
International Journal of Information Technology, Vol.12, No.3, 2006 

 149

A Rough Set-Based Hierarchical Clustering Algorithm 
for Categorical Data 

Duo Chen, Du-Wu Cui, Chao-Xue Wang, Zhu-Rong Wang  

School of Computer Science and Engineering, Xi’an University of Technology, 
Xi’an, 710048, China 

vkxtfj@163.net 
 

Abstract 
 
In this paper, rough set theory is applied to the clustering analysis. The clustering decision table 
is formed through the introduction of decision attribute into data table, thereby further defining 
the attribute membership matrix. The consistent degree and aggregate degree are present, and 
their functions in the clustering process are deeply analyzed. The clustering level calculation 
formula is designed, in which two factors such as consistent degree and aggregate degree are 
taken into comprehensive account. Also, this paper gives the categorical similarity measure 
based on Euclidean distance so as to better solve the problem of difficult measurement of 
categorical data because of the non-numerical data nature. On the basis of the above work, a 
novel categorical clustering algorithm is designed. 
Keywords: Clustering; Categorical data; Rough set theory; Similarity measure. 

1. Introduction  

Clustering analysis is an important research project in knowledge discovery and data 
mining (KDDM). In practical application, the data sets contain numerical and 
categorical (nominal) data in general. Accordingly, clustering algorithm is required to 
able to deal with both numerical data and categorical data. K-means algorithm 
suggested by Mac Queen [1] is one of the most popular clustering algorithms, and it 
works only on numeric data. Accordingly, K-modes presented by Huang [2] has 
expanded K-means algorithm so as to deal with categorical data. The fuzzy K-modes 
algorithm put forward by Huang and Ng [3] has improved the clustering accuracy by 
using fuzzy processing technology. The above-mentioned algorithms belong to the 
partition methods in clustering analysis, with high operation efficiency, but there exist 
the shortcoming that clustering results are often dependent on the selection of the 
initial points. With an aim at the shortcoming, Bradley and Fayyad [4] posed the 
refining initial points for k-means clustering; Sun, Zhu and Chen [5] advanced the 
iterative initial-points refinement algorithm for categorical data clustering; and D. W. 
Kim, K. H. Lee and D. Lee [6] suggested the fuzzy clustering of categorical data 
using fuzzy centroids. Concept clustering algorithm [7,8,9] is another kind of method 
to deal with the clustering problems of categorical data such that this kind of method 
can not only realize the clustering process, but provide the concept descriptions of 
clusters as well. The hierarchical clustering algorithm can deal with both numerical 
data and categorical data. ROCK algorithm [10] is a type of agglomerative 
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hierarchical clustering algorithm for categorical data. Rough set theory (RST) 
suggested by Pawlak [11,12] is a new mathematical tool to deal with vagueness and 
uncertainty, with successful applicable results obtained in many fields of information 
system. Particularly in recent years, being a kind of favorable mathematical tool, RST 
has displayed the vast applicable future in KDDM field. It can be expected that RST 
holds a vast applicable promise either in theoretical research field or in the practical 
application.  

In dealing with the categorical data, one of the difficulties is to resolve the problem 
of similarity measure, for the nature of categorical data is the non-numerical so that 
Euclidean distance extensively-used in numerical data processing can not be 
employed directly. However, in this paper, RST is applied to clustering analysis; and 
the clustering data set is mapped as the decision table through introducing a decision 
attribute, whereby configuring the attribute membership matrix and presenting 
clustering consistent degree and aggregate degree and analyzing their functions in the 
clustering process. Also, the categorical similarity measure based on Euclidean 
distance is suggested. This measure is better to solve the problem of difficult 
measurement because of non-numerical nature of categorical data. Based on the 
analysis, this paper designs the rough set-based hierarchical clustering algorithm for 
categorical data. Theoretical analysis and experimental results indicate that this 
algorithm is valid. 

