
Liang Zhang, Qingping Lin
Support Dynamic Network Architecture for Large-Scale Collaborative Virtual Environment

 26

Support Dynamic Network Architecture for Large-Scale
Collaborative Virtual Environment

Liang Zhang, Qingping Lin

Information Communication Institute of Singapore
School of Electrical & Electronic Engineering

Nanyang Technological University
liangz@pmail.ntu.edu.sg, iqplin@ntu.edu.sg

Abstract

Collaborative Virtual Environments (CVEs) is a promising technology which provides shared virtual
world to the geographically dispersed people to interact with each others. However, the scalability of
existing CVE systems is limited due to the constraints in processing power and network speed of each
participating host. In this paper, a Mobile Agent based framework for large scale CVE -- MACVE is
proposed to support dynamic network architecture. In MACVE, the CVE is decomposed into a group of
collaborative mobile agents, each of which is responsible for an independent system task. Agents can
migrate or clone dynamically at any suitable participating host which includes traditional servers and
qualified user hosts to change the network architecture. This can avoid bottleneck and improve the
scalability of CVE. Our system prototype has demonstrated the feasibility of the proposed framework.

Keywords: Collaborative Virtual Environments, network architecture, scalability, mobile agent,

1. Introduction

Collaborative Virtual Environments (CVEs) are computer generated virtual worlds that allow
geographically dispersed participants to interact with each other. With the advancements in 3D graphics
techniques and the popularity of Internet broadband services, CVE is gaining more and more attentions
by many academia and industries. One of the key research issues of CVE is the scalability, which
requires a CVE system to provide a spatially large and content-rich virtual environment and to support a
large number of concurrent participants. This kind of CVE is called Large-scale CVE (LCVE). To solve
the scalability issue, two types of network architecture are adopted in existing CVE systems: peer-to-
peer (P2P) architecture and multi-server architecture.

In the P2P architecture, there is no central server to preserving the whole CVE. Each individual peer
maintains its own copy of the VE state and exchanges data directly with other peers. By adopting IP-
Multicast, CVE with P2P architecture can be scalable, such as NPSNET[1], DIVE[2], SPLINE[3],
SCORE[4], etc. However, P2P architecture may not be suitable for supporting heterogeneous peers,
such as hosts on the Internet, because their network connection speed and computational capacity may
vary greatly, which leads to difficulty in maintaining the consistency of the virtual world; the stability of
peer computer hosts and their network connections also make persistency maintenance difficult.

In the multi-server architecture, a CVE is managed by multiple servers. Each participant exchanges
data with one or more servers, which can effectively manage the consistency and persistency of the
CVE. The servers can also function as proxies to do the computational intensive jobs for the

International Journal of Information Technology, Vol. 12 No. 1

 27

participants[5]. The workloads on the servers may include: (1) delivering the scene data to each
participant; (2) processing and routing the participant’s interactive messages to control the consistency
of CVE and delivering this consistent CVE state to newly arriving participants; (3) recording the state
changes happening in the CVE to maintain its persistency. We defined these workloads on all the
servers as system workloads/tasks. The existing multi-server CVE systems include RING[6],
NetEffect[7], Community Place[8], CyberWalk[9], and some commercial multiplayer network games,
such as EverQuest[10], Ultima Online[11], etc. However, the scalability is not easy to realize for CVE
systems with multi-server architecture, because certain servers may become bottleneck due to the
unpredictable workloads on them, even though dynamic load balancing is adopted.

In this paper, different from P2P architecture and multi-server architecture, we proposed a Mobile
Agent based framework for LCVE (MACVE). Mobile agent is an autonomous software entity that can
migrate from one machine to another in a heterogeneous network. Compared with traditional distributed
computing schemes, mobile agents promise (at least in many cases) to cope more efficiently and
elegantly with a dynamic, heterogeneous, and open environment which is characteristic for today’s
Internet [12]. Mobile agent has good features for load balancing, distributed system management,
software deployment, etc, so we apply mobile agent paradigm to LCVE to dynamically change network
architecture for redistributing the system workloads pervasively. This will improve the scalability of the
system.

The paper is organized as follows. Section 2 reviews the related work; Section 3 describes the
MACVE framework; Section 4 presents the MACVE prototype and experimental results; Section 5
draws conclusions.

