
International Journal of Information Technology, Vol. 12 No. 1

 99

Modified Application Level Differentiated Web Service
Management for TCP Connection

M. Aramudhan 1and V. Rhymend Uthariaraj2

Anna University, Chennai-25, India
Email: aranagai@yahoo.co.in

Abstract: In application level TCP connection management, service differentiation
module starts after the requests are entered into the server log. The incoming requests are
differentiated into member and non-member based on the IP Address stored in the
database on the server side. In the proposed model, the request starts its user level
differentiation ahead of entering into the server log and assigned its holding time at the
earliest. The number of requests processed at a time in every queue depends on the arrival
category of the request. An innovative architecture and algorithm is proposed for the
worst case scenario and the performance is evaluated. The experimental result shows that
the performance of proposed model is better compared to the existing application level
TCP management.

Keywords: Service differentiation, Best-Effort model, adjustment algorithm, timeliness.

1. Introduction

The changing nature of the service requirements among Internet applications term for an
architecture that is flexible and able to distinguish the needs of the applications. The
architecture of the Internet is challenged by continues growing traffic volume, the need to
deliver revenue-generating services and improved scalability must be designed into the
routing system. At present, web servers use a queuing policy based on Best-Effort model
which employs First-in-First-out (FIFO) scheduling to process the incoming requests [1].
Best-Effort model is defined as stored and forward without guarantee service. In recent
times, web servers suffer from the escalating resource demands by reason of the
explosive growth of the web. Therefore, Web server is not able to process all the requests
with the satisfaction of end-users. At the same time, all transactions are not equally
important to the clients or servers besides several applications need to treat them
differently. In such case, the multiple levels of service are desirable, where one level of
users get benefit at the cost of other levels. The multiple levels of service efforts attempt
both in server Operating System (OS) and in the network. Although it takes long run time
to replace the OS of end systems or upgrading all routers in the network [2]. The same
substantial benefit is achieved with server side application level mechanisms. The past
research works suggested that the network and end-system OS are the best places to
provide multiple levels of services [2]. But, there are some difficulties in deployment
mechanisms. Service differentiation is defined as levels of service, which provides
Quality of service (QoS) to one level at the cost of others in terms of response time,
throughput etc.Timeliness says how fast an output is produced for an input.

M. Aramudhan and V. Rhymend Uthariaraj
Modified Application Level Differentiated Web Service Management for TCP Connection

 100

The multiple levels of service in application level are simple, extensible and portable. In
proposed application level TCP connection management mechanisms for web server
provides two different levels of web service, member and non-member by setting
different holding time for connections. In past work, the levels of service are
differentiated following the request entered into the server log. In the proposed system,
the service is differentiated ahead of entering into the server log in addition analysis the
situation where all incoming requests are belonging to higher priority user level. The
amount of requests processed in every queue changes dynamically based on the quantity
of arrival request category using modified adjustment algorithm. This algorithm manages
the variation in request throughput in each queue.

The rest of the paper is organized as follows. Section 2 describes the related work.
Section 3 presents the design and highlights of the proposed mechanism. Section 4
describes the results of implementation. Finally, Section 5 provides the conclusions.

2. Related work

Yoon-Jung Rhee [2] proposed two levels of web service in application level by setting
different time outs for inactive TCP connections. The levels of service are differentiated
following the requests entered into the server log. Persistent and Non-Persistent type
HTTP connections are established for high and low priority levels respectively. The
different holding time is allotted for each client request after differentiated its level. The
idle user’s connections are preserved till its end of holding time. The levels of priorities
are assigned using random number generator.

Amit Sharma and Sengupta [3] proposed the levels of service achieved using application,
device and user level priority. Application level priority classifies the requests on the
basis of the application context. Device level priority is based on the device that is being
used to access the service. User level priority is based on member or non-member of the
site. Each request is accorded a composite priority value by combining the individual
application, device and user levels through a certain priority calculating function. The
summation of all individual priorities is one of the possible standard functions. The paper
focused only on regulating the throughput of a particular type of request to the service
class to achieve differential quality of service.

