
Jifeng Chen, Li Zhu, Junyi Shen, Zhihai Wang, and Xinjun Wang
An Approach on Automatic Test Data Generation with Predicate Constraint Solving Technique

 132

An Approach on Automatic Test Data Generation with
Predicate Constraint Solving Technique

Jifeng Chen1, Li Zhu2, Junyi Shen1, Zhihai Wang1, and Xinjun Wang1

1 Institute of Computer Software, Xi’an Jiaotong University, 710049 Xi’an, China
{jfchen, jyshen}@mail.xjtu.edu.cn

2 School of Software, Xi’an Jiaotong University, Xi’an 710049, China
zhuli@mail.xjtu.edu.cn

Abstract

Predicate constraint solving technique is an important method of automatic test data generation.
By analyzing the properties and disadvantages of predicate constraint solving technique, three
theorems are proposed and proved. Based on them, a new approach on automatic test data
generation is presented. The linear predicate on a given path is used directly to construct the
linear constraint system. Only the linear arithmetic representation for nonlinear predicate func-
tion is required to compute. Theoretical analysis and practical testing show: for the linear path,
the initial input and the iteration are not required. The path is feasible if the linear constraint
system can be solved, and the values of the input variables obtained are the desired test data.
Otherwise, the path is infeasible. Considering the nonlinear path, test data can also be obtained
by a number of iterations, or it can be guaranteed that the path is infeasible to a great extent.
Keywords: predicate constrain solving techniques; linear constrain; linear arithmetic
representation

1 Introduction

Software testing is one of the critical activities during software development. It is
often claimed that testing and debugging account for approximately 50% of software
development costs, which may be thought as a sign of the need for automated testing
support[1]. Software testing automation can relieve software engineers from their
tedious daily task, and reduce the cost of software developing significantly. Several
approaches have been proposed for automated test data generating, including random
method[2], syntax based method[3] , program specification based method[4], sym-
bolic evaluation method [5,6] and program execution based method[7-11]. Predicate
constraint solving techniques are widely used for automatically test data generat-
ing[6,8,11-20]. This paper presents a novel test data generating approach, using
predicate constraint solving techniques for program execution, and describes its algo-
rithm in detail, and then illustrates it by two examples.

 Foundation item: Project (2003AA1Z2610) supported by National Hi-Tech Research and

Development Program of China.

International Journal of Information Technology, Vol.12, No.3, 2006

 133

This paper is organized as follows. Next section explores the related works,
which lead to our new test data generating approach. Section 3 details the algorithm
of our approach, and illustrates it with examples involving linear and nonlinear paths
in section 4. Finally, in Section 5, we summarize the important features of our ap-
proach.

2 Related Work

One of the earliest systems using symbolic evaluation only for linear path constraints
to generate test data automatically is described in [5], which is able to detect infeasi-
ble paths with linear path constraints except its limitation of handling array reference
which depended on program input. A more recent attempt of using symbolic evalua-
tion to generate test data for fault based criteria is described in [6]. In this work, a test
data generation system based on a collection of heuristics for solving system of con-
straints is developed. The derived constraints are often imprecise, resulting in an
approximate solution on which the path may not be traversed. Since the test data is
not refined further to obtain the desired input eventually, the method will fail when
the path is not traversed on the approximate solution. The approaches in [7,8] use
backtracking manner and considered only one branch predicate and one input variable
each time. Therefore, they may require a large number of iterations even if all the
branch conditionals along the path are linear functions of the input. If more than one
conditions on the selected path depended on common input variables, a lot of effort
will be wasted in backtracking. They also can not consider all the branch predicates
on the path simultaneously because the path may not be traversed on an intermediated
input.

In order to solve the problems above, a method, proposed in [19], replaces
predicate function with linear arithmetic representation and established linear con-
straint system of predicate functions on the increments for the input. The test data is
obtained through iterative refining in this method. The number of program execution
in each iteration is independent of the path length and at most equaled to the number
of input variables plus one. Therefore, the waste in backtracking in [7,8] can be
avoided. At the same time, it is needed to compute the slices, the linear arithmetic
representation, and the predicate residuals of all predicate functions, to identify the
input dependency sets and to construct the linear constraint system of predicate func-
tions on the increments for the input. Hence, the method is also complex, and is then
further simplified in [20], which gets rid of the need of both computing the slices and
identifying the input dependency sets, but still need to compute the linear arithmetic
representation and the predicate residuals of all predicate functions.