2. Related Work

A number of existing CVE systems have attempted to address the issue of scalability. In this section,
we briefly review some of them.

NPSNET
NPSNET (Naval Postgraduate School Networked Vehicle Simulator) [13] is a 3D networked virtual

environment developed by the U.S. Naval Postgraduate School. NPSNET was the first CVE system to
adopt the multicast and also the first successful LCVE system, which can support more than 1000
concurrent users. NPSNET complied with the Distributed Interactive Simulation (DIS) protocol to
interoperate with other simulation system, and it incorporates the dead-reckoning algorithms[1] to
reduce network traffic to achieve scalability. In NPSNET-IV, it logically partitioned virtual
environments by associating spatial, temporal, and functionally related entity classes with network
multicast groups. An entity can belong to several groups. Multicast can save the bandwidth, filtering
different kinds of traffic in the network interface hardware and does not consume processor cycles. At
the same time, it makes network architecture easy to realize. However, NPSNET was designed for
military war simulation with dedicated network and hosts. It does not take into account of potentially
huge variation in user hosts computing power and network connection speed stability.

Spline
Spline (Scalable Platform for Large Interactive Networked Environments) [14] is a software platform

suitable for implementing multi-user interactive environments developed by the Mitsubishi Electric
Research Laboratory. Spline aims to make the multi-user Virtual Environment large in spatial extent,
large in number of objects, and large in numbers of users interacting with the environment. The Spline
platform provides a convenient architecture based on a shared world model. Spline’s world model is an

Liang Zhang, Qingping Lin
Support Dynamic Network Architecture for Large-Scale Collaborative Virtual Environment

 28

object-oriented database and Spline applications do not communicate directly with each other, but rather
only with the world model. To minimize latency, and prevent bottlenecks, the primary communication
of the world models is peer to peer. Locales[3] are the central organizing principle of the Spline world
model. The concept of locale is based on the idea that even in a very large virtual world most of what a
single user can observe at a given moment is nevertheless local in nature. Locales divide a virtual world
into chunks that can be processed separately. Each locale is associated with a separate set of multicast
addresses, which guarantees the efficiency of the communication. The locales notion can make VE
spatially scalable to an arbitary extent. However, an object exists only so long as the application that
owns it runs, so to maintain the Spline world to persist overtime is not support by Spline itself.

NetEffect
NetEffect[7] is a highly-scalable architecture for large, media-rich, 3D virtual worlds developed by

National University of Singapore. NetEffect partitions a whole virtual world into communities, allocates
these communities among a set of servers, and migrates clients from one server to another as clients
move through the communities. It provides a load balancing technique which creates a uniform
distribution of user density over the servers. To balance the workloads among all the servers, the system
dynamically transfers some communities from heavily loaded servers to ones with less workload.
However, each communities is a separate virtual worlds, the migration between communities needs the
client to request the new community description from the server, which incur a waiting time from
sereral seconds to a minute.

CyberWalk
CyberWalk[9, 15] is a web-based distributed virtual walkthrough system developed by the City

University of Hong Kong and Hong Kong Polytechnic University jointly. It aims to provide good
performance in terms of responsiveness and resolution under the existing constraints of relatively low
Internet bandwidth and the large memory demand of virtual objects. CyberWalk adopted a progressive
multiresolution modeling technique to reduce the model transmission and rendering time and a caching
and prefetching mechanism to reduce the Internet response time. For scalability, it utilizes a multi-server
architecture and employs an adaptive data partitioning techniques to dynamically partition the whole VE
into regions. All objects with each region are managed by a separate server. The size of each region is
dynamically adjusted according to the server loading due to processing the clients’ requests and to the
network traffics. However, clients’ dataflow converge at limited server nodes, which predetermined the
maximum numbers of the concurrent participants.

3. MACVE Framework

To effectively decentralize the system workloads, firstly, the expected system tasks of a LCVE
should be independent and high granularity. In MACVE, we model a LCVE as a group of collaborative
agents. Each agent is a software component which assumes an independent task to provide a certain
service for the system. Agents collaborate with each other to maintain the entire LCVE system.

