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Abstract 

Predicate constraint solving technique is an important method of automatic test data generation. 
By analyzing the properties and disadvantages of predicate constraint solving technique, three 
theorems are proposed and proved. Based on them, a new approach on automatic test data 
generation is presented. The linear predicate on a given path is used directly to construct the 
linear constraint system. Only the linear arithmetic representation for nonlinear predicate func-
tion is required to compute. Theoretical analysis and practical testing show: for the linear path, 
the initial input and the iteration are not required. The path is feasible if the linear constraint 
system can be solved, and the values of the input variables obtained are the desired test data. 
Otherwise, the path is infeasible. Considering the nonlinear path, test data can also be obtained 
by a number of iterations, or it can be guaranteed that the path is infeasible to a great extent.  
Keywords: predicate constrain solving techniques; linear constrain; linear arithmetic 
representation 

1   Introduction 

Software testing is one of the critical activities during software development. It is 
often claimed that testing and debugging account for approximately 50% of software 
development costs, which may be thought as a sign of the need for automated testing 
support[1]. Software testing automation can relieve software engineers from their 
tedious daily task, and reduce the cost of software developing significantly. Several 
approaches have been proposed for automated test data generating, including random 
method[2], syntax based method[3] , program specification based method[4], sym-
bolic evaluation method [5,6] and program execution based method[7-11]. Predicate 
constraint solving techniques are widely used for automatically test data generat-
ing[6,8,11-20]. This paper presents a novel test data generating approach, using 
predicate constraint solving techniques for program execution, and describes its algo-
rithm in detail, and then illustrates it by two examples. 
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This paper is organized as follows. Next section explores the related works, 
which lead to our new test data generating approach. Section 3 details the algorithm 
of our approach, and illustrates it with examples involving linear and nonlinear paths 
in section 4. Finally, in Section 5, we summarize the important features of our ap-
proach. 

2  Related Work 

One of the earliest systems using symbolic evaluation only for linear path constraints 
to generate test data automatically is described in [5], which is able to detect infeasi-
ble paths with linear path constraints except its limitation of handling array reference 
which depended on program input. A more recent attempt of using symbolic evalua-
tion to generate test data for fault based criteria is described in [6]. In this work, a test 
data generation system based on a collection of heuristics for solving system of con-
straints is developed. The derived constraints are often imprecise, resulting in an 
approximate solution on which the path may not be traversed. Since the test data is 
not refined further to obtain the desired input eventually, the method will fail when 
the path is not traversed on the approximate solution. The approaches in [7,8] use 
backtracking manner and considered only one branch predicate and one input variable 
each time. Therefore, they may require a large number of iterations even if all the 
branch conditionals along the path are linear functions of the input. If more than one 
conditions on the selected path depended on common input variables, a lot of effort 
will be wasted in backtracking. They also can not consider all the branch predicates 
on the path simultaneously because the path may not be traversed on an intermediated 
input.  

In order to solve the problems above, a method, proposed in [19], replaces 
predicate function with linear arithmetic representation and established linear con-
straint system of predicate functions on the increments for the input. The test data is 
obtained through iterative refining in this method. The number of program execution 
in each iteration is independent of the path length and at most equaled to the number 
of input variables plus one. Therefore, the waste in backtracking in [7,8] can be 
avoided. At the same time, it is needed to compute the slices, the linear arithmetic 
representation, and the predicate residuals of all predicate functions, to identify the 
input dependency sets and to construct the linear constraint system of predicate func-
tions on the increments for the input. Hence, the method is also complex, and is then 
further simplified in [20], which gets rid of the need of both computing the slices and 
identifying the input dependency sets, but still need to compute the linear arithmetic 
representation and the predicate residuals of all predicate functions. 