In our new approach, the linear predicate function is used directly to construct
the linear constraint of predicate function of the input. There is no need to compute
the linear arithmetic representation of linear predicate function, except that the predi-
cate function is nonlinear. Only the predicate functions on the input variables need to
establish the linear constraint system, but the predicate functions on the increments
for the input do not need. In addition, there is no need to compute the slices and iden-

Jifeng Chen, Li Zhu, Junyi Shen, Zhihai Wang, and Xinjun Wang
An Approach on Automatic Test Data Generation with Predicate Constraint Solving Technique

 134

tify the input dependency sets. So, this is a much simpler approach and will cost less
in computing than the all previous since a large part of predicate functions are linear
in common programs.

3 Algorithm

3.1 Backgrounds

For the sake of simplicity, some basic concepts of the approach are defined using the
program as follows:

Program 1

0: read (X,Y,Z)
1: U=(X-Y)*2
P1: if (X>Y) then
2: W=U
3: else W=Y

endif
P2: if (W+Z)>100 then
4: X=X-2
5: Y=Y+W
6: write (“Linear”)
P3: elseif (X2+Z2>100) then
7: Y=X*Z+1
8: write (“Nonlinear: Quadratic”)

endif
P4: if (U≥0) then
9: write (U)
P5: elseif (Y-Sin(Z))>0 then
10: write (“Nonlinear: Sine”)

endif

Definition 1: A conditional expression in multi-way decision statement on path is
called a Branch Predicate, such as X>Y in P1 of program1.
Definition 2: Each branch predicate E1 op E2 can be transformed to the equivalent
branch predicate of the form F op 0, Where E1, E2 and F are arithmetic expressions,
F= E1-E2 and op is one of {<,≤, >,≥,=,≠}.Along a given path, F represents a
real valued function called a Predicate Function. For example, branch predicate X>Y
can be transformed to X-Y>0, then F=X-Y is called predicate function.
Definition 3: A general linear function L(ni, Ik, P) is written according to the input
variables of predicate node ni for the given input Ik on path P. Then, the values of the
coefficients in the general linear function are computed so that L(ni, Ik, P)=0 repre-

International Journal of Information Technology, Vol.12, No.3, 2006

 135

sents the tangent plane to the predicate function at Ik. Therefore, L(ni, Ik, P) is called
the Linear Arithmetic Representation of predicate function F in predicate node ni
for the given input Ik on path P.
Definition 4: If predicate function F is linear, expression F op 0 is called its linear
constraint of the predicate function. Otherwise, linear arithmetic representation L(ni,
Ik,P) is called linear constraint of the predicate function.

3.2 Mathematic Foundation

In this section, three theorems based on iterative relaxation method [19, 20] are pre-
sented, and the corresponding proofs are given below.

Theorem 1 If the predicate function on a given path is linear, then its linear arithme-
tic representation is itself.
Proof Since the predicate function is linear, the predicate function can be described
as follows:

F (X)= a1X1+ a2X2+ …+ aiXi+ …+ amXm+ a0
· Xi represents input variable; m is the number of input variables, i ∈{1,2,…,m}.
· ai represents the coefficient corresponding to input variable.
· a0 represents constant.

Let k represent iterative number, k∈{0,1,2,…,T}, then the divided difference
of the kth iterative F (X) on X i,k is:

kiki

kiki
kiki XX

XFXF
XXF

,1,

,1,
,1,

)(-)(
],[

−
=

+

+
+ ki

kiki

kikiki a
XX
XXa

,
,1,

,1,,)-(
=

−
=

+

+

The derivative of F (X) on X ki , is: kiX
aF

i
,

' =

Obviously, the coefficient corresponding to input variable obtained with divided
differences is equivalent to the first derivative of F(X), and is unrelated to the input
variable. Therefore, the linear arithmetic representation of the linear predicate func-
tion is itself.

Theorem 2 The linear constraint of predicate function for the current input is equiva-
lent to that on the increments for the input.
Proof Let the predicate function be as follows (the parameters representation are the
same as that in theorem 1):

F (X)= a1X1+ a2X2+ …+ aiXi+ …+ amXm+ a0=∑
=

m

i
ii Xa

1
 + 0a

According to iterative relaxation algorithm, the predicate residual of the kth it-
erative F (X) on X i,k is

)(,kiXR =∑
=

m

i
kiki Xa

1
,, + ka ,0

Jifeng Chen, Li Zhu, Junyi Shen, Zhihai Wang, and Xinjun Wang
An Approach on Automatic Test Data Generation with Predicate Constraint Solving Technique

 136

The linear constraint representation of the kth iterative F (X) on the increments
for the input is

∑
=

∆
m

i

Xa
1

ki,ki, +)(,kiXR op 0 (1)

where op∈{<,≤, >,≥,=,≠}
Q kikiki XXX ,1,, −=∆ + ，

Take kiX ,∆ and)(,kiXR into (1), then we get

∑
=

+

m

i
kiki Xa

1
1,, + ka ,0 op 0 (2)

Equation (2) is the linear constraint representation of predicate function F(X) on
input variables. Xi,k+1 is the input variable value I k+1 of the (k+1)th iteration. As the
result of (2) obtained from (1), (2) is equivalent to (1). Hence, theorem 2 is proved.