To improve CVE scalability, the system network architecture needs to be dynamically changed
according to the system workload distribution. In MACVE, all agents are mobile and do not bond with
any fixed host. As the system scales up, agents will be able to migrate or clone to any qualified
participating host (include Trusted User Nodes defined in Section 3.1.2) to provide more services. The
mutual independence of services and hosts provide large flexibility to utilize the computational and
network resources of the system efficiently. Our proposed framework fully takes advantages of such
flexibility via Agent Resource Management, Computing Resource Management, Database Resource

International Journal of Information Technology, Vol. 12 No. 1

 29

Management, VE Content Management and VE Directory Management, which will be discussed in the
following paragraphs.

Our framework is divided into three Layers: Resource Layer for System Resource Management,
Content Layer for VE Content Management and Gateway Layer for VE Directory Management, which
is illustrated in Figure 1. Each layer is composed of multiple collaborative mobile agents to achieve the
management.

Figure 1 Overall Architecture

3.1 System Resource Management
The bottom layer is resource layer which manages the distribution of system resources. In MACVE,

we define mobile agents, System Computing Nodes (defined in Section 3.1.2) and the database as
system agent resource, system computing resource and system database resource respectively. Thus, this
layer is further subdivided into three modules: Agent Resource Management (ARM), Computing
Resource Management (CRM), and Database Resource Management (DRM). Resource layer is
independent with different CVE application and scenario. It provides resource management services for
the high layers and hides the complexity of the resource distribution.

3.1.1 Agent Resource Management
In a LCVE system, there are many types of agents running at different hosts. Each type of agent

provides a certain service. In MACVE, these services does not bond with any host and can be
dynamically distributed by agent migrating/cloning, so agents are treated as a kind of resource. To
manage all these agents effectively, we use ARM module.

ARM module is realized by an ARM Agent which functions as an Agent Code Repository, Agent
Monitor Center, and Agent Command Center. The code of each type of agents should register at ARM
Agent who manages these codes and guarantees the consistency and integrity of the agent code running
in the whole system. When a new agent begins to run, it will register its network locations and running
states at ARM Agent. So ARM Agent provides a directory for all the running agents. When Agents
execute some operations, such as clone or migration, ARM Agent will record the Agent operation event
log. As an Agent Command Center, ARM Agent can also send commands dynamically to launch agents,
transfer agents, clone agents, update agents to new versions, or kill agents etc. to manage network
architecture of the LCVE system at runtime.

Since ARM Agent only deal with the messages related to agent command information, which is
small in size and does not belong to frequent traffic, there is little chance for an ARM Agent to become
a bottleneck. Even though the remote chance happens, ARM Agent can clone itself at multiple SC
Nodes (defined in Section 3.1.2) and all these ARM Agents work together to share the workload.

3.1.2 Computing Resource Management

Liang Zhang, Qingping Lin
Support Dynamic Network Architecture for Large-Scale Collaborative Virtual Environment

 30

CRM module is designed for effectively managing all the participating hosts to share the system
workloads on demand. A typical LCVE system consists of a large number of computer hosts connected
through networks. Each host is called a participating node. Based on the belongingness of each
participating node, we classify them into two main categories: User Nodes and Service Provider Nodes.
User Nodes refer to any user host participating in the LCVE. Service Provider Nodes refer to the nodes
belonging to the LCVE system owner.

User Nodes are further classified into Normal User Nodes and Trusted User Nodes based on their
functional roles.

• Normal User Node is a host that only allows a user to navigate through the CVE and interact
with virtual entities or other users in the CVE.

• Trusted User Node is a host that not only functions as a Normal User Node, but also has spare
capacity in terms of computing power, memory and network bandwidth to host system mobile
agents. It should at least meet the minimum capability and security requirements set by the
LCVE system.

Service Provider Nodes are further classified into Controlling Nodes and DB Nodes based on their
functional roles.

• Controlling Node is a host provided by the system owner, which assumes system tasks to
manage a LCVE system and maintain the multiuser collaborative interactions in a consistent,
persistent, and evolving LCVE.

• DB Node is a host owned by the system owner, which provides the database support for the
LCVE system.

Since Controlling Nodes and Trusted User Nodes are used to share the system workloads, we classify
both of them as System Computing Nodes (SC Nodes). And system computing resource is defined as
the computing and network capability of all the joining SC Nodes in the system.

