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Abstract 
 
As we know, M-estimation as objective function can be used to tackle this problem that the 
performance of wavelet network (WN) is affected by gross error severely, but its influence function 
is determined by the absolute value of residual, so a key problem is how to choose initial parameters. 
In this paper combining robust estimation with wavelet support vector machine (WSVM), a robust 
wavelet support vector regression (WSVR) model is developed. Firstly, a new type of wavelet 
support vector machine is proved and used to determine appropriate WN structure and initial 
parameters. It can ensure that there should be bigger absolute value of residual for sample with gross 
error than that for believable sample; Secondly, M-estimation is used as cost function and a method 
used to determine the threshold adaptively is put forward, then gradient descent is adopted to tune 
WN parameters. Simulations illustrate that the regression model not only has the multiscale 
approximation, but also better robustness and generalization, but for some special case, WSVR in 
single scale can not determine appropriate WN initial parameters and robust learning is very slow, 
thus multiscale WSVR is worth researching. 
 
Keyword: support vector regression, robust estimation, wavelet support vector machine, wavelet 
admissible support vector kernel 

I. Introduction 
 
It is well known that regression function is to find a function to formulate the relationship between 
input-output patterns. Regression function is applied to many fields, such as image recovery, pattern 
recognition, control system and system identification [1]. In most of applications, expectation 
function is highly nonlinear and difficult to be mathematically formulated accurately. WN is a 
common regression method. It is based on wavelet decomposition and has more freedom than 
wavelet does, so it can obtain better approximation precision. It is non-parameter estimation and can 
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obtain regression function through learning from training samples. But during training regression 
function, if wrong or imprecise training data is adopted, the learning map will surge acutely and the 
gross error caused by the wrong mode will largen [2]. So how to decrease the effect of gross error is 
still an interesting problem and there are several successes [3], [4]. 
 
Practically, training data are distributed unevenly and most signals are stacked up by the ones with 
different frequency, which are very suitable for multiscale learning. So people begin to study 
multiscale support vector regression (SVR), which is much better than single scale SVR in 
approximation precision mentioned [5], [6]. SVR has also been shown to have excellent 
performance for insensitive cost function, and a general rule for choosing cost function for SVR has 
also been proposed according to error distribution [7],[8], [9]. However, the parameters in those 
approaches are not properly chosen, the final results may be affected by its parameters. This property 
has also been mentioned in [10]. The choice of parameters of SVR is not straightforward. In fact, for 
different samples, the optimal sets of parameters are also different. The method of multiscale 
approximation mentioned above can be regarded as multiscale SVR established by the linear 
combination of many kernel functions with different parameters. Determining the parameters of 
kernel functions is based on experiment or cut and try method, which leads to difficult optimization 
and complex calculation. 
 
Huber robust function has better performance for some noise distribution. When there are outliers, 
the robust property of SVR is not distinct [11]. In order to improve the robust property of SVR, 
reference [12] discussed cost function and the corresponding noise density model based on 
maximum likelihood method, however, it is very difficult to choose suitable cost function. In 
reference [11], robust SVR can decrease the effect of outliers, which used robust cost function to 
modify the weight coefficients in order to decrease the effects of outliers. 
 
In reference [2], [3], the objective function based on M-estimation is put forward to decrease the 
effects that gross error does on regression model. Its principle is to judge whether the point is normal 
one or the one with gross error according to the absolute value of residual error. The influence 
function can be chosen based on the gross error to decrease the effects of outlier case. So the initial 
parameters determine the final approach precision directly. WN is composed of several wavelet 
bases with different scale, but it is difficult to choose the network structure and initial parameters. In 
this paper, WSVM is used to determine the structure and initial parameters of WN which are trained 
with robust objective function. And the method of modifying learning speed online to quicken the 
training speed because support vector machine (SVM) is based on statistics learning theory and 
structure risk minimum. So it can solve the problem how to choose initial parameter of WN 
mentioned above and has excellent generalization to the unknown data [13]. It can adjust the 
smoothness of approach function according to punishment coefficient because the residual error is 
bigger between the values of smooth approach function and sample points with gross error. Since the 
smoothness of initial values is good, the detail of approach function can not fully embody. In this 
way, using M-estimation as objective function to train it, WN can possess multiscale and robustness 
and can approach expected real values better. So this WN is called SVM regression model of robust 
multiwavelet. 
 
