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Abstract 
 

Partial Least Squares (PLS) and its kernel version (KPLS) have become competitive regression  
approaches. KPLS performs as well as or better than support vector regression (SVR) for moderately  
sized problems with the advantages of simple implementation, less training cost, and easier tuning of  
parameters. As a result, we present a simple and straightforward least square support vector machine  
formulation to the problem of kernel Partial Least Squares (KPLS). In the paper a least squares  
support vector machine style deduction is given with a primal-dual optimization problem  
formulation for the kernel partial least squares. Finally, the model is illustrated on some examples.   
This shows that the method proposed is effective and superior. 
Keyword: Kernel methods, least squares-support vector machine , KPLS, RKHS 

I. Introduction 
Over the last years one can see many learning algorithms being transferred to a kernel 

Representation[1]. The benefit lies in the fact that nonlinearity can be allowed and be avoided to 
solve a nonlinear optimization problem. Support vector machines (SVMs) as originally introduced 
by Vapnik within the area of statistical learning theory and structural risk minimization have been 
proven working successfully on many applications of nonlinear classification and function 
estimation[3]. The problems are formulated as convex optimization problems, usually quadratic 
programs, for which the dual problem is solved. Least Squares Support Vector Machines (LS-
SVMs)[2] are reformulations to standard SVMs which lead to solving linear systems for classification 
tasks as well as regression. Within the models and the formulation one makes use of the kernel trick 
which is based on the Mercer theorem related to positive definite kernels[4]. One can plug in any 
positive definite kernel for a support vector machine classifier or regressor with as typical choices 
linear, polynomial and RBF kernels. 

The work on SVMs has also stimulated the research on kernel-based learning methods in 
general in recent years. The conceptual idea of generalizing an existing linear technique to a 
nonlinear version by applying the kernel trick has become an area of active research. In this paper 
we focus on least squares regression models in the kernel context. By means of a  nonlinear map into 
a Reproducing Kernel Hilbert Space (RKHS)[7,13] the data are projected to a high-dimensional space. 
Kernel methods typically operate in this RKHS. The high-dimensionality which cause problems with  
*proper parameter estimation is circumvented by the kernel trick, which brings the dimensionality to  
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the number of training instances n and at the same time allows excellent performance in 
classification and regression tasks. Yet, for large datasets this dimensionality in n means a serious 
bottleneck. Therefore downsizing the system in dimensions to size nm ≤ is needed.  

A nonlinear kernel function is used to map the data into a feature space in which linear partial 
least squares regression (PLS) techniques can not be performed. This principle of using nonlinear 
kernel functions to construct nonlinear variants of linear techniques is commonly used in the field of 
machine learning ( lkopfoSch && and Smola , 2002)[1]. Using a least squares support vector machine (LS-
SVM) approach instead of just the kernel trick with application of Mercer's theorem, an appropriate 
form of regularization can be incorporated within KPLS.  

Primal-dual optimization formulations of this regularized KCCA have been proposed by 
Suykens et al. (2002). The resulting problem to be solved in the dual space is a generalized 
eigenvalue problem that corresponds to the formulation of a least squares problem in the primal 
space involving a feature map. 

As a result, this paper shows an extension of LS-SVM formulations to the area of unsupervised 
learning. The LS-SVM approach is closely related to regularization networks, Gaussian processes, 
kernel ridge regression and reproducing kernel Hilbert spaces (RKHS)[5,6,9,13]. The formulation is in 
the style of LS-SVMs, in the sense that one starts from a constrained optimization problem in primal 
weight space with incorporation of a regularization term and one solves the dual problem after 
application of the kernel trick. The nonlinear version of the formulation yields a solution which is 
equivalent to kernel PLS. On the other hand, the LS-SVM formulations are closer related to standard 
SVMs with explicit primal-dual interpretations from the viewpoint of optimization theory. 

This paper is organized as follows. In Section II we present some minimal background on  
kernel methods in relation to reproducing kernel Hilbert spaces. In Section III we deal with KPLS in  
its primal-dual optimization formulation and formulate its sparse kernel version. In Section IV we  
illustrate the sparse algorithm on a large data set application. We conclude the paper in Section V. 