In MACVE, the system tasks are shared not only by the Controlling Nodes as most conventional
LCVE systems do, but also by Trusted User Nodes. When a Trusted User Node logs off, it will transfer
all the agents running on it to other SC Nodes. Since User Nodes have relatively less stability, a Trusted
User Node may crash before it successfully transfers all the agents on it. MACVE has an agent recovery
mechanism to restart the losing agent from the state before it crashes which will be discussed in Section
3.4. Thus, system tasks can be pervasive to more participating nodes.

CRM module is responsible for managing the system computing resource so that each system task
will receive enough computing resources. As there may be thousands of SC Nodes in a LCVE system,
in order to improve the efficiency of data communication between the SC Nodes, the nodes are grouped
according to their IP addresses. Each group will have a group manager to reasonably distribute the
workloads among the nodes in this group.

CRM module is achieved by Node Agents, Group Manager Agents, and a CRM Agent whose
relationships can be illustrated as Figure 2. A Node Agent runs in each SC Node which monitors the
computing load and network traffic of that node. When this node’s workload reaches its threshold, Node
Agent will decide whether to transfer certain mobile agents in this node to other nodes or to clone
certain mobile agents to other nodes to alleviate this node’s workloads. A Group Manager Agent runs at
a SC Node which is designated as a group manager by the CRM Agent. It will search for the most
suitable node in its own group for its member nodes. If it cannot find a suitable node within its own
group, the Group Manager Agent will negotiate with CRM Agent to find a suitable node in other groups.
The CRM Agent manages all the Group Manager Agents. When joining the LCVE system, every SC
Node will register with the CRM Agent and CRM Agent will allocate the SC Node to a group.

International Journal of Information Technology, Vol. 12 No. 1

 31

Figure 2 Relationships of Agents for CRM

3.1.3 Database Resource Management
In order to support large VE content, the database is distributed to multiple DB Nodes. As the system

evolves, new DB Nodes can be added into the system at any time. DRM module is achieved by multiple
DB Agents and a DRM Agent, which is responsible for managing the distributed database. It provides a
uniform interface to agents at content layer and gateway layer to access the system database resource.

3.2 VE Content Management
Content layer is on top of resource layer which provides the VE content services to participants. It is

application and scenario dependent. In MACVE, the VE is spatially divided into several manageable
continuous regions. Each region maybe further divided into cells depending on the requirement of the
VE contents. Each cell is a basic unit for VE content retrieving, user group communication, maintenance
of VE consistency and persistency. Each cell is associated with a separate set of multicast addresses to
guarantees the efficiency of the communication. The management of the VE is in correspondent with the
region-cell hierarchy, which is achieved by Region Agents, Cell Agents, Consistency Agents and
Persistency Agents as illustrated in Figure 3.

Figure 3 VE Management

Region Agents manage its Cell Agents and make the VE Content Management hierarchically. Region
Agent itself does not maintain the VE contents. The VE content is managed by Cell Agents, Consistency
Agents and Persistency Agent. Each cell has at least a Cell Agents, a Consistency Agent and a
Persistency Agent to provide different aspect of content services and these agents are not necessary to

Liang Zhang, Qingping Lin
Support Dynamic Network Architecture for Large-Scale Collaborative Virtual Environment

 32

run at a same SC Node. This can make the system services high granularity so that system workloads
are distributed more effectively.

A Cell Agent has two basic components: Scene Data Cache Manager and Scene Data Delivery
Manager. Scene Data Cache Manager loads the scene data of a cell from the DB Agent and maintains
the local cache of them. Scene Data Delivery Manager delivers the scene data to users on demand.
Scene Delivery Manager implements the algorithm to deliver the most needed data with its appropriate
level of detail timely, such as predictive pre-fetching or multi-resolution caching mechanism, etc.

When a user navigates through a cell, it will download the scene data of that cell and cache them at
local storage to avoid future reloading from the network. As the scene data include 3D graphics data and
multimedia data such as texture files, audio, video files, Cell Agents are bandwidth demanding. In order
to make use of bandwidth resources of User Nodes, Cell Agent can be cloned at Trusted User Nodes
which have enough bandwidth and already cached scene data of that cell. The cloned Cell Agents
provide the scene data delivery service together with the original Cell Agent. Thus, the network
architecture is dynamically changed to distribute the scene data flow, which avoids bottleneck emerging
at limited Controlling Nodes.