In our new approach, the linear predicate function is used directly to construct 
the linear constraint of predicate function of the input. There is no need to compute 
the linear arithmetic representation of linear predicate function, except that the predi-
cate function is nonlinear. Only the predicate functions on the input variables need to 
establish the linear constraint system, but the predicate functions on the increments 
for the input do not need. In addition, there is no need to compute the slices and iden-
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tify the input dependency sets. So, this is a much simpler approach and will cost less 
in computing than the all previous since a large part of predicate functions are linear 
in common programs. 

3  Algorithm 

3.1 Backgrounds 

For the sake of simplicity, some basic concepts of the approach are defined using the 
program as follows: 

 
Program 1 

0: read (X,Y,Z) 
1: U=(X-Y)*2 
P1: if (X>Y) then 
2:  W=U 
3: else W=Y  

endif 
P2: if (W+Z)>100 then 
4:   X=X-2 
5:  Y=Y+W 
6:   write (“Linear”) 
P3: elseif (X2+Z2>100) then 
7:   Y=X*Z+1 
8:   write (“Nonlinear: Quadratic”) 

endif 
P4:  if (U≥0) then 
9:   write (U) 
P5:  elseif (Y-Sin(Z))>0 then 
10:   write (“Nonlinear: Sine”)  

endif 
  

Definition 1: A conditional expression in multi-way decision statement on path is 
called a Branch Predicate, such as X>Y in P1 of program1. 
Definition 2: Each branch predicate E1 op E2 can be transformed to the equivalent 
branch predicate of the form F op 0, Where E1, E2 and F are arithmetic expressions, 
F= E1-E2 and op is one of {<,≤, >,≥,=,≠}.Along a given path, F represents a 
real valued function called a Predicate Function. For example, branch predicate X>Y 
can be transformed to X-Y>0, then F=X-Y is called predicate function. 
Definition 3: A general linear function L(ni, Ik, P) is written according to the input 
variables of predicate node ni for the given input Ik on path P. Then, the values of the 
coefficients in the general linear function are computed so that L(ni, Ik, P)=0 repre-



International Journal of Information Technology, Vol.12, No.3, 2006 

 135

sents the tangent plane to the predicate function at Ik. Therefore, L(ni, Ik, P) is called 
the Linear Arithmetic Representation of predicate function F in predicate node ni 
for the given input Ik on path P. 
Definition 4: If predicate function F is linear, expression F op 0 is called its linear 
constraint of the predicate function. Otherwise, linear arithmetic representation L(ni, 
Ik,P) is called linear constraint of the predicate function. 

3.2 Mathematic Foundation 

 
In this section, three theorems based on iterative relaxation method [19, 20] are pre-
sented, and the corresponding proofs are given below.  

Theorem 1 If the predicate function on a given path is linear, then its linear arithme-
tic representation is itself. 
Proof  Since the predicate function is linear, the predicate function can be described 
as follows: 

F (X)= a1X1+ a2X2+ …+ aiXi+ …+ amXm+ a0 
· Xi represents input variable; m is the number of input variables, i ∈{1,2,…,m}. 
· ai represents the coefficient corresponding to input variable. 
· a0 represents constant. 

Let k represent iterative number, k∈{0,1,2,…,T}, then the divided difference 
of the kth iterative F (X) on X i,k is:  

kiki

kiki
kiki XX

XFXF
XXF

,1,

,1,
,1,

 )(-)(
],[

−
=

+

+
+ ki

kiki

kikiki a
XX
XXa

,
,1,

,1,,  )-(
=

−
=

+

+  

The derivative of F (X) on X ki , is: kiX
aF

i
,

' =  

Obviously, the coefficient corresponding to input variable obtained with divided 
differences is equivalent to the first derivative of F(X), and is unrelated to the input 
variable. Therefore, the linear arithmetic representation of the linear predicate func-
tion is itself. 

