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Abstract 

Two difficulties are involved with traditional RBF networks: the initial 
configuration of an RBF network needs to be determined by a trial-and-error 
method, and the performance suffers degradation when the desired locations of the 
center of the RBF are not suitable. A novel RBF network is proposed to overcome 
these difficulties. A new radial basis function is used for hidden nodes, and the 
number of nodes is determined automatically by Shannon sampling theorem. The 
corresponding learning algorithm generally takes far less time for approximation 
with an optimized parameter setting. The locations of the centers of RBF are fixed. 
Experimental results have shown that the RBF networks constructed by our method 
have a smaller number of nodes, a faster learning speed, and a smaller 
approximation error than the networks produced by other methods. 

Keywords: neural networks, radial basis function approximation 

1  Introduction  

Radial basis function (RBF) networks are widely used for approximating functions 
from given input–output patterns. Generally, the traditional radial basis function 
neural network may sometimes be considered prohibitively expensive to implement 
in computational terms for large amounts of training data. The performance of a 
trained RBF network depends on the number and locations of the radial basis 
functions, their shape and the method used for learning the input-output mapping. 
The most popular existing learning strategies [1-3] for RBF neural networks can be 
classified as follows: (i) strategies selecting the RBF centers randomly from the 
training data, (ii) strategies employing unsupervised procedures for selecting the 
RBF centers, and (iii) strategies employing supervised procedures for selecting the 
RBF centers. Some approaches are presented, which include orthogonal least 
squares [4]-[7], resource allocating in[8,9], genetic algorithm in[10,11], gradient 
decent [12]. These approaches involve searching for a sub-optimal network in a 
lower dimensional space. However, one common feature of the above methods is 
they often lead to over-fitting, with a negative effect on the performance of trained 
RBF neural networks [13]. The biggest obstacle is iterative strategy that often 
cannot reach an optimal result. To overcome these computational difficulties, the 
complexity of the network would have to be reduced, which requires an 
approximation to the regularized network [14]. The design of a supervised neural 
network may be pursued in a variety of ways.  
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In this paper, we take a completely different approach by viewing the design of a 
neural network as an approximation problem in ( )2L R  space. The Shannon radial 
basis functions (SRBF) neural networks are introduced in the solution of the 
interpolation problem. The simple but effective technique for approximating a 
continuous function with an SRBF neural network has been presented. We have 
derived a bound on the generalization error produced by SRBF network, expressed 
in terms of the size of the hidden layer and the size of the training sample. One 
example is presented that illustrates the network is concise, effective and accurate. 
The method speeds up learning, significantly reducing network training and 
evaluation time. This feature is of significance for many contemporary applications, 
and has excellent performance on learning convergence. The novel method for 
efficient construction of SRBF networks can reach the same level of accuracy as 
conventional radial basis function networks.  

2  Interpolation problems 

The interpolation problem, in its strict sense, may be stated as follows: 
Given a set of N different points { }0 | 1, ,m

ix R i N∈ = L  and a corresponding set of N 

real numbers { }| 1, ,id R i N∈ = L , find a function: 0mR R→  that satisfies the 
interpolation condition:  

( )i if x d=         1, ,i N= L .                                      (1) 

The interpolation function is constrained to pass through all the training data point. 
The RBF technique consists of choosing a function ( )f x  that has the following 
form [15]: 

( ) ( )
1

N

i ji j i
i

f x w x xφ
=

= −∑ .                                       (2) 

where ( ){ }| 1, ,ji j ix x i Nϕ − = L  is a set of N arbitrary (generally nonlinear) 

functions, known as radial basis functions, and  denotes a norm that is usually 
Euclidean. The known data points 0m

ix R∈ , 1, ,i N= L  are taken to be the centers of 
radial basis functions. Inserting the interpolation conditions of Eq.(1) in (2). We 
obtain the following equation for the unknown weights of the expansion { }iw :  

                                      Φ =w d                                                       (3) 

where ( ){ }| 1, , , 1, ,ji j ix x i N j NϕΦ − = == L L , [ ]1 2, , , Nd d d=d L , [ ]1 2, , , Nw w w=w L . 

Assuming that Φ  is nonsingular and therefore that the inverse matrix 1−Φ  exists, we 
may go on to solve Eq. (3) for the weight vector w as shown by 1−= Φw d .In order to 
be sure that the interpolation matrix Φ  is nonsingular, the following Micchelli’s 
theorem [16] is given: 

Let { } 1

N
i i

x
=

 be a set of distinct points in Rm. Then the N-by-N interpolation matrixΦ , 

whose ji-th element is ( )ji j ix xϕ ϕ= − , is nonsingular. 
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There is a large class of radial basis functions that is covered by the theorem, it 
concludes that the function ( ) ( )= sin /x x xϕ is of particular interest in the study of 
RBF networks. What is even more remarkable is that a radial basis function ( )xϕ  
can be used to approximate input-output mapping with greater accuracy and with 
good generalization to new data. So we have 1−= Φ =w d d , here IΦ = . 