A Consistency Agent has three basic components: Concurrency Control, Cell State Manager, and
Intelligent Message Router. Concurrency Control preserves consistency and guarantees there is no
conflicts when multi-user access a same virtual entity concurrently. Cell State Manager maintains the
real-time VE state of the cell and delivers the state to newly arriving users on demand. Intelligent
Message Router implements different interaction management strategies and route users’ messages to
different multicast groups. As Consistency Agents are responsible for processing all the participants’
interactive messages, they are computational intensive. In order to make use of idle processor cycles in
User Nodes, Consistency Agents can migrate to Trusted User Nodes to execute. Thus, the network
architecture is dynamically changed to distribute the consistency services, which also avoids bottleneck
emerging at limited Controlling Nodes.

A Persistency Agent has two basic components: Cell State Manager, Cell State Recorder. Cell State
Manager preserves the real-time VE state of the cell. In a LCVE, the Persistency Agent and Consistency
Agent usually run at different SC Nodes, so the Cell State Manager of Persistency Agent is also a real-
time backup of the cell state for the Consistency Agent, if a Consistency crash, a new Consistency
Agent can get the latest cell state from its Persistency Agent. Because Consistency Agent and
Persistency Agent subscribe to the same multicast group, the duplicated Cell State Manager at both
agents will not create any extra traffic to compromise the system scalability. Cell State Recorder sends
the changed cell states data to DB Agent to save them periodically to maintain the persistency of the cell.

3.3 VE Directory Management

Since the VE is managed in a distributed manner, it needs a directory service to locate a place, search
a virtual entity or a user in the VE, etc. VE Directory Management provides such services. VE Directory
Management is achieved by a group of Gateway Agents, which are deployed to multiple well-known
Controlling Nodes on the Internet. When a user wants to enter the VE, it connects to a nearest Gateway
Agent which directs the user to its intended destination in the VE. Gateway agent also provides user
registration, authentication and user log services.

3.4 Agent Recovery
In MACVE, the system workloads can be shared by the Trusted User Nodes. However, User Nodes

tend to have less stability compared with Service Provider Nodes. So MACVE provides a mechanism
for agent recovery.

International Journal of Information Technology, Vol. 12 No. 1

 33

In MACVE, the management of all agents is organized as a tree-structure, such as Group Manager
Agent manages the Node Agents which belong to its group; or Region Agent manages its Cell Agents.
The agent at the root position is called the Parent Agent and the agent at the leaf position is called Child
Agent. The Parent Agent is responsible for monitoring the proper execution of its Child Agents. Every
Child Agent sends a “heartbeat” message (a living message) periodically to its Parent Agent. If the
Parent Agent receives no heartbeat from the Child Agent within a timeout, it detects the crash of the
Child Agent. The Parent Agent will ask the ARM agent to send a new Child Agent to other available
nodes to resume the system tasks.

For system stability reason, Persistency Agent of a cell is not allowed to be transferred to Trusted
User Node, because it maintains the backup of the snapshot of the current cell state. When a Trusted
User Node crashes and result in a Consistency Agent lost, the newly launched Consistency Agent will
get the latest cell state from the corresponding Persistency Agent at the System Controlling Node. Thus,
it will remove the impact of the crashes of Trusted User Node to allow effective recovery of the lost
Consistency Agent. If both Consistency Agent and Persistency Agent crash at the same time, the newly
launched Persistency Agent will retrieve the cell state from the database. The reloaded cell state is the
latest persisted state. Then, the newly launched Consistency Agent gets the cell state from the
Persistency Agent and in order to guarantee consistency, all users in this cell roll back their cell state the
same as the Consistency Agent.

3.5 Discussion of System Scalability
To support system scalability, MACVE supports dynamic network architecture by migrating and

cloning agents to Trusted User Nodes in addition to Controlling Nodes. It combines the strength of both
multi-server architecture and distributed P2P architecture while avoiding their weaknesses. Like peer-to-
peer, it utilizes the computing resources of user nodes by transferring system tasks to Trusted User
Nodes, which avoids the system workloads converging at limited server nodes. At the same time, like
the multi-server system, it can maintain the consistency and persistency of the CVE by Consistency
Agents and Persistency Agents.

4. System Prototype and Experiment

We have developed a prototype system to conduct experimental studies and evaluate MACVE. The
prototype includes three parts: 11 types of Mobile Agents for different system services; a Mobile Agent
Environment (MAE) for supporting agent migration and clone; and a web based client user interface for
user navigation and interaction.