One of the application level and kernel approaches to web QoS is by Almeida et al. [4].
Their first application level mechanism limits the server pool sizes allocated to requests
of different classes. The second mechanism they have implemented is a kernel level
scheduler that allows preemption of low level requests and assigns process priorities
based on the request class.

Nikolaos [5] presented the design of a QoS architecture which can be added to the
Apache web server to allow the server to provide a differentiated QoS.This work
discusses the services needed to provide a differentiated QoS to clients of a web site,

International Journal of Information Technology, Vol. 12 No. 1

 101

based on the client’s identity and attributes.Nickolaos’s work integrated an
implementation of the services with the Apache web server and describes a service that
can be used to create algorithms to suit a specific goal.

Sook-Hyun Ryu and Kim [6] proposed two approaches to implement differentiated
quality of service. In the user level approach, the web server is modified to include a
classification process, priority queues and a scheduler. It is difficult to achieve portability
in this approach. In the kernel level approach, real time scheduler is used to prioritize user
requests. In this section, the application and kernel levels related works are briefly
discussed. In this paper, service differentiation is achieved in the application level and the
performance is evaluated.

3. Proposed Model: Differentiated service in application level

In application level TCP connection management, web server provides two levels of
service member and non-member, by setting different holding time for connections. The
incoming request is differentiated using stored IP address in the database on the server
side and later authenticated by the web server. This approach use static information in its
decision process to differentiate the requests. The proposed idea starts user level
differentiation ahead of entering into the server log and assigns proper holding time to
every client immediately after establishing a TCP connection. The differentiated
mechanism manages TCP connections by means of offering different levels. The service
differentiation model is implemented inside the web server. This model manages class
table based on membership DB and determines proper holding time of the client when a
new client requests access to the web server. The architecture of modified application
level TCP connection management mechanism is as shown in Figure-1.

Figure-1: Modified application level TCP connection management mechanism

M. Aramudhan and V. Rhymend Uthariaraj
Modified Application Level Differentiated Web Service Management for TCP Connection

 102

Client established connection with the server and requests the HTML file. A TCP
connection is established with three handshaking signals such as SYN, SYNACK, and
ACK. In general, all handshaking signals are bounded as a single system call in JAVA.
Therefore, the following assumption is taken for implementation. Service differentiation
module is instantly called for the requests ahead of entering into the server log and a
delay of three times of connection time for requests after entered into the server log.

The rigid policy in the proposed system brings about the danger of request starvation, in
which a non-member request waits indefinitely for its turn amid a continual flow of
member requests. It is possible to provide prioritize requests without starvation and sub-
optimality by using a randomized or probabilistic scheduling policy. A lower than normal
arrival of request category should penalize the priority accorded to the request while the
greater than expected arrivals should reinforce the priority positively. The variations in
the category request throughput is managed, adjusted using a correcting factor based on
the feedback. The given below adjustment algorithm adjusts the throughput in each queue,
depends on the arrival amount of each category request.

Step 1: Observe the number of requests in each category. Let Ni denote the amount of
incoming requests in each category..
Step 2: Calculate a ratio parameter for each queue. The formula used is

 ∑
=

i

i
i N

NnR)*(

Where n is the number of queues and Ri is the ratio parameter for i th queue and the
number of requests in the ith queue is Ni. For example, there is member (NM) and non-
member (NNM) queues. The requests in each queues are NM= 35, NNM =20.the ratio

parameter for member queue is RM=
55

)35*2(=1.041(>1) and non-member queue is

RNM =
55

)20*2(=0.727 (< 1).

Step 3: Calculate the adjustment value for each queue.

 If (Ri>1) Pi =1 + ()*
P

ii

K
RR

 else if (Ri = = 1) Pi = 1.0
 else if (Ri < 0) Pi =Lower- Bound

Step 4: The number of requests processed at a time is the weight for each queue is
denoted by qW. The weight in the queue after adjustment algorithm is qW * Pi. If Ri>1
then the request processed at the queue is higher bound say 9.1 means 10. If Ri<1 then
the requests processed at a time is lower bound say 9.1 means 9. If Ri=1 then the
result is an integer.