2. Basic RST Notions 

This section briefs on the basic notions of RST used in this paper and the detailed 
definitions can be referred to some related literatures [11,12,13]. 

Definition 2.1 An information system (IS, sometimes called data table, attribute-
value system, etc.) is a pair (U,A), where U is a nonempty, finite set of objects called 
the universe and A is a nonempty, finite set of attributes, such that a: U→Va for any 
a∈A, where Va is called the domain of attribute a.  

Each nonempty subset B⊆A determines an indiscernibility relation  
             RB = {(x, y) U×U: a(x)=a(y),∀ a∈B } 
RB partitions U into equivalence classes 
             U/RB={[x]B: x∈U} 
where [x]B denotes the equivalence class determined by x with respect to (wrt) B, 

i.e.,              
             [x]B ={y∈U: (x, y)∈RB}  
A decision table (DT) is an IS (U, AU D), where AID=Ø. Then term A is called 

the condition attribute set, and D is called the decision attribute set. If RA⊆ RD, then 
(U, A U D) is consistent, otherwise it is inconsistent. In general D has only one 
attribute d.  

Definition 2.2 Let (U, A U {d}) be a DT, B ⊆ A, and U/R{d}={D1,...,Dr}. A 
membership distribution function  µ B: U→[0,1]r is defined as follows: 

µ B(x) = { D(D1 /[x]B) , ... , D(Dr /[x]B) },   x∈U 
where, D(Dj /[x]B ) =|DjI [x]B| / |[x]B| 
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3. Rough Set-Based Clustering 

3.1 Related Definitions and Theorems  

In this paper clustering problems are described using the clustering DT (U,AU {d}),  
in which U is the universe, one element xi∈U is called as an object, A is the attribute 
set, A={a1, … ,as}, and d is the introduced decision attribute with the domain 
Vd∈{1,...r}, r≤|U|. The main purpose of introducing the decision attribute d is to use 
it to express the clusters. In terms of RST, the attribute d determines an 
indiscernibility relation R{d}, which  partitions U into equivalence classes, U/R{d} = 
{D1,…,Dr}=P, named as clustering model in this paper. It can be considered that the 
clustering model P expresses a kind of clustering result.  

Definition 3.1. Let (U, AU {d}) be a DT, and P=U/R{d}={D1, ... ,Dr}, A={a1,..., as}, 
n=|U|, an attribute membership matrix Mk is defined as follows: 

Mk =[µ k(i,j)]={D(D j /[x i]ak) }, i∈{1,...,n}, j∈{1,...,r} , k∈{1,...,s} 
Obviously, Mk = [µ k(i,j)] is n×r matrix and µ k(i,j)∈[0,1]. Definition 3.1 comes 

from Definition 2.2, which can be considered as a special example when the condition 
attribute subset B⊆ A in Definition 2.2 takes the individual condition attribute ak∈A. 
It is just because the individual conditional attribute is taken that the membership 
matrix Mk has the different features from those of membership distribution function as 
well as different manipulating methods. 

Theorem 3.1 Let (U, A U {d}) be a DT, and A={a1,...,as}, n=|U|, if P=U/Rd 

={D1,...,Dn}={{x1},...,{xn}}, and then, 
(1) Mk is n-order symmetric matrix, i.e., µ k(i,j) =µ k(j,i), ∀ k∈{1,...,s} 

(2)∑
=

r

1j

µ k(i,j)=1, and , ∑
=

n

1i
µ k(i,j) =1, ∀  k∈{1,...,s} 

Proof:  It follows immediately from Definition 3.1.                                              ■ 
Theorem3.2 (Mergence Theorem) Let (U, AU {d}) be a DT, and A={a1,...,as}, 

P=U/R{d}={D1,...,Dr}, n=|U|. If ∀ f, g∈ {1,...r}, f≠g and D'=Df U Dg, and then 
D(D'/[xi]ak) = D(Df /[xi]ak) + D(Dg/[xi]ak), ∀ i∈{1,...,n}, k∈{1,...,s} 