In chapter 2, the theory of robust regression approach and the principle of SVR are introduced. In 
chapter 3, it is proved that radius basis wavelet is a admissible support vector kernel. In chapter 4, 
the SVR model of robust multiwavelet is introduced. In chapter 5, using the model proposed in this 
paper, the regression function is simulated and analyzed. And the results are in chapter 6. 



International Journal of Information Technology   Vol.11   No. 9  2005 

                                                                                                                                                                

 

37

II. M-estimation and SVR 

A．M-estimation [1],  [2] 

To N regression samples RRiyix dn
i ×⊂=1))}(),({( , use wavelet neural network (WNN) with 

single output )(xf  as regression approach. Its parameter set is θ , which is adjusted through 

minimizing objective function ∑
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)( irψ  is called influence function which determines the performance of the function. 

According to LS rule, )( irψ  is equal to ir . When there are outlier cases, the regression location 
is far from the real location and the residual error of outlier cases location could be very big. At 
the same time, the influence function will far bigger than 0. Because of the minimum objective 
function, LS rule can not be used to approach real curve. 
 
In order to decrease the effects of outlier cases, M-estimation can be used as the objective 
function of the network and its form is as follows: 

∑
=

N

i
ir

1
)(min ρ

θ
 

Derivate it and obtain the minimal value. Suppose iii drrdr /)()( ρψ = , ∑
=

=
l

i
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1
0)(ψ . 

There is several M-estimation which can be used as objective function, such as Hampel M-
estimation. And the M-estimation like Hampel form can be constructed. In this paper, M-
estimation )(rρ  proposed in reference [14] is used as the objective function. Its form and its 
derivative can be shown in fig.1. The resolution form is 
 

            οψ 2/2

)( rrer −=                                                                 (3) 

                                            )1()( 2/2 οσρ rer −−=  
 
σ  is threshold with the change of time, which changes with the residual error according to the 
training. In fig.1, 2/1σ±  are the extremum point of )(rψ , and the turning point of residual error. 
The objective function )(rρ  and influence function )(rψ  is related the residual error directly. 
When the residual error exceeds a certain range, the effects on the final parameters decrease 
step by step. When residual error is in a narrow range, it does approximatively linear effects on 
the parameters. The initial values of neural network do large effects on the residual error. 
When the initial values are not good, the residual error in outlier cases will be smaller. But the 
residual error in accurate points is bigger and can not approach expectation curve well. 
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  (a)                                                           (b) 

 
Fig.1   (a) )(rρ  and its derivative. (b) )(rψ  

 

B．Support Vector Regression 

To N training samples, SVM chooses rational network structure to satisfy the precision 
condition through the following optimization problem [15]: 

∑
=

−+=
N

i
i

T ixfy
N
CwwbwL

1

|))((|
2
1),(min ε                                    (4) 

where C  is punishment coefficient, which is the compromise of model error and training 
sample error and can prevent fitting the training data overly to decrease the generation of the 

model. ε  is the given approach precision. n  is the length of sample data. wwT

2
1  presents 

model complexity and ε|| ⋅  is ε  non-sensitive function. Through introducing Lagrange 
factors *, ii aa , the parameters of SVM can be obtained by solving the following dual 
optimization problem:  
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In the end, the estimation model of SVR can be obtained as follows: 
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where b  is warp and the samples corresponding to 0* ≠− ii aa  are support vectors, supposing 
the number of support vectors is SVn . The kernel function ))(),(( ixkxK satisfies the Mercer 
condition and is the of nonlinear map, FRd →:φ  which maps )(),( ixkx  to the dot metrix of 
high-dimension feature space ))(( kxφ  and ))(( ixφ . 
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))(())(())(),(( ixkxixkxK T φφ=                                                          (7) 
 
where, the nonlinear map )(xφ  is to map sample x  to high-dimension feature space and to 
make it be divided linearly. 

III. Wavelet Admissible Support Vector Kernel 
 
Wavelet possesses excellent properties of local approach and multiscale. WN of radius base 
combines the multiscale property of wavelet and the self-learning of neural network. So it is not only 
can approach signal in multiscale way, but also can adaptively adjust weights, scale parameters of 
network and shift parameters according to the data. However, WN has the following shortcomings: 
(1) It is difficult to determine the initial parameters of initial WN when the input dimension is higher. 
(2) When there are outliers to samples, it is easy to overfitting. Although references put forward 
robust learning algorithms of neural network, there is a common problem on how to determine 
appropriate initial values of parameters [2], [14]. (3) It is difficult to determine the structure of WN.  
 