International Journal of Information Technology, Vol. 12 No. 1

 103

Initially, the weight for member and non-member queue is 10 and 3 respectively. Here
KR and KP are the negative and positive normalization constants and serve to keep the
adjustment values within desired bounds. For examples, KR =100 and KP =40.These
constants control the range of the curve and need to be modified depending on the nature
of the requirement. The weight is changed for member and non-member queue after
adjustment algorithm is 11 and 2. Web traffic is unpredictable in nature. Therefore, the
worst case scenario is taken as a constraint in the web service. All incoming requests are
similar category then the performance degrades. The architecture proposed for handling
all incoming requests are identical category is as shown in Figure-2.

Figure-2: Architecture for handling similar category user level service

The disadvantage of the proposed architecture is simple counter measure would pick a
request from the non-member queue after servicing n packets in the member queue. This
would some times cause a priority inversion. But this could occur anyway if a non-
member request arrives only a short moment before a request of member. The web server
may run different services each with different characteristics like time requirements. The
architecture receives two requests, one to an elastic service and the second to a real time
service, the first coming from a highly privileged user and the second from a less
privileged one. Such variation of contexts is inevitable, even desirable in service oriented
architecture and the resulting variation in the demand needs has to be appropriately taken
into account. The algorithm for handling unexpected identical user level service is as
follows.

Step 1: Compute the number of incoming HTTP requests in member (higher priority)
queue following user level differentiation. Confirm it exceeds the maximum degrade
threshold value, if it so, call composite priority for advancing the request to the
appropriate queue (consider both user and application level priority) in order to
reduce the performance degradation.
Step 2: Locate the number of requests in the member queue using subtraction
between the counters and assigned it in the counter1 often.

Composite
priority

Software Queue

Listener

Classifier

Member
Database

Non-Member Queue

Actual
Web
processing

Scheduler

Member Queue
Counter 1 Counter 2

λ
HTTP
Request

M. Aramudhan and V. Rhymend Uthariaraj
Modified Application Level Differentiated Web Service Management for TCP Connection

 104

Step 3: The counter1 value is less then Max.degrade threshold value then, call single
priority (User level) else composite priority (User +Application level).
Step 4: Repeat the steps 1-3 for advancing the request.

4. Implementation and Result Analysis

A prototype modified application level TCP connection is implemented on an IBM
machine using JDK1.2. This experiment is conducted in small scale client/server
environment. Server is capable to connect maximum of 50 clients at a time using thread
and process based architecture [7].The server consists of two processes and each having
single multithreaded, each thread handles one request at a time. The crash of one process
does not affect the others, so that server continues to operate and process other requests
even when one of its processes is killed or restarted. The disadvantage of this architecture
is single malfunctioning thread can bring the process down because all threads in the
particular process share the same address space. The memory requirement is small and
new threads do not need additional address space. The process and thread architecture is
as shown in Figure-3. The size of the member database is varies 20 k, 50 k and 100 k
respectively. The incoming requests are prioritized into member and non-member and
advanced to the appropriate queues. Each member threads hold 50 s where as non-
member holds 30 s. The inactivity member and non-member threads are abruptly
terminated after 20 s and 15 s respectively. All member threads are processed before non-
member threads. Even one non-member thread in the queue may get delayed until all
threads in the member queue get processed. Both types of user level requests are
established with persistent connection. Each thread created an object on a server, on
behalf of the client, has information about its state stored in the server’s memory. A
decision to assign an object to a server based on the current conditions stated in the model.
The server creates a fixed number of processes at startup time. The number of threads in
each process varies with the number of client requests.

Figure-3: Process and Thread based software web architecture

International Journal of Information Technology, Vol. 12 No. 1

 105

The service differentiation takes place after and ahead of requests entering into the sever
log and advanced to the appropriate queue for processing is as shown in the Table-1 and
2.

Database Size (k) Clients connected with server Average latency time
(ms)

20

5
10
15

301.23
366.25
388.33

50

5
10
15

311.23
366.25
404.96

100

5
10
15

386.00
392.92
396.64

Table -1: Average latency time taken for service differentiation after TCP Establishment

Table-2: Average latency time taken for service differentiation ahead of TCP Establishment

The average response time of Best-Effort model (FIFO) and service differentiation is as
shown in the Table-3.