As the existing mobile agent platforms, such as Aglet[16], Voyager[16], is designed for general
purpose which is not suitable for real-time multi-agent communication required in LCVE, we have
implemented our own mobile agent platform with our own mobile agent communication protocol
designed for LCVE application.

Our experimental CVE consists of 11 cells. Each cell is populated with interactive entities and
concurrent users. Users in the CVE can add, remove or interact with entities and chat with each other.
We have developed a program --- RobotGroup to simulate a certain number of concurrent users, which
send out messages for each simulated user at a constant rate. In the whole CVE, we collect experimental
data for various numbers of concurrent users and virtual entities. Figure 4 is the screenshot of user
interface during our experiment with 1000 concurrent users and 5000 virtual entities.

To study the agent migration impacts on CVE users, we do experiments to study the effect of number
of concurrent users and number of entities in a cell on the migration time spans of a Consistency Agent.
The reason we choose to study Consistency Agent migration is that this type of agents maintains users’

Liang Zhang, Qingping Lin
Support Dynamic Network Architecture for Large-Scale Collaborative Virtual Environment

 34

real-time interaction in the cell so that its migration is most complex among all types of agents and it has
most impacts to users.

Figure 4 Screenshot of MACVE User Interface

The migration of a Consistency Agent includes 3 steps: (1) transferring the agent code to the
destination; (2) synchronizing the agent state; (3) shifting the agent control. Transfer & Synchronization
Time measures the time required to transfer the agent code and synchronize the agent state. The
Transfer & Synchronization process will not directly affect users’ collaborative interaction in the CVE
as it can be done in a separate thread while the CVE system tasks are performed by the current mobile
agents. Handover Time measures the time required to shift agent control which will affect users’
collaborative interaction in the CVE. Thus it is particularly important to evaluate the delay caused by the
Handover Time.

0

1000

2000

3000

4000

5000

6000

0 200 400 600 800 1000
C o ncurrent User N umber in a cell

T
im

e
sp

a
n

 (
m

s)

Transfer & Synchronization Time
Handover Time

0

500

1000

1500

2000

2500

3000

3500

0 500 1000 1500 2000 2500 3000
Entity N umber in a cell

T
im

e
sp

a
n

 (
m

s)

Transfer & Synchronization Time
Handover Time

Figure 5 Consistency Agent Migration Time on Concurrent User Number and Entity Number

International Journal of Information Technology, Vol. 12 No. 1

 35

As shown in Figure 5, we observe from our experiment that the Transfer & Synchronization Time
increases with the increase of the number of concurrent users, whereas the Handover Time is relatively
stable which is 425.0 ms when the concurrent user number reaches 1000 in a cell. We also observe that
the Transfer & Synchronization Time increases with the increase of the number of entities, whereas the
Handover Time is relatively stable which is 344.4 ms when the number of entities in the cell reaches
3000. A temporary short delay of less than half a second in updating scene state caused by the Handover
Time will have little impact on the performance of a CVE with a large number of concurrent users and
virtual entities. We found from the experiment that the users would not feel the migration of the
Consistency Agent as the user interaction with the LCVE will not be affected during the agent transfer
and synchronization period while the agent control handover time is short enough to avoid apparent
interruption.

Our experiments show that the migration of Consistency Agent does not affect the real-time
interaction of the CVE users, and so do other types of agents. Therefore, our proposed framework to
dynamically change the network architecture will improve the system scalability without compromising
CVE performance.

5. Conclusion

In this paper, we have proposed a mobile agent-based framework—MACVE to support dynamic
network architecture for LCVE. In MACVE, the system tasks are decomposed into a group of
collaborative mobile agents. By migrating and cloning these agents at System Controlling Node and
Trusted User Node, the network architecture changed dynamically to pervasively distribute system
workloads. This improves the system scalability. Our experiments have demonstrated its effectiveness in
supporting large number of concurrent users with real-time interaction in LCVE.

References

[1] M. Macedonia, M. Zyda, D. Pratt, P. Barham, and S. Zestwitz, "NPSNET: A Network Software

Architecture for Large-Scale Virtual Environments," Presence: Teleoperators and Virtual
Environments, vol. 3, pp. 265--287, 1994.

