonormal 
eigenvectors 

mβββ ..., 21
 of Φ

tS  corresponding to the m largest positive 
eigenvlaues, mλλλ ,...,, 21 ,

jjj Q λγβ /= , ....2,1 mj =  
 
After the projection of the mapped sample )(xΦ  onto the eigenvector system mβββ ..., 21 , we 
can obtain the KPCA transformed feature vector T

myyyy ),...,( 21=  by )(xPy TΦ= where 
)...,( 21 mP βββ= . 

 
B. Extraction of two Kinds of Discriminant Features by LDA ]11[  

 
CKFD presents a new method to perform LDA in the KPCA transformed space mIR . The 
standard LDA algorithm [18] remains inapplicable since the within-class scatter matrix wS is 
still singular in mIR . CKFD take advantage of this singularity to extract more discriminant 
information than avoid it by means of the previous regularization techniques, which splits the 
space mIR  into two subspaces: the null space and the range space of wS , then derive the 
regular discriminant vectors from the range space and derive the irregular discriminant vectors 
from the null space. 
 
In the KPCA transformed space mIR , construct the between-class and within-class scatter 
matrices bS  and wS . Calculate wS ’s orthonormal eigenvectors, mααα ,..., 21 , assuming the first 
q  ones are corresponding to positive eigenvalues.  
 
To extract the regular dicriminant vectors, 11

~ PSPS b
T

b = and 11
~ PSPS w

T
w =  are defined where 

),...,( 211 qP ααα= . It is easy to verify that wS~  is invertible, thus the standard LDA algorithm 
can be used to extract the regular discriminant vectors by maximizing the ratio 

wb SS ~det/~det . 

 
To extract the irregular dicriminant vectors, 22 PSPS b

T
b =
)

 is defined where ),...,( 212 mqqP ααα ++= . 
Calculate bS

) ’s orthonormal eigenvectors dvvv ,..., 21  ( 1−≤ cd ,where c  is the number of classes) 
corresponding to the d largest eigenvalues. Let ),...,( 21 dvvvV = , the irregular discriminant feature 
vector then is defined yPVz TT

2
2 =  in [11] where y is the KPCA transformed feature vector. 

 
C.  Summary of CKFD ]11[  

 
In summary of CKFD, it is a two-phase algorithm: KPCA and LDA. The algorithm can be 
described by the following: 
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Step 1. Use KPCA to transform the input space nIR  into an m -dimensional space mIR , where 
)(Rrankm = . R  is the centralized Gram matrix. Pattern x  in nIR transformed to be KPCA-based 

feature vector in mIR  . 
 
Step 2. In mIR , construct the between-class and within-class scatter matrices bS  and wS . 
Calculate wS ’s orthonormal eigenvectors, mααα ,..., 21 , assuming the first q  ones are 
corresponding to positive eigenvalues. 
 
Step 3. Extract the regular discriminant features: Let ),...,( 211 qP ααα= . Define 11

~ PSPS b
T

b =  and 

11
~ PSPS w

T
w = and calculate the generalized eigenvectors duu ,...1  ( 1−≤ cd ) of ελε wb SS ~~

=  
corresponding to the d largest positive eigenvalues Let ),...,( 21 duuuU = . The regular 
discriminant feature vector is yPUz TT

1
1 = . 

 
Step 4. Extract the irregular discriminant features: Let ),...,( 212 mqqP ααα ++=  Define 

22 PSPS b
T

b =
)

and calculate bS
) ’s orthonormal eigenvectors dvvv ,..., 21  ( 1−≤ cd ) corresponding 

to the d largest eigenvalues. Let ),...,( 21 dvvvV = .The irregular discriminant feature vector 
is yPVz TT

2
2 = . 

 
Step 5. Fuse the regular and irregular discriminant features using summed normalized-distance 
for classification. 
 
The algorithm of fusing the two kinds of information can be found in [11]. 

IV. Experiments 
 
In this paper, the fusion coefficient of CKFD is chosen as 6.0=θ . In addition, the kernel function is 
chosen a fractional power polynomial function that was applied successfully in face recognition [13]:  

dyxyxk )(),( •=                                                                (5) 
d is chosen as 0.6  in our experiments. In our experiments, we used the JAFFE database [3] to train 
and test the system. The database contains 200 images of ten Japanese females expressing one of 
seven facial expressions (happy, sad, angry, fearful, surprised, disgusted, and neutral). Every 
expression of each person has three samples, indexed by 1, 2 and 3. Let us denote them as 1T , 2T  
and 3T . The experiment uses two of them to train a 1-NN classifier, the rest one is used as testing 
data. We repeat the experiment three times by changing the train samples and test samples according 
the index. All facial images are firstly preprocessed by some common methods and scaled to fixed 
size of 128×96 pixels. Secondly the Gabor features and Pyramid Gabor features of all images are 
extracted. At last, the nearest neighbor rule is used to classify the facial expression images. The 
experiment results of computation time and recognition accuracy comparison between traditional 
Gabor features and the proposed pyramid Gabor features are given in table 1, 2, and table 3.  
 
From the table 1, we see that the computation involved for Pyramid Gabor features extraction is 
much less than traditional Gabor feature extraction. From table 2 and table 3, it can be seen that: 1). 
The proposed Pyramid Gabor features can reach the better performance than traditional Gabor 
feature for facial expression recognition. 2). CKFD can be applied in the field of FER successful. 
And it is found that the irregular information is more dicriminant for facial expression recognition 
than regular features. 
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Table 1. The time-consuming comparison between  
Gabor features extraction and Pyramid Gabor features extraction 

 Gabor features Pyramid Gabor features 
All images 11minutes and 44 seconds 5 minutes and 32 seconds 
One image 3.52 seconds 1.66 seconds 

 
Table 2. Gabor features-Based methods recognition rate 

 Linear method CKFD 
Testing 
set 

1-NN 
classifier 

PCA  PCA+LDA KPCA Regular 
features 

Irregular 
features 

Fusion 

T1 75.76% 83.33% 92.42% 86.36% 89.39% 93.94% 92.42%
T2 82.81% 92.19% 98.44% 85.94% 95.31% 98.44% 98.44%
T3 76.11% 83.58% 95.52% 83.58% 88.06% 95.52% 95.52%
Average 78.22% 86.37% 95.46% 85.29% 90.92% 95.97% 95.46%

 
Table 3. Pyramid Gabor features-Based methods recognition rate 

 Linear method CKFD 
Testing 
set 

1-NN 
classifier  

PCA  PCA+LDA KPCA Regular 
features 

Irregular 
features 

Fusion 

T1 66.67% 78.79% 93.94% 75.76% 90.91% 93.94% 95.45%
T2 76.56% 90.62% 98.44% 93.75% 96.88% 100% 100% 
T3 73.13% 80.60% 94.03% 82.09% 88.06% 98.51% 97.01%
Average 72.12% 83.34% 95.46% 83.87% 91.95% 97.48% 97.48%

V. Conculsion  
 
This paper presents new pyramid Gabor features for facial expression recognition that can reach 
better performance than traditional Gabor features and involve less computations. We expand the 
CKFD algorithm to the field of FER with the pyramid Gabor feature and encouraging experimental 
results were achieved. We provide an insight onto the performances of the two kinds of features: 
regular and irregular in facial expression recognition. From the experiments results, it has been seen 
that the irregular information is more dicriminant for facial expression recognition.  
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