Theorem 2 The linear constraint of predicate function for the current input is equiva-
lent to that on the increments for the input.  
Proof Let the predicate function be as follows (the parameters representation are the 
same as that in theorem 1): 

F (X)= a1X1+ a2X2+ …+ aiXi+ …+ amXm+ a0=∑
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According to iterative relaxation algorithm, the predicate residual of the kth it-
erative F (X) on X i,k is  
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The linear constraint representation of the kth iterative F (X) on the increments 
for the input is 

∑
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Equation (2) is the linear constraint representation of predicate function F(X) on 
input variables. Xi,k+1 is the input variable value I k+1 of the (k+1)th iteration. As the 
result of  (2) obtained from (1), (2) is equivalent to (1). Hence, theorem 2 is proved. 

Theorem 3 If all branch predicate functions on a given path P are linear, then path P 
is feasible while the linear constraint system can be solved, and the values of the 
input variables obtained are the desired test data. Otherwise, path P is infeasible. 
Proof   Let us assume that there are m input variables for the program containing the 
given path P and there are n branch predicates on the path P. Each branch predicate 
can be transformed to one of the forms {F=0,F>0,F≥0}. Assume n1 of them use “=”, 
n2 use “>”, and n3 use “≥”. Then n=n1+n2+n3. According to the given conditions 
and previous two theorems, the set of linear constraints for all branch predicates on 
path P can be constructed as below: 
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Q “≥”is equivalent to “>”U “=” 
∴ (3) can be separated into two sets of linear constraints:  
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Both (4) and (5) are the set of constraints which is only composed of “=” and 
“>”. While solving the set of constraints above, (4) and (5) are either consistent or 
inconsistent. There is a set of test data which can traverse path P if at least one of (4) 
and (5) is consistent. The solution is the desired test data. Otherwise, Path P is infea-
sible if both (4) and (5) are inconsistent. 

3.3   Algorithm Description  

According to the theorems in section 2, the main idea of the new approach is: check-
ing each branch predicate on a given path, if all the branch predicates are linear ex-
pression, algorithm 1 is executed; otherwise algorithm 2. 

Algorithm 1: All the branch predicate functions are used directly to construct the 
linear constraint system for the current input variables. Further, the linear equation 
system for the input variables is established and solved. Solution is the desired test 
data for input variables. If the constraint system is inconsistent, then the path is guar-
anteed to be infeasible. 

Algorithm 2: Choosing a set of input variable values in given domain to check each 
branch predicate on the path, the linear arithmetic representation of nonlinear predi-
cate functions on current input is computed. The linear constraint system on the input 
variables is constructed with the linear predicate functions on the path and the linear 
arithmetic representations obtained previously. Further, the linear equation system on 
the input variables is established, and solved to get the values of input variables. 
Hence, a set of new input is obtained. If the set of new input cannot traverse the given 
path, then the process above is repeated till the desired outcome is obtained or the 
iterative upper limit is achieved. 

4   Application 

Our approach is illustrated to solve the linear constraint system with two examples 
involving linear and nonlinear path separately. 

Example 1 the path with linear predicate function 
Program 1 is used to analyze the automatic test data generation of linear predi-

cate functions on a given path. 
Suppose the path P is selected:  
P={0,1, P1,2, P2,4, 5,6,P4,9} 
According to the path P, the algorithm is executed as follows:  
Algorithm 1 is executed due to all predicate functions (P1, P2, P4) on P are lin-

ear.  
Construct the linear constraint system of predicate functions directly： 
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    Solve the linear constraint system. 
The above inequalities are converted to equalities by introducing three new vari-

ables a, b, c. where a, b >0 and c≥0. The set of equalities is below： 
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The values of free variables can be selected arbitrarily with the constraints that a, 
b >0 and c≥0. The values of free variables a, b, c are chosen as 1. Solving the equality 
system according to the method in [17], the result is  X=2.6，Y= 2，Z=99.8. Hence, 
the input I=(2.6, 2, 99.8) is the desired test data. 

