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Abstract 

 
This paper introduces a novel fuzzy adaptive optimization strategy (FAOPSO) for the particle 
swarm algorithm. Initially, to avoid falling into local optimums, the information of multi-
optimum distribution state is introduced into the particle swarm movement programming. 
However, in this kind of multi-optimum static programming mode (MSPPSO), the program-
ming proportion factor of multi-optimum cannot be dynamically adjusted in the optimization 
process. On the basis of MSPPSO, a kind of fuzzy adaptive programming strategy based on 
double-variable and single-dimensional fuzzy control structure is proposed and the perform-
ance of FAOPSO is also observed. The proposed approach is validated by function optimiza-
tion problem from the standard literature. Simulation results indicated that the approach is 
highly competitive for its better general convergence performance. 
Keywords. Particle swarm algorithm, multi-optimum, fuzzy programming  

1   Introduction 

Particle swarm optimization (PSO) algorithm is a population-based heuristic global 
optimization technology first introduced by Kennedy and Eberhart[1] in 1995. Its basic 
idea was based on the simulation of simplified animal social behaviors such as fish 
schooling, bird flocking, etc. In PSO algorithm, the individual is called particle which 
has not mass and volume, and the trajectory of each individual in the search space is 
adjusted by dynamically altering the velocity of each particle, according to its own 
flying experience and the flying experience of the other particles in the search space. 
The PSO algorithm is becoming very popular due to its simplicity of implementation 
and ability to quickly converge to a reasonably good solution[2~3] . Now, PSO algo-
rithm is effectively applied in power system optimization, traffic planning, engineer-
ing design and optimization, and computer system etc[4~7].. 

Since the introduction of the PSO algorithm in 1995, there has been a considerable 
amount of work done in developing the original version of PSO[8~14], through empiri-
cal simulations, in the integration of its self-adaptation, parameter selecting, swarm 
topology and integrating with other intelligent optimizing methods. In this paper, we 
present a novel fuzzy adaptive optimization strategy based on double-variable and 
single-dimensional fuzzy control structure for particle swarm optimization algorithm, 
called FAOPSO, in which the proportion factor of multi-optimum programming can 
be dynamically adjusted in the optimization process. Our current proposal is an im-
proved version of the static programming PSO (MSPPSO) reported in paper [13], in 
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which the knowledge of multi-modal distribution state is introduced into the particle 
swarm movement programming that avoid falling into local optimums and improves 
the exploratory capabilities of the standard algorithm. 

 FAOPSO is validated using function optimization problem from the standard lit-
erature and compared against three other algorithm modes: standard PSO (SPSO), the 
fuzzy PSO (FPSO), and the MSPPSO. In section 2, we will introduce them briefly.  

2   Some Previous Work on PSO  

In standard version of PSO (SPSO) [11], each particle represents a possible solution to 
the optimization task at hand. Assume swarm size is N , the position vector and the 
velocity vector of in D-dimension space coordinate of every particle can be indicated 
as ),,,( 1 iDidii

xxxx KK= and )v,v,,v( 1v iDidii
KK=  respectively.  

Then, the flight velocity and the new position of particle i  )~1( Ni = for the next 

fitness evaluation in dth  )~1( Dd =  dimensional subspace are calculated using 
the following two equations: 

)()()()( 2211 idgdidididid xprandcxprandcvv −+−+ω=                                           (1) 

ididid vxx +=                                                                                                      (2) 

where idp is the record of the former best position of current particle and similarly, 

the difference between idp and current particle is also applied to set the directional 

randomly movement of current particle. gdp  is the record of the former best position 

of the whole swarm, the difference between gdp  and the current position of particle i  

is applied to alter the incremental component of the movement toward swarm opti-
mum. Acceleration coefficients 1c  and 2c  determine the relative influence of the 
social and cognition components, and are often both set to the same value to give 
each component (the cognition and social learning rates) equal weight. The vari-
ableω is called the inertia weight, which is changed linearly with the running time:  

              TtKKK /)( 121 −+=ω                                                                        (3) 
  whereT is the total cycle index, t  is the cycle index of current computation , and 1K  

, 2K  are constants which indicate the border of changing ω .  
     Initially, a population of particles is generated with random positions, and then 

random velocities are assigned to each particle. The fitness of each particle is then 
evaluated according to an objective function. At each generation, the velocity of each 
particle is calculated according to equation (1) and the position for the next function 
fitness evaluation is updated according to equation (2). Each time if a particle finds a 
better position than the previously found best position, its location is stored in mem-
ory. Generally, each particle accelerates in the direction of its own personal best solu-
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tion found so far, as well as in the direction of the global best position discovered so 
far by any of the particles in the swarm. This means that if a particle discovers a 
promising new solution, all the other particles will move closer to it, exploring the 
region more thoroughly in the process.  