Table-3: Average response time for processing requests using Best-Effort Model

Database Size(k) Clients connected with server Average latency time
(ms)

20

5
10
15

294.00
333.45
356.65

50

5
10
15

306.30
335.45
368.93

100

5
10
15

372.00
378.00
390.40

Average response time (ms) Clients Database
size(k) Differentiation before

TCP connection
Differentiation after

TCP connection
5

10
15

50
50
50

318.60
377.20
404.40

340.60
399.20
421.20

5
10
15

100
100
100

374.46
392.20
409.90

415.60
434.20
441.06

M. Aramudhan and V. Rhymend Uthariaraj
Modified Application Level Differentiated Web Service Management for TCP Connection

 106

Table -4: Average response time for processing request using service differentiation

Even the substantial benefit is achieved, the performance varies depends on the OS used
[7]. In past works, polling time is set as a weight for processing the requests at a time in
each queue. Depending upon the number of requests of each category that the system
receives the polling values are adjusted using adjustment algorithm .For example, polling
time periods such as 200 ms, 400 ms and 600 ms are initially assigned for each queue.
These values may be changed marginally by adjustment algorithm to 198 ms, 402 ms and
589 ms respectively. In the proposed system, the amount of requests processing at a time
is set as a weight in each queue. Table-5 shows the performance using with adjustment
algorithm. The system is implemented in Apache Axis 1.0 framework to host the web
service. The service is run using Tomcat 4.0 and Apache Axis 1.0.Client side class is
made to generate requests at the rate of 50 requests per second through multithreading.
In past works, the levels of priorities are assigned using random number generator from 1
to 3. In the proposed work, the levels of priorities are assigned using IP address of the
client or proxy.

Number of requests : 50
Incoming throughput per category : 18 requests per second
Total Service Time : 1760 ms (29.37 Sec)
Average service Time per request : 0.488 seconds

Request Type Number of

Incoming Request
Initial weight
(No. request)

After Adjustment
Algorithm

Throughput
observed

Member 35 10 11 12
Non-Member 15 4 3 3

Table-5: performance using adjustment Algorithm.

Throughput is measured by finding the requests being taken for processing by the server
per second. The deviation observed between theoretical and observed value is not much,
indicating a good degree of regulation. The proposed system is able to manage the
random incoming request types and give throughputs close to the desire levels.

Average response time (ms) Clients Database
size(k) Differentiation before

TCP connection
Differentiation after

TCP connection
5

10
15

50
50
50

318.20
369.90
379.20

329.40
383.70
404.80

5
10
15

100
100
100

388.20
390.18
398.34

392.40
407.20
416.60

International Journal of Information Technology, Vol. 12 No. 1

 107

Mathematical Model

Two queues, member and non-member, the average arrival rate of both queues is 1λ and

2λ and its service time is 1µ and 2µ . The average mean arrival rate of queue isλ . Each
request in the queue is processed in FIFO order. The number of request processed at a
time is defined as weight is w1 and w2 respectively. Poisson probability provides a way to
calculate the probability of users simultaneously accessing the system. The worst-case
response of the system would occur if all users access the system at exactly the same time.
The theory behind Poisson probability is that requests enter the system with an
exponential probability that other users are entering the system at the same time. The
equation for the Poisson probability is

µ is total service time of member and non-member requests. X is the number of requests
accessing the server at a time. Applying priority queues, most of the requests fall outside
the typical Poisson probability. The average response time of each queue is

λµ −

=
2

2][MRE

The maximum number of request processed at a time in the member (E [RM]) and non-
member (E [RMN]) queue is

 11

1][
λ−

=
W

RE M
 and

22

1][
λ−

=
W

RE NM

W1, W2 are subject to change based on the arrival of requests in each queue. There are 2
priority classes, with request in member class having highest priority and those in non-
member priority having lower priority. Assume that request of class i arrive as an
independent Poisson process with rate .iλ and that the mean and mean-square service
times are X and X2, respectively. Assume that there is no queue limit (m=∞). Under
this assumptions, the mean waiting time for request of class i, Wi is given by the formula
is