3  SRBF neural networks 

This section introduces a new family of reformulated RBF neural networks 
constructed by Shannon radial basis functions, which are obtained from Shannon 
sampling theorem. As we know, the unfit centers in conventional function 
approximation methods of RBF neural networks have a large effect on 
approximation error. From this viewpoint, the paper presents the following SRBF 
neural networks with some fixed location of its centers, avoiding to the error for 
function approximation bringing from the unfit centers. 

3.1 Shannon Radial Basis Functions 

In ( )2L R ： ( ) ( ){ }2
,a af t f t dt < +∞∫ ，let ( )F ω  denote the Fourier transform of the 

function ( )af t , ∀ ( ) ( )2
af t L R∈ , ∃ 0B >  to make ( ) 0F ω = , Bω ≤ , so that ( )af t  has 

compact support，namely, ( )af t  is B frequency truncation. When sampling period 
T Bπ≤ ， ( ) ( )sin ( )g t t T t Tπ π=  can be regarded as an ideal low pass filter，the 
waveform of function ( )g t  is shown in Fig 1: 
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Fig. 1. The waveform of function g(t) 

 

Input of ( )g t  is ( ) ( ) ( )â a
n

f t f t t nTδ
∞

=−∞

= −∑ , output is ( )ay t ，so that 

( )ay t = ( )âf t ( )g t∗ = ( ) ( ) ( ) ( )â a
n

f t g t d f nT g t nTτ τ
∞∞

−∞
=−∞

− = −∑∫  
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−
=
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If it satisfies Shannon sampling theorem, ( ) ( )a ay t f t= , then we have  

( ) ( ) ( )( )
( )

sin
a a

n

t nT T
f t f t

t nT T
π

π

∞

=−∞

−
=

−∑ .                                       (4) 
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Under the condition that approximation rate and accuracy can meet our desired 
expectation, for arbitrary B ，supposing ( ) [ ]sup ,F B Bω ∈ − . Consequently, SRBF 
network output in Eq.(1) is exact at the sampling points, so that  

( ) ( ) ( )( )
( )1

sinˆ
N

a a
k

t kT T
f t f kT

t kT T
π

π=

−
=

−∑  

Let ( )kw f kT= , ( ) ( )( )
( )

sin
k

t kT T
x

t kT T
π

φ
π

−
=

−
, We may simplify the Eq.(2) as follows: 

( ) ( )
1

ˆ
N

a k k
k

f t w tφ
=

=∑                                                   (5) 

The expansion of the approximation function ( )âf t  given in Eq.(5) in terms of the 
function ( )k tφ  suggests that the network structure as a method for its 
implementation is a kind of three-layer forward structure in which hidden layer is 
constituted by the Shannon radial basis function. 

The input layer broadcasts the coordinates of the input vector to each of the units in 
the hidden layer. Each unit in the hidden layer then produces an activation based on 
the associated SRBF. Finally, each unit in the output layer computes a linear 
combination of the activations of the hidden units. How a SRBF network reacts to a 
given input stimulus is completely determined by the activation functions associated 
with the hidden units and the weights associated with the links between the hidden 
layer and the output layer. 

3.2 Bounds on approximation Error of SRBF neural networks 

There are two main aspects as follow that lead to error: the first one is T Bπ> , the 
second is that ( )af t  has compact support in frequency domain，but does certainly 
not have compact support in the time domain. In practice, this unavoidable error is 
caused by truncation of SRBF ( )k tφ . Generalization error is defined by  

( ) ( ) ( )â ae t f t f t= −  

Generalization error for SRBF networks is a tradeoff between approximation and 
estimation errors. The mapping realized by SRBF depends on the sampling 

( ){ }| 0,1, ,f nT n N= L  and the sampling time T . Then, the generalization error 
produced by the network is bounded by  

( ) ( ) ( )( )
( ) ( ) ( )( )

( )

( ) ( )( )
( ) ( ) ( )( )

( )

1

1

1

1

sin sin

sin sin

a a
n m N

m

a a
l n N

t nT T t mT T
e t f nT f nT

t nT T t mT T

t nT T t nT T
K f nT f nT

t nT T t nT T

π π
π π

π π
π π

− ∞

=−∞ = +

−

= +

− −
= +

− −

⎛ ⎞− −
⎜ ⎟< +
⎜ ⎟− −⎝ ⎠

∑ ∑

∑ ∑
            (6) 

where, ( ){ }sup | 0,1, ,aK f nT n N= = L , , 1l Z l∈ < − ； 1N m+ < , N  is the number of 
samples. From the bound of Eq.(6), we may make the following deductions: the 
error ( )e t  will be reduced with increasing numbers of samples. In other words, to 
reduce the error, the number of samples should be increased. In addition, the errors 



Shenmin Song, Zhigang Yu, Xinglin Chen 
A Novel Radial Basis Function Neural Network For Approximation 

 50

at the boundary are larger than in middle. The generalization error converges to zero 
only if the number of hidden units verge on infinity. For a given size, N , of training 
samples, the optimum number of hidden units is the minimum value yielding the 
error desired.  