Theorem 3 If all branch predicate functions on a given path P are linear, then path P
is feasible while the linear constraint system can be solved, and the values of the
input variables obtained are the desired test data. Otherwise, path P is infeasible.
Proof Let us assume that there are m input variables for the program containing the
given path P and there are n branch predicates on the path P. Each branch predicate
can be transformed to one of the forms {F=0,F>0,F≥0}. Assume n1 of them use “=”,
n2 use “>”, and n3 use “≥”. Then n=n1+n2+n3. According to the given conditions
and previous two theorems, the set of linear constraints for all branch predicates on
path P can be constructed as below:

⎪⎩

⎪
⎨
⎧

≥+
>+
=+

0
0
0

0

0

0

CCX
BBX
AAX

 (3)

Where
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
=

mnnn

m

aaa

aaa
A

,12,11,1

,12,11,1

...
............

...
,

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
=

mnnn

m

bbb

bbb
B

,22,21,2

,12,11,1

...
............

...
,

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
=

mnnn

m

ccc

ccc
C

,32,31,3

,12,11,1

...
............

...
, X=(x

1, x
2, …,x

m
)

T
,A

0
=(a

1,0
 ,a

2,0
 ,…, a

n1,0
)

T
 ,

B0=(b
1,0

 ,b
2,0

 ,…, b
 n2,0

)
T
, C0=(c

1,0
 ,c

2,0
 ,…, c

 n3,0
)

T

Q “≥”is equivalent to “>”U “=”
∴ (3) can be separated into two sets of linear constraints:

⎪⎩

⎪
⎨
⎧

>+
>+
=+

0
0
0

0

0

0

CCX
BBX
AAX

 (4),

⎪⎩

⎪
⎨
⎧

=+
>+
=+

0
0
0

0

0

0

CCX
BBX
AAX

 (5)

International Journal of Information Technology, Vol.12, No.3, 2006

 137

Both (4) and (5) are the set of constraints which is only composed of “=” and
“>”. While solving the set of constraints above, (4) and (5) are either consistent or
inconsistent. There is a set of test data which can traverse path P if at least one of (4)
and (5) is consistent. The solution is the desired test data. Otherwise, Path P is infea-
sible if both (4) and (5) are inconsistent.

3.3 Algorithm Description

According to the theorems in section 2, the main idea of the new approach is: check-
ing each branch predicate on a given path, if all the branch predicates are linear ex-
pression, algorithm 1 is executed; otherwise algorithm 2.

Algorithm 1: All the branch predicate functions are used directly to construct the
linear constraint system for the current input variables. Further, the linear equation
system for the input variables is established and solved. Solution is the desired test
data for input variables. If the constraint system is inconsistent, then the path is guar-
anteed to be infeasible.

Algorithm 2: Choosing a set of input variable values in given domain to check each
branch predicate on the path, the linear arithmetic representation of nonlinear predi-
cate functions on current input is computed. The linear constraint system on the input
variables is constructed with the linear predicate functions on the path and the linear
arithmetic representations obtained previously. Further, the linear equation system on
the input variables is established, and solved to get the values of input variables.
Hence, a set of new input is obtained. If the set of new input cannot traverse the given
path, then the process above is repeated till the desired outcome is obtained or the
iterative upper limit is achieved.

4 Application

Our approach is illustrated to solve the linear constraint system with two examples
involving linear and nonlinear path separately.

Example 1 the path with linear predicate function
Program 1 is used to analyze the automatic test data generation of linear predi-

cate functions on a given path.
Suppose the path P is selected:
P={0,1, P1,2, P2,4, 5,6,P4,9}
According to the path P, the algorithm is executed as follows:
Algorithm 1 is executed due to all predicate functions (P1, P2, P4) on P are lin-

ear.
Construct the linear constraint system of predicate functions directly：

Jifeng Chen, Li Zhu, Junyi Shen, Zhihai Wang, and Xinjun Wang
An Approach on Automatic Test Data Generation with Predicate Constraint Solving Technique

 138

⎪
⎩

⎪
⎨

⎧

≥−
>−+−

>−

022
010022

0

YX
ZYX

YX

 Solve the linear constraint system.
The above inequalities are converted to equalities by introducing three new vari-

ables a, b, c. where a, b >0 and c≥0. The set of equalities is below：

⎪
⎩

⎪
⎨

⎧

=−
=−+−

=−

cYX
bZYX

aYX

22
10022

The values of free variables can be selected arbitrarily with the constraints that a,
b >0 and c≥0. The values of free variables a, b, c are chosen as 1. Solving the equality
system according to the method in [17], the result is X=2.6，Y= 2，Z=99.8. Hence,
the input I=(2.6, 2, 99.8) is the desired test data.