Proof. ∀ k∈{1,...,s} and i∈{1,...,n}, we have: 
D(Df / [xi]ak) + D(Dg / [xi]ak) = | Df I [xi]ak| / | [xi]ak| + | Dg I [xi]ak| / | [xi]ak| 
=[ | Df[xi]ak| + | Dg[xi]ak| ] / | [xi]ak| = |D' [xi]ak| / | [xi]ak| (since DfIDg= Ø ) 
= D(D' / [xi]ak)                                                                                                        ■ 
In terms of Mergence Theorem, the merging operation in clustering process can be 

achieved via the corresponding addition operation in attribute membership matrix, 
being suitable to either the cluster or the individual object. Therefore, Mergence 
Theorem is of great importance for clustering algorithm. 

Deduction 3.2 Let (U,AU {d}) be a DT, and P=U/R{d}={D1,...,Dr}, A={a1,...,as}, 
n=|U|. If f, g∈{1,...,r}, f≠g and D'=DfUDg, then ∀ i∈{1,...,n}, k∈{1,...,s}, we have 
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(1) D(D' /[xi]ak) ≥ D(Df / [xi]ak) and D(D'/[xi]ak) ≥D(Dg/[xi]ak),  

(2)∑=

n
1i µ  k(i,k')=|D'|, where k' is the sequence number of the cluster D' .  

3.2 Consistent Degree and Aggregate Degree 

In the case of traditional RST, the consistent DT and inconsistent DT are only given, 
and the consistent measure of the DT is not defined. In fact, in a clustering DT (U, 
AU {d}), for each ak∈A, the jth column of Mk represents the membership distribution 
of each object in U corresponding to the cluster Dj in clustering model P. This paper 
holds that this distribution can include the information of coordination of the 
condition attribute set A to the clustering model P in the DT, further reflecting that the 
clustering accuracy can be used as a kind of measure in clustering process. On the 
basis of the above analysis, we have offered the consistent degree definition. 

Definition 3.2 Named mapping Φ:[0,1]→[0,1] as the coordination, if satisfying 
the following properties: 

(1) Φ(x) = 1 iff  x = 0, 1, and Φ(1/2)=0 
(2) Φ(x) =Φ(1-x) 
(3) Φ(x) on [0, 1/2] monotonic reduction 
In Definition 3.2, condition (1) indicates that when independent variable x is 1 or 0, 

i.e. the object completely or incompletely falls under the specified cluster, the 
coordination can reach its maximum value 1; correspondingly, when x is 1/2, i.e. the 
membership relation is entirely unclear such that the coordination reaches its 
minimum value 0; condition (2) indicates that the coordination is about x=0.5 
symmetry; condition (3) specifies monotonic features of the mapping.  

We introduce Φ(x) 5.0x2 −×= served as the coordination function. 
Definition 3.3 Let (U,A U {d}) be a DT, P=U/R{d}={D1,..,Dr}. We define the 

consistent degree of the Dj in P as:  

CON(P,j)=
ns

1
× ∑∑

= =

s

1k

n

1i
Φ [µ k(i,j)] (1) 

and the consistent degree of the DT as: 

CON(P)=
r
1 ∑

=

r

1j

[ CON(P,j) ]  (2) 

Obviously, CON(P,j), CON(P) ∈[0,1] 
Theorem 3.3 In (U,AU {d}), if P=U/R{d}={D1,...,Dr}={U}, then CON(P)=1 
Proof. It follows immediately form the definition of CON(P)                                ■ 
Without considering the case of P= {U}, the larger the CON(P) is, the higher the 

clustering accuracy is. The clustering process should render CON(P) to advance in the 
direction of enlargement. But it is not complete to guide the clustering via CON(P), 
this is because consistent degree does not include the clusters in P upon the objects 
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containing information. This paper ushers the aggregate degree to indicate that the 
clusters contain the objects to a certain extent. 