II. Kernel Partial Least Squares Regression in RKHS 
    

A. Partial Least Squares  

Partial Least Squares (PLS)[9,14] is a multivariate technique that delivers an optimal basis in x-
space for y onto x regression. Reduction to a certain subset of the basis introduces a bias, but reduces 
the variance. In general, PLS is based on a maximization of the covariance between successive linear 
combinations in x and y space, ),( xv and ),( yw , where coefficient vectors: v and w are normed to 
unity and constrained to be orthogonal in x space: 
                                                wCvywxv xy

TTT
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xy = the sample covariance matrix. Solutions can be 
obtained by using Lagrange multipliers, which leads to solving the following system[8]  
                                                             vwCxy λ=                                                           (2) 
                                                              wvCyx λ=                                                          (3) 
As a least squares cost function, PLS turns out to be a sum of the least squares formulation of each 
of the above methods: 
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B.  Kernel Partial Least Squares 

Consider a general setting of the linear PLS algorithm to model the relation between two data 
sets. Denote by nRXx ⊂∈ a N -dimensional vector of variables in the first block of data and 
similarly nRYy ⊂∈ denotes a vector of variables from the second set. Observing n data samples 
from each block of variables, PLS decomposes the Nn× matrix of zero mean variables X and 
the Mn× matrix of zero mean variables Y into the form[11] 

                                                       FTPX T +=    
                                                       GUQY T +=                                                          (5) 
Where T, U are pn× matrices of the extracted p score vectors and P, Q, F and G are the matrices of 
residuals. The PLS method, which in its classical form is based on the nonlinear iterative partial least 
squares (NIPALS) algorithm[8], finds weight vectors w; c such that  
                                          [ ] [ ]22 ),cov(),cov( YcXwut = = [ ]21 ),cov(max srsr Yx==  

Where nutut T=),cov( denotes the sample covariance between the score vectors t and u. It can be 
shown that the weight vector w also corresponds to the first eigenvector of the following eigenvalue 
problem   
                                                            wXwYYX TT λ=                                                       (6) 
The X-scores t are then given as 
                                                                    Xwt =                                                             (7)  

The kernel PLS method is based on mapping the original input data into a high-dimensional 
feature space F. In this case the vectors w and c cannot be usually computed. Alternatively, the score 
vectors t can be directly estimated as the first eigenvector of the following eigenvalue problem[10,11]  
                                                                ttYYXX TT λ=                                                    (8) 
The Y-scores t are estimated as 
                                                                   tYYu T=                                                           (9) 
 Now, consider a nonlinear transformation of x into a feature space F DenoteΦas the )( sn× matrix 
of mapped X-space data )(xφ  into an S-dimensional feature space F . Instead of an explicit mapping 
of the data, property (2) can be used resulting in   
                                                                      Tk φφ=                                                          (10) 
Where K represents the )( nn× kernel Gram matrix of the cross dot products. ),( ⋅⋅k  is a selected 
kernel function. Similarly, consider a mapping of the second set of variables y into a feature space 1F  
and denote by ϕ  the )( 1sn×  matrix of mapped Y-space data )( yϕ into an S1-dimensional feature 
space 1F . Define the )( nn×  kernel Gram matrix 1k  
                                                                        Tk ϕϕ=1                                                       (11) 
Using this notation the estimates of t and u can be reformulated into its nonlinear kernel  variant 
                                                                       ttkk λ=1   
                                                                        tku 1=                                                           (12) 
Similar to linear PLS, a zero mean nonlinear kernel PLS model is assumed. To centralize the 
mapped data in a feature space F the following procedure must be Applied[8] 
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Where nI is an n-dimensional identity matrix and nI represents a )1( ×n vector with elements equal to 
one. The same is true for 1k . 
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III.  An LS-SVM Approach To Kernel  PLS 
     A more principled approach can be taken by starting from the PLS least squares formulation (4).  
This primal cost criterion aims at optimizing the coefficient vectors v and w , searching  
simultaneously for the maximal projection of a data point in x space, maximal covariation with the  
corresponding projection of the point in y space, and maximal projection of a data point in y space.  
Since the coefficients could become arbitrarily large, these are typically constrained or at least  
regularized. By simplifying expression (4) we obtain ),( ywxv TT and by adding (soft) regularization, 
we arrive at the following primal form problem:  

wwvvrerewvJ TT
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i yvr φ= , nk ,,1L= . Introducing iα , iβ as Lagrange multiplier 
parameters, the Lagrangian is written as: 
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A given optimization problem has a corresponding dual formulation. The number of  
constraints in the original problem becomes the number of variables in the dual problem. One 
optimizes the Lagrangian subject to the following optimality conditions: 
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By elimination of the variables e , r , v , w , and defining 
γ