If choose the path P={0,1, P1,2, P2,4, 5,6,P4, P5,10}, the set of linear con-
straints can be obtained:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

>−
<−

>−+−
>−

0)sin(
022

010022
0

ZY
YX

ZYX
YX

Obviously, the linear constraints, X-Y>0 and 2X-2Y<0, are inconsistent. So the
constraint system cannot be solved. With theorem 3, it is guaranteed that this path
must be infeasible. It is easy to check that P is indeed an infeasible path.

Example 2 the path with nonlinear predicate function
For the sake of simplicity, the program follows is used to generate test data for

the path with nonlinear predicate function.

Program 2
1: float x;
2: scanf(“x”,&x);
P1: if (x<-1);
P2: if (x*x)>0;
3: print (“Ok”);
4: else print (“No”);
5: else print (“No”);

Choosing and checking path P = {1,2, P1, P2, 3}, Algorithm 2 is executed as

predicate function P2 on P is nonlinear. Given any arbitrarily chosen input I0 in the
program domain and iterative increments of input variables ∆ X. e.g. I 0 = X 0 = 1,

∆ X =1.

International Journal of Information Technology, Vol.12, No.3, 2006

 139

As the path P is not traversed on I0, the steps for iterative refinement of I0 are
executed.

Step 1 is executed since predicate function P2 is nonlinear.
Step 1 Compute the linear arithmetic representation of P2

Since the predicate function of P2 is F=X2, the linear arithmetic representation
can be represented as follows:

L(BP2, I k ,P)=aX+b
Approximate the derivatives of a predicate function by its divided differences,

then a=3, and
3X0+b= X 2

0
Solve the equation, b=-2. The linear arithmetic representation of predicate func-

tion F= X2 is
L(BP2, I 0 ,P)=3X-2

Step 2 Construct the linear constraint system of predicate function on I0 using linear
predicate functions P1 and the linear arithmetic representation L(BP2, I 0 ,P)

⎩
⎨
⎧

>−
<+

023
01

X
X

Step 3 Solve the linear constraint system
Using the solving method of linear constraint system in example 1, the solu-

tion is X=0.7. Therefore, the new input I 1 =0.7.
step1 ~ step3 for iterative refinement I1 is needed to executed repeatedly since

the path P is not traversed on I1 yet. Finally, the path P is traversed on I6=-1.3867
obtained in the 6th iteration. Therefore, the algorithm is determined. I6 is the desired
test data. The results of execution of our test data generation approach for this exam-
ple in the table are given below.

Table 1 Test data and the coverage of Branch Predicates(BP) on each iteration

Iteration X BP1 BP2
0 1 F T
1 0.7 F T
2 0.4817 F T
3 0.2810 F T
4 0.0361 F T
5 -0.4125 F T
6 -1.8135 T T

Where F and T represent False and True respectively.

Jifeng Chen, Li Zhu, Junyi Shen, Zhihai Wang, and Xinjun Wang
An Approach on Automatic Test Data Generation with Predicate Constraint Solving Technique

 140

5 Conclusions

While using the new approach to derive the desired test data for a given path, the
linear constraint system of predicate functions for the input variables is directly con-
structed if all the predicate functions on the path are linear. The initial input and the
iteration are not needed. Either the desired test data is derived or it is guaranteed that
the path is infeasible from the solution of the constraint system. The new approach
need not compute the predicate residuals and the linear arithmetic representation of
linear predicate function. The constructions of predicate slice, input dependency set
and the linear constraint of predicate function on the increments for the input can also
be omitted. Only when the predicate function is nonlinear, the linear arithmetic repre-
sentation needs to be computed.

The experiments were executed on a Pentium-based computer 1.6G with 512MB
RMA running Linux OS (Red Flag 4.1). Each program is executed for 5 times. For
the program 1, the average executing time of test case generation of method [19],
method [20] and our method are 34ms, 26ms and 22ms respectively, and are 28ms,
24ms, and 20ms respectively for program 2. Theoretical analysis and practical testing
results show that the approach is simpler, easier, more effective, and less cost in com-
puting than the others. However, the test data can’t be always guaranteed to generate
if there are one or more nonlinear predicate functions on the path.