3.3 Generalized SRBF neural networks 

When the samples are acquired by nonuniform sampling, coefficient kw  of the 
network can be acquired by the learning strategy of traditional RBF neural 
networks. Assume that the training sample ( ){ } 1

,
N

i i i
x d

=
 is obtained by randomly 

sampling from ( )f x . Eq. (5) is a linear equation, so coefficient kw can be attained by 
solving linear equations. When the dimensionality of the input space is low, the 
simple LMS algorithm is good enough to fulfill the task of optimization. But the key 
issues are how we can construct these approximating networks and how many 
hidden-layer units and their centers are chosen for approximating specific functions 
within some specified error. To solve this problem, this paper presents the following 
method to determine the optimal number and the locations of centers. This strategy 
prevents the training set from participating in the formation of the radial basis 
function centers. 

For an unknown function to be approximated, the number of centers of the radial 
basis functions is determined according to an unsupervised procedure relying on 
frequency domain of approximated function. Let ( ) :f x S R→ denote the function to 
be approximated, where nS R⊂ is a closed bounded region. More specifically, if the 
real number a and b denote the limits of x , respectively, then { }|S x R a x b= ∈ ≤ ≤ . 

It is assumed that values of ( )f x are available at discrete points within S . 
Let r denote the number of centers. So that the SRBF network includes r terms with 
the k th term consisting of SRBF ( )k xφ centered about point ( )kx k b a r= −  and 
scaled by weight kw . The constraint condition ( )r b a B π≥ −  can guarantee 
satisfaction with the sampling theorem. Then the network output can be expressed 

formally as ( ) ( )
1

r

k k
k

f x w xφ
=

=∑ . 

The algorithm for computing the coefficient kw is as follows: 

1. Training sample: Input signal vector = ( )x k ，Desired response = ( )d k  
2. Selected parameter η  
3. Initialization:  Set ( ) ( )w k d i= , ( )arg min k

i
i x x i= −  

4. Computation. For 1,2, ,n N= L , to compute 
( ) ( ) ( ) ( )Te k d k w k x k= −  
( ) ( ) ( ) ( )1w k w k x k e kη+ = +  

The initialization method of the algorithm can accelerate convergence significantly. 
These parameters were kept fixed during the learning process to avoid substantial 
fluctuations of the error. The training of all neural-network models utilized in 
experimental study was terminated according to the stopping criterion described 
below: each adaptation cycle was followed by the calculation of the average error on 
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the testing set over the previous. Parameters and weights are initialized 
appropriately, and then tuned and adjusted via the presented method to improve the 
performance of the network. 

4  Computer experiment  

An approximated function is  
( ) ( ) ( )3sin 4 2cos 6 4 0, 3.0y x x xπ π= + + ∈  

The sampling points acquired by nonuniformly sampling are { }| 1, ,128ix R i∈ = L  for 
the training set, and { }| 1, ,128ix R i∈ =% L for the test set. There are 128 patterns in the 
training and the test sets respectively. The training set is plused by ( )0.2N 0,1  normal 
noise.  

In this case, frequency truncation 6 18.84B π= = , then the sampling period 
0.167T Bπ= = , so that the number of initial centers 16r = by ( )r b a B π≥ − , the 

l th initial location centers are 3 16lx k= , 1,2, ,16k = L . The initial structure of 
network is 1-16-1. The approximation accuracy of RBF networks is evaluated by 
the formula: 

( ) 2

1

1
2

N

x
e x

N
ε

=

= ∑  

where N is the member of samples, 128N = , and *( )e x y y= − , y is output of network 
and *y is the desired output. Through the algorithm for computing the coefficient kw , 
the error is 0.248ε =  for training set and 0.271ε =  for the test set. In order to 
improve the approximation accuracy, the number of final centers selected is 32, the 
error is then 0.137ε =  for the training set and 0.113ε =  for the test set. The 
approximation result by 1-32-1 neural networks is shown in Fig. 2.  
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Fig. 2. The approximation result by 1-32-1 neural networks 

To solve the relatively complex approximation problems, multilayer perceptrons 
are not as effective as the proposed SRBF networks. Compared with the results in 
[17], SRBF networks have better properties in terms of accuracy and training time. 
For the network proposed, the approximation accuracy for test data can be 
guaranteed by the Shannon sampling theorem and the least trainning time can be 
seen from the learning process that does not need to adjust the location of centers of 
RBF, as is necessary in [17]. 
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5  Conclusions 

In order to effectively solve the approximation problems using RBF networks, a 
technique for approximation has been presented. The corresponding learning 
algorithm is equivalent to finding a suitable sample that provides a best fit to the 
training data. Correspondingly, generalization is equivalent to the use of these 
samples to interpolate the test data. Such a viewpoint is the motivation behind the 
method of radial-basis functions that it draws upon research work on traditional 
strict interpolation in ( )2L R  space. 
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