Definition 3.4 Let (U,AU {d}) be a DT, n=|U|, A={a1...,as}, P=U/R{d}={D1,...,Dr}, 
we define the aggregate degree of Dj in P as: 

AGD(P,j) =
s
1 ∑

=

s

1k

{Ψ [ ∑
=

n

1in
1 µ  k(i,j)

2 2/1] }  (3) 

where, 1)]ln(1[)( −⋅−=⋅Ψ , and the aggregate degree of the DT as: 

AGD(P)=
r
1 ∑

=

r

1j

[ AGD(P,j) ]  (4) 

In Definition 3.4, the mean-root-square is employed to define AGD(P,j), whereas 
the arithmetic mean value is not adopted to do the definition. This is mainly due to 
avoiding yielding trivial values (i.e. simple 0 or 1). This method borrows the 
predictiveness definition method listed in literature [9]. But the predictiveness and 
aggregate degree have three points in difference: the first is that the predictiveness is 
defined in terms of probability distribution, while the aggregate degree is defined in 
terms of membership matrix; the second is that the aggregate degree has had the 
normalization manipulation, whereby avoiding that the aggregate degree can quickly 
reach rather large numerical values with an increase in cluster numbers; and the third 
is that ushering inΨ function is convenient to match with consistent degree. As far as 
Ψ function is concerned, this section will analyze it in details in later part. 

Theorem 3.4 Let (U,AU {d}) be a DT, P=U/R{d}={D1,...,Dr}, then AGD(P)∈(0,1]  
Proof.  For any ak∈A, since µ k(i,j)∈ [0,1], we have AGD(P)≤1; Because if 

elements in any column of Mk are all zero, indicating that any objects in U do not fall 
under the cluster corresponding to this column in P, this is impossible, so we have 
AGD(P)>0.  To sum up the above descriptions, AGD(P)∈(0,1] holds.                     ■ 

Theorem 3.5 Let (U,AU {d}) be a DT, P=U/R{d}={D1,...,Dr},. and D'=DfU Dh, 
∀ f,h∈{1,...r} , f≠h. If P' =( P - {Df, Dh} )U {D'},  then AGD(P') > AGD(P) 

Proof. It follows immediately form Definition 3.4 and Merge Theorem.               ■ 
In terms of Definition 3.4 and Theorem 3.5, AGD(P) expresses the containing 

degree of clusters in P upon the objects. In agglomerative hierarchical clustering 
algorithm, from the starting P including n clusters, i.e. each object being a cluster to 
the final P containing one cluster, i.e. all the objects being a cluster, has formed the 
dynamic clustering map. In the dynamic clustering process, aggregate degree goes up 
monotonically but the consistent degree maybe not. Actually in practical application, 
the consistent degree has some reductions with an increase in aggregate degree. The 
nature of monotonic increase of aggregate degree is of important application value. 
We may appoint the threshold λ∈ (0,1) of the aggregate degree as the algorithm 
ending condition. An effective algorithm should take the two indexes of CON(P) and 
AGD(P) into comprehensive consideration, whereby rendering CON(P) to have some 
increase or to have minimal decrease with an increase in AGD(P) in the clustering 
process, for this reason  the calculation formula of clustering level is  introduced. 



Duo Chen, Du-Wu Cui, Chao-Xue Wang, Zhu-Rong Wang 
A Rough Set-Based Hierarchical Clustering Algorithm for Categorical Data 

 154

Definition 3.5  Let (U, AU {d}) be a DT, P=U/R{d},={D1,...Dr}, we define the 
clustering level of  Dj in P as: 

LEV(P,j) = [2×CON(P,j)×AGD(P,j)] / [CON(P,j) + AGD(P,j)] (5) 

and the clustering level of the DT as: 

LEV(P) = [2×CON(P)×AGD(P)] / [CON(P) + AGD(P)] (6) 