On the basis of the above standard mode (SPSO), Shi Y H and Eberhart R C[12] 
presented a fuzzy system successfully implemented to dynamically adapt the inertia 
weight of the particle swarm optimization algorithm, called FPSO. Here, we do not 
present it in detail. 

Multi-optimum static programming mode (MSPPSO) [13]is proposed by the authors. 
From simulation results, we found that the initial population distribution affects the 
performance largely local optimal value in PSO. To solve this problem, the distribu-
tional characteristics of multi-optimum value of the whole swarm should be paid 
more attention. Therefore, besides its former optimum position, the M  optimum 
values of the swarm were introduced into multi-variant programming of the move-
ment of current particle and the velocity of the particle can be determined by follow-
ing formula: 

         ∑
=

−+ω=
M

k
ididkkkidid xprandcvv

1
, )()(                                             (4) 

where idkp ,  is the kth  optimum ranked in the whole swarm, kc  denotes the instruc-

tion factor (or called “programming coefficient”) of M  optimum values of the 
swarm, and ()krand  indicate their matching random quantity respectively. Although 
the comparison of multi-variant optimum value is added in velocity computation to 
some extent in such movement pattern, the ability to avoid falling into local optima is 
strengthened with such expense.  

3 Fuzzy Adaptive Optimization Strategy of PSO 

The searching process of particle swarm optimization is a nonlinear and dynamic 
process. Therefore, when the environment itself is dynamically changed over the 
time, the algorithm should be able to adapt dynamically to the changing environment. 
The static programming strategy obtains the better programming coefficient kc  
through plenty of experiments. Although this method improves the general conver-
gence performance compared with the standard algorithm, the programming coeffi-
cient kc  cannot be adjusted dynamically to the current optimization ability; therefore, 
its adaptive ability is poor and its general convergence performance is limited to some 
extent. 

In this paper, we try to carry out the intelligent multi-optimum programming of the 
PSO. During the implement of intelligent programming, fuzzy theory was introduced 
into PSO again, and a fuzzy adaptive system implemented to multi-optimum dynamic 
programming in PSO algorithm. The foundation of the fuzzy system is that after 
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fuzzy evaluating current optimization performance, the current experience about the 
optimization performance influenced by each optimum is used to adjust the pro-
gramming coefficient of multi-optimum adaptively in the optimization process, which 
contributes to realize the adaptive programming instruction on the particle swarm.    

In this system, such a kind of double-variable and single-dimensional fuzzy control 
structure as Fig.1 is adopted. 

double-variable and
single-dimensional

fuzzy control structure

U
E1

E2

 
Fig.1 Double-variable and single-dimensional fuzzy control structure 

 
In the algorithm defined by the authors, the influence of particle swarm movement 

caused by each optimum depends on the fuzzy distance between the current position 
of each particle and its position according to each optimum information value. There-
fore, we can determine the instruction output of each optimum. The above distance 
information can be inputs of the fuzzy instruction controller, after reasoning of some 
intelligent fuzzy rules, output the fuzzy instruction variable, and the dynamic instruc-
tion ratio relationship among these multi-optimum optimization can be obtained 
through defuzzification. 

Here, defining the distance between current position and each optima position on 
each dimension for each particle as: ididkidk xpE −= ,, . Then, formula (4) can be 

described as formula (5):  

∑
=

+=
M

k
idkkkidid Ecrandwvv

1
,()                                                         (5) 

In this paper, the binary optima fuzzy programming based dynamic step increment 
computation pattern is adopted in simulation, 2=M  in the equation（5）, idp ,1 and 

idp ,2  are optimum and sub-optimum of the whole swarm respectively. Through 

consider the historical experience about the algorithm performance influenced by 

idE ,1 and idE ,1 , establish the fuzzy rules to implement the adaptive dynamic pro-

gramming of the binary optima information instruction mode in particle swarm. 
In the fuzzy instruction mode of binary optima information, the input variables are 

idE ,1 and idE ,1 , and the output variable is the fuzzy change value of the ratio between 

the programming coefficients of binary optima information: 21 / cc∆ . 
In the process of the fuzzification of input and output variables, we selected the 

same fuzzy sets: ( NB ， NM ， NS ， Z ， PS ， PM ， PB ), in which, NB  
denotes “Negative Big”, NM is “Negative Medium”, NS is “Negative Small”, 
Z is ”Zero”, PS is “Positive Small”, PM is ”Positive Medium” and PB is “Positive 
Big”. The sketch map of the membership functions is Figure 2. 
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Fig.2 Sketch map of membership function for fuzzy variables 