 W i=
)..1(1)...1(2

 X2

111

1

ii

ni

i
i

ρρρρ

λ

−−−−− −

=

=
∑

 [
µ
λρ =]

M. Aramudhan and V. Rhymend Uthariaraj
Modified Application Level Differentiated Web Service Management for TCP Connection

 108

The priority queuing reduces delays for member queue at the expense of increased delays
for non-member queue. However, priority queue is result in a situation in which one or
more of the non-member class of users receive no service at all. As

 1
1

→∑
i

iρ

From below, the mean waiting time for priority –i requests grows to infinity, i.e., the
backlog of priority –i customers waiting for service grows indefinitely with time. The
above results apply only for a system with no queue limit. For a system with a large but
finite queue limit m, mean waiting times are always finite for all classes of requests.
However, the quality of service for priority –i requests still degrades severely as

 1
1

→∑
i

iρ

The mean waiting times tend to become very large and blocking probabilities approach
unity, reducing the queue limit reduces mean waiting time at the cost of increased
blocking. Total delay (TD) in the proposed model is

 TD = mean waiting time for each queue + response time of each queue+
time for prioritization

5. Conclusions

Service differentiation takes place ahead of entering into the server log yields better
timeliness performance in the application level TCP connection management. This
performance obviously depends on the OS. The amount of requests processing at a time
is set as a weight in each queue. Depending upon the number of requests of each category
that the system receives, the quantity of request is adjusted using adjustment algorithm. In
practice, measurement of requests and service differentiation may be overhead but, it
shows a little improved performance compared to existing models. In the future, a real
time feedback scheduling will be incorporate and its performance is evaluated. This
experiment will also be conducted for Intranet and Internet environment. The current
infrastructure is being extended to Microsoft .NET platform. A better mechanism of
handling of asynchronous web service will also be added to the infrastructure. Scalability
issue will also be addressed in future.

International Journal of Information Technology, Vol. 12 No. 1

 109

References

1) Nong Ye, Esam S. Gel, Xueping Li, Toni Farley, Ying-Cheng Lai (2003), "Web
Server QoS models : applying Scheduling rules from production planning" in
journal of Computer and operations Research, pp.1147-1164

2) Yoon-Jung Rhee, Eun-Sil Hyun and Tai-Yun Kim (2002), "Connection
management for QoS service on the Web" in journal of Network and Computer
Applications Vol.25, pp. 57-68.

3) Amit Sharma, Hemant Adarkar and Shubhashis Sengupta (2004), "Managing QoS
through Prioritization in Web Services", in Proc., of the Fourth International
Conference on Web Information Systems Engineering Workshops.

4) J. Almedia, M. Dabu, A. Manikntty and P. Cao (1998), "Providing Differentiated
Levels of Service in Web Content Hosting", in Proc. of Internet Server
performance, Madison, Wisconsin.

5) N. Vasilious and H. Lutfiyya (2000), "Providing a Differentiated Quality of
Service in a World Web Server" in Proc. of the Performance and Architecture of
Web Servers Workshops, Santa Clara, California USA, June 2000, pp.14-20.

6) Sook-Hyun Jae-Young Kim and James Won-Ki Hong (2001), "Towards
Supporting Differentiated Quality of Web Service" in Proc. of Performance and
Architecture of Web Servers Workshops, Santa Clara, California USA, June 2001.

7) Daniel A. Menasce (2003), "Web Server Software Architectures" in journal IEEE
Internet Computing Nov/Dec. pp.78-81.

Bibliography

 V.Rhymend Uthaiaraj received his PhD degree in computer science
& Engg. from Anna university .Now, he is working as a professor in
Anna University. His areas of interest includes Network security,
Optimization of algorithms, Object oriented modeling, Web design
and mobile computing. He has published 40 papers in International
conferences and journals.

M.Aramudhan received his Master of Engineering degree in
computer science & Engg. from Regional Engg.College, Tirchy.
Now, he is research scholar in Anna University. His area of interest
includes load balancing techniques, performance and analysis of
networks and web technology. He has published 4 international
conferences and 2 journals.