If choose the path P={0,1, P1,2, P2,4, 5,6,P4, P5,10}, the set of linear con-
straints can be obtained: 
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Obviously, the linear constraints, X-Y>0 and 2X-2Y<0, are inconsistent. So the 
constraint system cannot be solved. With theorem 3, it is guaranteed that this path 
must be infeasible. It is easy to check that P is indeed an infeasible path. 

Example 2 the path with nonlinear predicate function 
For the sake of simplicity, the program follows is used to generate test data for 

the path with nonlinear predicate function. 
 

Program 2 
1: float  x; 
2: scanf(“x”,&x); 
P1: if (x<-1); 
P2:  if (x*x)>0; 
3:   print (“Ok”); 
4:  else print (“No”); 
5: else print (“No”); 

 
Choosing and checking path P = {1,2, P1, P2, 3}, Algorithm 2 is executed as 

predicate function P2 on P is nonlinear. Given any arbitrarily chosen input I0 in the 
program domain and iterative increments of input variables ∆ X. e.g. I 0 = X 0 = 1, 

∆ X =1. 
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As the path P is not traversed on I0, the steps for iterative refinement of I0 are 
executed.  

Step 1 is executed since predicate function P2 is nonlinear. 
Step 1 Compute the linear arithmetic representation of P2 

Since the predicate function of P2 is F=X2,  the linear arithmetic representation 
can be represented as follows:  

L(BP2, I k ,P)=aX+b 
Approximate the derivatives of a predicate function by its divided differences, 

then a=3, and 
3X0+b= X 2

0  
Solve the equation, b=-2. The linear arithmetic representation of predicate func-

tion F= X2 is 
L(BP2, I 0 ,P)=3X-2 

Step 2 Construct the linear constraint system of predicate function on I0 using linear 
predicate functions P1 and the linear arithmetic representation L(BP2, I 0 ,P) 

⎩
⎨
⎧

>−
<+

023
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X
X

 

Step 3 Solve the linear constraint system 
Using the solving method of linear constraint system in example 1, the solu-

tion is X=0.7. Therefore, the new input I 1 =0.7. 
step1 ~ step3 for iterative refinement I1  is needed to executed repeatedly since 

the path P is not traversed on I1  yet. Finally, the path P is traversed on I6=-1.3867 
obtained in the 6th iteration. Therefore, the algorithm is determined. I6 is the desired 
test data. The results of execution of our test data generation approach for this exam-
ple in the table are given below. 

Table 1  Test data and the coverage of Branch Predicates(BP) on each iteration 

Iteration X BP1 BP2 
0 1 F T 
1 0.7 F T 
2 0.4817 F T 
3 0.2810 F T 
4 0.0361 F T 
5 -0.4125 F T 
6 -1.8135 T T 

Where F and T represent False and True respectively. 
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5   Conclusions 

While using the new approach to derive the desired test data for a given path, the 
linear constraint system of predicate functions for the input variables is directly con-
structed if all the predicate functions on the path are linear. The initial input and the 
iteration are not needed. Either the desired test data is derived or it is guaranteed that 
the path is infeasible from the solution of the constraint system. The new approach 
need not compute the predicate residuals and the linear arithmetic representation of 
linear predicate function. The constructions of predicate slice, input dependency set 
and the linear constraint of predicate function on the increments for the input can also 
be omitted. Only when the predicate function is nonlinear, the linear arithmetic repre-
sentation needs to be computed.  

The experiments were executed on a Pentium-based computer 1.6G with 512MB 
RMA running Linux OS (Red Flag 4.1). Each program is executed for 5 times. For 
the program 1, the average executing time of test case generation of method [19], 
method [20] and our method are 34ms, 26ms and 22ms respectively, and are 28ms, 
24ms, and 20ms respectively for program 2. Theoretical analysis and practical testing 
results show that the approach is simpler, easier, more effective, and less cost in com-
puting than the others. However, the test data can’t be always guaranteed to generate 
if there are one or more nonlinear predicate functions on the path. 
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