Clustering level can comprehensively reflect two indexes of the consistent degree 
and the aggregate degree. It is easy to proof that LEV(P) is the monotonic increasing 
function wrt AGD(P) and CON(P). Obviously, LEV(P)∈[0,1], and LEV(P)=0, iff 
CON(P)=0; LEV(P)=1, iff CON(P)=AGD(P)=1. It can be known from Definition 3.5 
that AGD(P) and CON(P) in LEV(P) are two symmetrical parameters. When AGD(P) 
and CON(P) values are closer, they will have the similar effect upon LEV(P); when 
the value of one of the parameters is much smaller than that of other parameter, the 
parameter having the small value will have the greater effect upon LEV(P).  

The function Ψ is introduced into AGD(P) definition (Definition 3.4). This is 
because in the initial stage of agglomerative algorithm, AGD(P) values are small (or 
very small when the data set are very large) so that the main purpose of introducing 
function Ψ lies in raising AGD(P) value in the initial stage of algorithm so as to match 
with CON(P). Without introducing function Ψ and in the initial stage of algorithm, 
AGD(P) in the clustering level is too small to render CON(P) to play its role, which is 
no doubt to affect the accuracy of clustering algorithm. 

3.3 The Categorical Similarity Measure Based on Euclidean Distance 

In this section, a novel categorical similarity measure is suggested. 
Definition 3.6 In (U,AU {d}), A={a1,...,as}, P=U/R{d}={D1,...,Dr}, n=|U|,∀ f,h∈  

{1,...,r}, the similarity between two clusters Df and Dh in P can be defined as follows: 

SIM(f,h)= µ∑∑
==

−
n

1i

s

1k

(
n
1[1{

s
1

k(i,f) / |Df| µ− k(i,h) / |Dh|
2) 2/1] }  (7) 

Definition 3.6 cites Euclidean distance to describe the similarity among clusters 
such that the greater the value of distance is, the smaller the value of similarity is. Not 
only can the  similarity defined using Euclidean distance measure the numbers of the 
same attributes between two clusters and differences in the numbers of dissimilar 
attributes, but also the key lies in expressing the degrees of the similar and dissimilar 
attributes, whose nature is to do numerical processing of categorical attributes. In 
Eq.(7), µ k(i,f) / |Df| and µ k(i,h) / |Dh| indicate the centers of cluster Df and cluster 
Dh respectively, i.e. using membership mean value represents the cluster centers in 
such a way as to borrow the expressing method of the well-known K-means algorithm 
[1] in numerical clustering. If Df and Dh contain one object, then |Df| = |Dh|=1. 
Accordingly Definition 3.6 is also adaptable to this situation so that Definition 3.6 
expresses the similarities among the cluster versus the cluster, and the object versus 
the cluster as well as the object versus the object.  
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3.4 The Algorithm  

This section presents the Rough Set-Based Agglomeration Hierarchy Clustering 
Algorithm (RAHCA). This algorithm first lets P=U/R{d}={{x1},...,{xn}}, and then 
conducts merging operation in terms of the clustering level and similarity measure. 
This operation can be carried out till the number of clusters m or the aggregate degree 
threshold λ given by users and outputs the clustering results, i.e. clustering model P. 
This algorithm can also be conducted till all the objects merged into one cluster. In 
such a way the algorithm outputs the dynamic clustering map.  

Algorithm RAHCA  
Input: Data table (U,A), number of clusters m (or aggregate degree threshold λ) 
Output: Clustering model P  
Step 1 Let P(0)= {D1,...,Dr}={{x1},...{xn}}, n=|U|, r=n. 

     Step 2. In terms of Definition 3.1, derive the membership matrix Mk, k∈{1,...,|A|} 
     Step 3. Repeat the following operations, until r = m (or LEV(P) ≥λ) 
       Step 3.1 Find the cluster Dmin with the minimum LEV value using Eq.(5). 