The kernel function of SVM is admissible support vector kernel. Since it is a good method that the 
linear learning machine is exceeded to nonlinear learning machine, it should be paid more attention 
to in machine learning. If wavelet is admissible support vector kernel, so WSVR with wavelet 
admissible kernel can inherit the merits of wavelet function and may improve the approach precision. 
WN approaches the signal in multiscale. Since WSVR has similar structure of the WN, use WSVR 
to determine the structure and initial parameters of WN and the robust loss function as cost function 
and adopt the method of gradient decrease to adjust the parameters in WN. In this way, this model 
possesses better generalization, multiscale and robustness properties, and improves the training 
speed. This model is called robust multiscale SVR, which makes full use of both merits and 
overcomes their shortcomings. 
 
The following theorems give the form of wavelet admissible support vector kernel. 
 
Theorem 1[1], [3]: Suppose )(tψ  is mother wavelet, iba,  are translation parameters of scale 
parameter kernel respectively, and dRzx ∈, . The admissible support vector kernel is 
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and the wavelet translation invariant kernel 
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is also admissible support vector kernel. The formula (8) above is wavelet support vector kernel. 
 
From the theorem 1, one-dimension admissible wavelet support vector kernel is 

)(),(
a

zxzxK −
=ψ and it is also the translation invariant kernel. Radius basis wavelet is also 

admissible support vector kernel, which will be discussed in the following theorem. 
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Theorem 2: Suppose mother wavelet is =),( ii zxK  }
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This kernel function is similar to RBF kernel function. )0,||(||),( 2zxKzxK −= , it is means that the 
function value is related to Euclid distances of input variants. The kernel function can be called 
radius basis wavelet support vector kernel. 
 
Proof: from the formula )0,||(||),( 2zxKzxK −= , it satisfies the translation invariant. 
 
Based on the reference [2], in order to prove that equation (9) is admissible support vector kernel, it 
is necessary to prove the Fourier transform to be positive. 
 
From formula (9),  
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Its Fourier transform is 
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If 0>a , 0)]([ ≥ωKF . So K is admissible support vector kernel. 
 
End. 

IV. SVR Based on Robust Wavelet 
 
Neural network adopts M-estimation to eliminate the effects of outliers in common cost function. It 
uses estimation error to determine the value of influence function and separates outliers from most 
points by decreasing the effects of those points with big estimation error. So it is a key problem to 
determine appropriate initial parameters of neural network. Although the initial weights can be 
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determined with the routine training methods and then are trained with robust learning algorithm, it 
is difficult to determine what time is the appropriate transforming time. Since training samples 
possess multiscale learning and the case of outliers, WN with multiscale is combined with SVR, and 
using robust estimation as cost function, then the robust multiscale network of WSVR can be 
constructed. 
 
Suppose there are N samples, which learns with wavelet SVR and obtain svn  support vectors. The 
corresponding support vector is kb  , and kw  is corresponding weight coefficients of the support 
vector, where svnk ,,2,1 L= . Adopt aaaa

svn ==== L21  as scale parameters. Then the WN 
corresponding to wavelet SVR can be written as follows: 
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The cost function can be obtained using the robust objective function mentioned in chapter 2. Then 
according to cost function, the scale parameters, shift parameters and weights are modified. From the 
equation (1), there are  
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where )(ta  and )(tb  depend on the median value of the time. In this paper, the following method can 
be used to determine σ . Firstly, the percent q of outliers in samples should be determined. Then 
the value can be estimated as following:  
 
(1) Compute  residuals: iii yxftr −= )()( , Ni ,,1L= . 
 
(2) Sort |)(| trj  by ascending: )()1()1( |)(|,,|)(|,,|)(| NNq trtrtr LL − , where Nqtr )1(

2/1 |)(| −=σ , q  is 
outlier percent in samples. Because the method of gradient descent converges slowly, the η  method 
which is put forward in reference [4] and to determine optimization learning rate is adopted in this 
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paper, in order to increase the speed. It determines η  according to the residuals of the next step 
every time. 