λ 1
= , we can simplify the dual problem 

further: 
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One has the following elements for the centered kernel matrix: 
                                               )()(,1, j
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are the elements of the centered Gram matrices for nji ,,1, L= . As such it only remains to choose a 
reduced set of feature vectors to induce the sparse kernel expansion. This gives analogously rise to 
an expression but with the KPLS based eigenvectors instead: 
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where s is the number of retained principal components and )(
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IV.  Experiments Results 

A.  Mackey-Glass chaotic time series 
Our first experiment is with the Mackey-Glass chaotic time series. It is often used in practice as  

a benchmark set because of its nonlinear chaotic characteristics. Chaotic time series do not converge  
or diverge in time and their trajectories are highly sensitive to initial conditions. This time series may  
be generated by numerical integration of a time-delay differential equation:    

τ>
−+

−
+−= d

d

d tfor
ttx

ttaxtbx
dt

tdx
)(1

)()()(
10

                        (25) 

Where 2.0=a , 1.0=b . For τ > 16.8 the dynamics become chaotic. We therefore conduct our tests  
using two values forτ , corresponding to weakly chaotic behavior at τ = 17 and a more difficult case  
at τ = 30. Eq.(16) is numerically integrated using the Euler method and uniformly distributed initial   
conditions ]2,1.0[0 ∈x  and 0=tx  for t < 0.  

 The goal of this task is to use known values of the time series up to the point tx =  to predict the  
value at some point in the future τ+= tx . The training data partitions were constructed by moving a  
“sliding windows” over the 3000 training samples in steps of 500 samples. This window had two  
size-500 samples and 1000 samples, respectively. In Figure 1, we get mean squared error based on  
the number of principal components used. We can see that mean squared error of primal-dual  
optimization KPLS is lower than the mean squared error of KPLS.  

Here, MSE= ∑
=

−
k

i
ii xx

k 1

2)ˆ(1 , ix is true output, ix̂ is estimate output, k is the number of the test 

data. 

 
Figure 1: The MSE based on the number of principal components used. Left: The average results of  KPLS. Right: The 
average results of primal-dual optimization KPLS 

B. Sinc function approximation 
To demonstrate some characteristics of this kind of kernel framework methods, we applied a 

large scale data set to the sinc function for the noisy case (Gaussian noise with standard.0.5). The 
sinc(x) function is defined as 

                                              
x

x
xcxf

sin
)(sin)( ==   

Given N=45222 training data point. Here we use the kernel )exp( 2

2

σ
ji xx −

− . The values of 

=δ 16.2, =γ 10 are determined from the cross-validation. After cross-validation the best model was  
evaluated on the independent test set. Training and evaluation time per model is typically of the  
order of minutes for a modest number of components. The corresponding output values were  
centralized. We picked at random a training set of size 33000=n and a test set size 12222=t . 



International Journal of Information Technology, Vol.11   No.9  2005 

                                                                                                                                                                

 

33

In Fig.2 a typical picture of the first three components qualitatively show a good correlation  
with the targets. We can see the first three components extracted by primal-dual optimization kernel  
PLS. In the next step we added the white Gaussian noise with standard deviation 0.2 to the outputs. 
 

                
Figure2:(left) First three components extracted by primal-dual optimization kernel PLS. (right) primal-dual optimization 
kernel PLS on noisy sinc(x) function. Sinc(x) function is shown as a solid line.  

        
Figure 3 Dependence of the training and testing error of primal-dual optimization kernel PLS on the number of extracted 
components. Error is evaluated in terms of mean squared error (MSE). (left) training set .(right) testing set. 

The results obtained on training and testing parts of the data are depicted in Figure 3. We can  
see mean squared error of training and testing set of primal-dual optimization kernel PLS. The figure  
shows that the MSE of testing set increases as the components gradually augment. So the primal  
dual optimization kernel PLS method fits more precisely noisy training data by the appropriate  
selection of the components. 

V. Conclusion 
   The use of a mapping to a high dimensional feature space leads to the kernel PLS. A new least  

squares support vector machine style formulation has been given to KPLS. It operates in primal  
space and has an important advantage: a small number of regression coefficients. In various example, 
we have shown that the new formulation is effectively capable of dealing with some datasets. 
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