  Step 3.2 Compute the similarity between Dmin and the rest of the clusters in P  
                using Eq.(7), let Dsim be the cluster scoring the highest similarity with Dmin. 
       Step 3.3 Update clustering model P and membership matrix Mk, k∈{1,...,|A|} by  

           merging Dmin and Dsim according to Mergence Theorem, and then r =r-1. 
The algorithm complexity is analyzed as follows. In step 2, the equivalence classes 

U/R{ak} should be first computed for computation Mk, and then r×|U| elements in Mk 
must be conducted, where r is the number of the clusters in P with the maximum |U|. 
Algorithm 1 in literature[14] can be used to compute equivalence classes, whose time 
complexity is O(|A||U|)log(|U|), thereby the time complexity of step 2 should be 
O(|A||U|log|U|)+O(r|A||U|). In step 3, the maximal number of the iterations is |U|-1, 
and each iteration needs to compute LEV r times in step 3.1 and SIM r-1 times in step 
3.2, both of them can be computed in O(r|A||U|), and the updating operations in step 
3.3 can be finished in O(|A||U|), such that the time complexity of step 3 is 
O(r|A||U|2). So the time complexity of the algorithm can be estimated as O(|A||U|3) . 
We can easily analyze that the space complexity is O(|A||U|2). It is worth mentioning 
that the above-mentioned analysis is in the most unfavorable situation and regards Mk 
as the dense matrix, but in practical application Mk is the highly sparse matrix. Using 
a type of appropriate sparse matrix operating strategy, both the time complexity and 
the space complexity of the algorithm will be reduced notably. 

4. Experimental Results 

4.1 Artificial Data Set 

In this section, one simple example is used to demonstrate the execution of RAHCA. 
In the clustering DT shown in Table 1, the universe U={x1,...x5}, the initial categorical 
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condition attribute set A={a1, a2, a3}, d is the introduced decision attribute with the 
domain Vd={1,...,5}, and  it is in its initial state as shown in Table 1.  

Table 1.  A Clustering DT 

U a1 a2 a3 d 
x1 1 1 1 1 
x2 2 2 3 2 
x3 1 1 2 3 
x4 2 2 1 4 
x5 3 2 3 5 

In the first iteration, the LEV values of Dj, j∈{1,...,5} are 0.523, 0.515, 0.591, 
0.515 and 0.581 respectively, LEV[P(0),2]=0.52 is the minimum, let Dmin=D2, the 
SIM values between  D2 and the rest objects are 0.57, 0.53, 0.85 and 0.82 respectively, 
obviously the nearest cluster is D4, SIM(2,4)=0.85. By merging D2 and D4, P(1) 
={x1,{x2,x4},x3,x5} can be obtained. In terms of the same computing, in the second 
iteration by merging D1 and D3, P(2)={{x1,x3},{x2,x4},x5} can be obtained. In the third 
iteration, P(3)={{x1,x3},{x2,x4,x5}}; and in the last iteration, P(4)={{x1,x2,x3,x4,x5}}, 
thus the algorithm comes to its end. It is easy to analyze that P(2) and P(3) are the 
rational results.  

The dynamic clustering map is shown in Fig.1, and the curves that indicate the 
changing in numerical values of CON(P), AGD(P) and LEV(P) in each iteration are 
shown in Fig. 2. 

Fig. 1. Dynamic clustering map              Fig. 2. Values of consistent degree, aggregate 
                                                                    degree and clustering level in each iteration 

4.2 UCI Data Sets 

We ran experiments on 3 data sets obtained from the UCI Machine Learning 
Repository1. The Balloon date set contains 20 instances and each instance has 4 
categorical attributes. It is classified into 2 classes. The Soybean date set contains 47 
instances on diseases in soybeans and each instance has 35 categorical attributes. The 
data set is classified into 4 classes according to its disease type. The Voting data set 
derives from 1984 United States Congressional Voting Records Database. It contains 
435 instances, which represent the voting records of 267 democrats and 168 

                                                            
1 http://www.ics.uci.edu/~mlearn/MLRepository 
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republicans respectively. Each instance has 26 Boolean attributes. There are some 
missing attribute values in the date set and they are regarded as a special constant 
value in this paper. 