References

1 Korel B. Automated software test data generation. IEEE Transactions on Software Engineer-
ing, 1990, 16(8): 870-879.

2 Avritzer A, Weyuker E. J. The automatic generation of load test suites and the assessment of
the resulting software. IEEE Transactions on Software Engineering, 1995, 21(9): 705-716.

3 Deason W.H, Brown D.B, Chang K, Cross J.H. A rule based software test data generator.
IEEE Transactions Knowledge and Data Engineering, 1991, 3(1): 108-116.

4 Bauer J, Finger A. Test plan generation using formal grammars. Proceedings of the 4th Inter-
national Conferene of Software Engineering. Munich, Germany, 1979. 425-432.

5 Clarke L. A. A system to generate test data and symbolically execute programs. IEEE Trans-
actions on Software Engineering, 1976, 16(8): 870-879.

6 DeMillo R, Offutt J. Constraint-Based Automatic Test Data Generation . IEEE Transactions
on Software Engineering, 1991, 17(9): 900-910.

7 Gallagher M. J, and Narasimhan VL. ADTEST: A Test Data Generation Suite for Ada Soft-
ware Systems. IEEE Transactions on Software Engineering, 1997, 23(8): 473-484.

8 Gotlieb A, Botella B, M. Rueher. Automatic test data generation using constraint solving
techniques . In Proceedings of the Sigsoft International Symposium on Software Testing and
Analysis . Florida, USA, 1998. 53- 62.

9 Mansour N, Salame M, Joumaa R. Integer- and real-value test generation for path coverage
using a genetic algorithm. In Software Engineering and Applications Conference (SEA).
2000, 49-54.

10 Gupta N, Mathur A. P, and Soffa M. L. Generating test data for branch coverage. In 15th
IEEE International Conference on Automated Software Engineering (ASE00). Grenoble,
France, 2000.

International Journal of Information Technology, Vol.12, No.3, 2006

 141

11 Beydeda S, Gruhn V. Test Data Generation based on Binary Search for Class-level Testing.
ACS/IEEE International Conference on Computer Systems and Applications. Tunis, Tunisia,
2003. 107-114

12 Gotlieb A, Botella B, Rueher M. A CLP framework for computing structural test data. Pro-
ceedings of the First International Conference on Computational Logic. London, 2000. 399–
413.

13 Michel C, Rueher M, and Lebbah Y. Solving constraint over floating-point numbers. In
Seventh International Conference on Principles and Practice of Constraint. Paphos, Cyprus,
2001.

14 TranSy N, Deville Y. Consistency Techniques for Interprocedural Test Data Generation.
ACM SIGSOFT Software Engineering Notes archive ,2003.

15 Gupta N, Cho Y-J, Hossain M. Z. Experiments with UNA for Solving Linear Constraints in
Real Variables. Proceedings of the 2004 ACM symposium on Applied computing. Nicosia,
Cyprus, 2004.1013-1020.

16 Gupta N, Cho Y-J, Hossain M. Z. UNA: A Simple Numerical Algorithm to Solve Linear
Constraints in Real Variables. Technical Report TR 03-08, Computer. Science Department,
The University of Arizona, 2003.

17 Gupta N, Mathur A. P, Soffa M. L. UNA Based Iterative Test Data Generation and its
Evaluation. 14th IEEE International Conference on Automated Software Engineering
(ASE'99). Florida, 1999. 224-232.

18 Edvardsson J, Kamkar M. Analysis of the Constraint Solver in UNA Based Test Data Gen-
eration. Foundations of Software Engineering Proceedings of the 8th European software
engineering conference. Vienna, Austria,2001. 237 – 245.

19 Gupta N, Mathur A. P, Soffa M. L. Automated Test Data Generation Using An Iterative
Relaxation Method. Proceedings of the 6th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. Florida, United States,1998. 231 - 244.

20 SHAN Jin-Hui. On Path-wise Automated Test Data Generation. Changsha: National Uni-
versity of Defense Technology, 2002.

Jifeng CHEN was born on August 1, 1966. He is currently working
towards the Ph.D degree in computer science and technology, Institute
of Computer Software and Theory, Xi’an Jiaotong University, China.
His research interests are in the general field of software testing and
software engineering.

Li ZHU, PH.D, associate professor, was born on January 28, 1967.
He received his Doctor degree in computer science & technology
from Xi’an Jiaotong University in October 2000. His main research
interests are software testing, novel networking technology, software
engineering and embedded system and so on.