V. Simulation Analysis and Results 
 
Example1. In order to validate the algorithm proposed in this paper, the sine function with gross 
error is considered: 

]2,2[),(
)sin(

−∈+= xxe
x

x
y  

where )(xe  is gross error whose amplitudes is 0.8. The sample number of gross error is 10% of total 
samples. Choose 50 points as learning samples, including 5 gross error points. And another 50 points 
is chose as testing samples. Adopt wavelet SVR to determine initial parameters of WN, whose 
estimation output is shown in fig.2 and the method is detailed in reference [11]. ―― denotes the 
forecast output with certain initial values and —— denotes sample data. Use the algorithm of robust 
learning introduced in chapter 2 and chapter 5 to learn network parameters. The final output of 
forecast results is shown in fig.3. Here, —— denotes expectation curve , ――denotes the curve of 
regression function obtained by learning and －.－denotes the curve of the samples with gross error. 
From fig.2, wavelet SVR can determine the initial parameters of network well. From fig.3 algorithm, 
multiscale wavelet network can be obtained by robust learning and can reduce the effects of outliers 
effectively. And it can approximate the original system well. It can be found that the proposed 
RSVR can reduce the overfitting phenomena. These results consist with the concept discussed in 
[11]. 
 
From the regression curve shown in fig.3, it can fit sample points and function y well. Under the 
condition with noise, the simulation results show that robust wavelet support vector machine 
possesses perfect generalization.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example2. Take the nonlinear system [16] described by the following difference equation into 
account. 

)()]([)2(6.0)1(3.0)( tekufkykyky ++−−=  
where )(te is white noise when the mean value is zero and variance is 0.2. 

)(4.0)(3.0)())(( 23 kukukukuf −+= , )175/2sin(75.0)95/2sin(3.0)( ππ kkku += . 6% samples outputs are 
added up to gross errors. There are 140 samples. The prediction output trained by the SVR model of 

Fig. 2   Forecast output using WSVR 
to determine initial parameters 

Fig.3  Approach results using 
WSVR based on robust multiscale 
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robust WN is shown in fig.4. From fig.4, the prediction is deviated greatly from the system output 
because of the effect of outliers. The prediction using the algorithm proposed in this paper is shown 
in fig.5. The result shows that this algorithm can overcome the influence of outliers and approach the 
system better. 
 
 

 
 

 
 
 
 
 
 
 
 

 
 
Example3. Our experiment is with the chaotic laser time-series from the Santa Fe time-series 
competition [17]. This is a particularly difficult time-series to predict, due to its chaotic dynamics 
and the fact that only three “intensity collapse” The training data consists of 70 samples, with the test 
data being the subsequent 30 samples. The task is to predict the time series by the proposed 
algorithm, and to see if the proposed algorithm is effective to difficult and complex system.  In fig.6, 
the sum of abstract value of residuals is 0.4488, we can conclude that WSVR in single scale can’t 
satisfactorily approximate system. Based on initial parameters learned from WSVR, the 
approximation precision becomes higher by robust learning, and the sum of abstract value of 
residuals is 0.2362. But the some large residual can’t reduce, because the large residuals are regard 
as gross errors. Thus the proposed algorithm can’t always obtain initial proper parameters for WN, it 
is necessary to find multiscale WSVR algorithm. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

VI. Conclusion and Future Work 
 
Since there are outliers in samples, SVR is suitable for single scale and has not good robustness 
when there are outliers. According to the multiscale and multiprecision property of practical samples, 

Fig.4  SVR approximation result of wavelet Fig.5  SVR approximation result of 
robust multiwavelets 

Fig.6  training result using SVM Fig.7  learning result using robust 
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the robust WSVR estimation method of regression function is proposed using WN with multiscale 
property, neural network learning and general approach. And wavelet SVR is used to determine the 
structure and initial parameters of WN, which makes the samples with outlier cases have big residual 
error. Then an M-estimation is used as objective function and a method is put forward to determine 
the thresholds adaptively. The WN with multiscale property is combined with SVR and the robust 
estimation is regarded as cost function. In this way, the network of robust multiscale WSVR comes 
into being. And it can adjust the learning speed to increase the training speed online. This model 
possesses not only multiscale approach, but excellent robustness and better generalization when 
there are outliers. Simulation results show that this algorithm also possesses highly theoretical and 
practical value to the research of SVM. 
 
Although the presented algorithm can effectively resolve initial parameters of wavelet network in 
robust regression, it is noting but that WSVR is approximate signal on single scale, thus it leads to 
two problems. First it can’t effectively approximate multiscale signal and may result in large training 
error in believable samples, even have larger error in normal sample than that in outlier. Believable 
sample can be considered as outlier mistakenly; Secondly, since training errors are large in normal 
samples when approximating multiscale signal, wavelet network converge slowly and need long 
time in robust learning. In summary algorithm on WSVR approximating signal in multiscale is 
worth researching in future. 
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