The algorithm in literatures [2,9] and RAHCA algorithm proposed in this paper are 
adopted respectively (algorithm A, algorithm B and algorithm C for their short 
forms). The experiment results are shown in Table 2. In experiments the standard 
numbers of clusters are specified. The accuracy of an algorithm is the ratio of the total 
number of instances occurring in both the ith cluster and its corresponding true class 
to the number of instances in the data set. The results of Algorithm A are the average 
accuracy value of 50 runs. The experiment results indicate that the Algorithm C, i.e. 
RACHCA, has the highest accuracy for all of above date sets. 

Table 2. Experiment results 

Data set 
Number 

of 
objects 

Number 
of 

condition 
attributes 

Number 
of 

clusters 

Accuracy 
of 

algorithm 
A (%) 

Accuracy 
of 

algorithm 
B (%) 

Accuracy 
of 

algorithm 
C (%) 

1.Balloon 20 4 2 69.8 80.0 100 
2.Soybean 47 35 4 79.4 100.0 100 
3.Voting 435 16 2 85.6 87.1 88.3 

5. Conclusions 

This paper applies RST to the clustering analysis in KDDM, and introduces the 
decision attribute to configure the clustering DT, whereby defining the membership 
matrix. This paper suggests the consistent degree and aggregate degree measures 
corresponding to the clustering model P of the DT. The two measures express two 
aspects of clustering process respectively. The consistent degree expresses the 
coordination degrees among the equivalence classes of the condition attribute set and 
the clusters in clustering model P of the DT, whereas aggregate degree indicates the 
containing degree of cluster itself upon the objects. In order to take the effect of the 
two factors upon the clustering process into comprehensive consideration, the 
clustering level calculation formula is designed, in which the consistent degree and 
aggregate degree are in the symmetric positions, whereby rendering the clustering 
process to be able to give consideration to the two measures at the same time. When 
their values are near, they can affect the clustering level in common; when one of 
which is smaller, this measure will play an important role in the clustering level. It is 
just for this reason that it can become a major factor to affect the clustering direction. 
In practical application, the aggregate degree is small in the initial clustering stage, so 
the aggregate degree is a major influencing factor in algorithm, and it is just at this 
time that the aggregate degree in algorithm should be raised. With the clustering 
ongoing, the aggregate degree increases gradually, and it, together with the consistent 
degree, guides the clustering. By the late stage of clustering, the consistent degree 
becomes a major influencing factor because of its becoming smaller such that it is just 
at this time that algorithm should first guarantee the consistent degree.  
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Also, this paper poses the definition of similarity measure for categorical data 
based on Euclidean distance, whereby the problem of difficult comparison of 
similarity caused by the nature of non-numerical values in categorical data can be 
better resolved. This measure is adaptable to the comparison among the cluster versus 
the cluster and the cluster versus the object as well as the object versus object. In 
addition, the consistent degree, aggregate degree and similarity measure are 
normalized in such a manner as to be convenient for the manipulation of each 
parameter and to make these parameters more coordinated and rationally brought into 
full play.  

Based on the above analytical results, this paper designs the Rough set-based 
Agglomerative Hierarchical Clustering Algorithm (RAHCA) suitable for categorical 
data. This algorithm needs the users to offer the number of clusters or the aggregate 
degree threshold. Without these parameters specified, the algorithm outputs the 
dynamic clustering map which needs to be further analyzed so as to obtain the 
clustering results. The future research work will include the further improvement of 
algorithm efficiency as well as research on clustering algorithm for mixed numeric 
and categorical data. 
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