[2] O. Stahl and M. Andersson, "DIVE - a Toolkit for Distributed R Applications," presented at the
6th ERCIM workshop, Stockholm, 1994.

[3] J. W. Barrus, R. C. Waters, and D. B. Anderson, "Locales: Supporting Lange Multiuser Virtual
Environments," IEEE Computer Graphics and Applications, vol. 16 (6), pp. 50-57., 1996.

[4] E. lety, T. Turletti, and F. Baccelli, "SCORE: A Scalable Communication Protocol for Large-
Scale Virtual Environment," IEEE/ACM Transactions on Networking, vol. 12, pp. 247-260, 2004.

[5] C.-L. W. Tianqi Wang, Francis Lau, "A Grid-enabled Multi-server Network Game
Architecture," presented at 3rd International Conference on Application and Development of
Computer Games, 2004.

[6] T. A. Funkhouser, "RING: a client-server system for multi-user virtual environments " in
Proceedings of the 1995 symposium on Interactive 3D graphics Monterey, California, United
States ACM Press, 1995 pp. 85-ff. .

[7] T. K. Das, G. Singh, A. Mitchell, P. S. Kumar, and K. McGee, "NetEffect: A Network
Architecture for Large-scale Multi-user Virtual World," presented at the ACM symposium on
Virtual reality software and technology, 1997.

[8] R. Lea, Y. Honda, K. Matsuda, and S. Matsuda, "Community Place: Architecture and
Performance," presented at the second symposium on Virtual reality modeling language, 1997.

Liang Zhang, Qingping Lin
Support Dynamic Network Architecture for Large-Scale Collaborative Virtual Environment

 36

[9] R. W. H. L. Jimmy Chim, Va Leong, Antonio Si, "CyberWalk: A Web-Based Distributed
Virtual Walkthrough Environment," IEEE Transactions on Multimedia, vol. 5, pp. 503-515,
2003.

[10] "EverQuest." Available at http://everquest.station.sony.com/.
[11] "Ultima Online." Available at http://www.uo.com/.
[12] B. W. Cheng-Zhong Xu, "A mobile agent based push methodology for global parallel

computing," Concurrency: Practice and Experience, pp. 705-726, 2000.
[13] M. Macedonia, R. M. J. Zyda, D. R. Pratt, and P. T. Barham, "Exploiting Reality with Multicast

Groups: A Network Architecture forLarge-Scale Virtual Environments," presented at IEEE
VRAIS 95, Las Alamitos, CA, 1995.

[14] D. A. R. Waters, J. Barrus, D. Brogan, M. Casey, S. McKeown, T. Nitta, I. Sterns, W.Yerazunis,
"Diamond Park and Spline: A Social Virtual Reality System with 3D Animation, Spoken
Interaction, and Runtime Modifiability," Presence: Teleoperators and Virtual Environments, pp.
461-81, 1997.

[15] B. Ng, A. Si, R. W. H. Lau, and F. W. B. Li, "A Multi-Server Architecture for Distributed
Virtual Walkthrough," presented at ACM VRST'02, Hong Kong, 2002.

[16] A. R. T. N. M. Karnik, "Design Issues in Mobile-Agent Programming Systems," IEEE
Concurrency, vol. 6, pp. 52-61, 1998.

Liang Zhang received his B.S. and M.S. degrees in Electrical Engineering from
Xi'an Jiaotong University, P.R.China in 1999 and 2002. He is currently a Ph.D
candidate in Information Communication Institute of Singapore (ICIS) at School of
Electrical & Electronic Engineering, Nanyang Technological University. His
present research interests have centered around large-scale collaborative virtual
environment (CVE), mobile agent, and Grid-Computing.

Qingping Lin received his PhD in Computer Applications from University of
Strathclyde, UK, in 1997.He is currently an assistant professor with Information
Communication Institute of Singapore, School of Electrical & Electronic
Engineering, Nanyang Technological University, Singapore. His current research
interest is in the area of virtual reality and large-scale collaborative virtual
environment (LCVE). His research work has led to two international patents filed
and one spin-off company (cu3D Technologies Pte Ltd, invested by Singapore
Technologies Group). He also serves as a member of Editorial Boards of the

following international journals: International Journal of Information Technology, International Journal
of Computational Intelligence, and International Journal of Signal Processing.