 
The authors established 49 dynamic fuzzy adjustment rules of multi-optimum in-

formation based on experience (see Tab.1). 
Tab.1   Fuzzy Rules of the Fuzzy System  (Output is 21 / cc∆ ) 

      1E  
2E  

 
NB 

 
NM 

 
NS 

 
Z 

 
PS 

 
PM 

 
PB 

NB PS PS NM NS NS Z PS 
NM PM PS NS NS NS Z PS 
NS PB PM Z NM Z PS PM 
Z PB PB PM Z PM PB PB 

PS PB PB Z NM PS PS PB 
PM PM PS Z NS Z PM PB 
PB PS Z NS NS NS PB PB 

 
The dynamic adjustment value of the ratio between the programming coefficients 

of binary optima information is obtained by the defuzzification of the fuzzy output. 
We can describe the fuzzy adaptive optimization strategy of PSO (FAOPSO) as 

follows (Fig.3 represents the flow char of FAOPSO): 
Step.1 Initialize particle swarm in the way adopted in MSPPSO [13]; 
Step.2 Evaluate the adaptive value of each particle by computing the objective 

function; 
Step.3 Compute he best position ( bestp ) for each particle, comparing and sorting 

all the current best positions, and finding the M optimums; 
Step.4 Detect the distance information: 1E (the distance between current position 

and the optimum position) and 2E (the distance between current position and the sub-
optimum position) and inputting the fuzzy programming system;  

Step.5 Output the change value of the ratio between the programming coefficients 
of binary optima information: 21 / cc∆  after fuzzy computation and defuzzification, 

and update the current 1c 、 2c ; 
Step.6 Detect if particle enters the optimal neighbor area or not? If it is true, then 
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update the velocity and position of particle according to multi-optimum programming 
rules and update multi-optimum; else update the velocity and position according to 
standard PSO algorithm 

Step.7 Detect the terminate conditions (reaching the maximal generation or finding 
the idea optimum). If the terminate conditions was met, end the algorithm, or con-
tinue the computation. 

4 Experimental Settings and Simulation for Benchmark Testing 

A. Benchmarks 

In the simulation comparison work of this paper, two well-known Benchmarks: 
Rosenbrock function and Griewank function were used to evaluate the performance. 
The first function is simple unimodal function whereas the second function is multi-
modal function designed with a considerable amount of local minima. Simulations 
were carried out to find the global minimum of each function. Both benchmarks used 
are given in Tab. 2. 

Tab. 2  Benchmarks for simulation 

Name of 
function Mathematical representation Range of 

search 

Rosenbrock 
function ∑

=
− −+−=

n

i
iii xxxxf

1

222
11 ])1()(100[)(  n)100,100(−  

Griewank 
function ∑ ∏

= =

+−=
n

i
i

i
n

i
i x

i
xxxf

1 1

2
2 1)(cos

4000
1)(  n)600,600(−  

 

B Population Initialization 

During the early stages of the development of the PSO algorithm, symmetric ini-
tialization was widely used, where the initial population is uniformly distributed in 
the entire search space. Whereas, since the benchmarks used in this paper have the 
global minimum close to the origin of the search space, we use the asymmetric ini-
tialization method to observe the performance of the new development introduced in 
this paper. Tab. 3 shows the range of population initialization and the maximum 
velocity with the limitation of maxmax XV = for the benchmarks considered in this 
paper. 
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Fig.3  The flow char of FAOPSO 

Tab. 3 Initialization range and maximum velocity for benchmarks 

Name of function Range of 
initialization maxV  

Rosenbrock func-
tion 

n)30,15(  100 
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Griewank func-
tion 

n)600,300(  600 

 
C  Experimental settings 

Simulations were carried out to observe the quality of the optimum solution of the 
new algorithm introduced in this paper. Both benchmarks were tested with dimen-
sions 10, 20, and 30. A different number of maximum generations (Gmax) is used 
according to the complexity of the problem under consideration. For each function, 
100 trials were carried out and the average optimal values are presented.  In addition, 
the basic parameters setting are: The size of the particle swarm is 80; 

4.01 =k , 9.02 =k . 

For both benchmarks, the boundary settings of fuzzy variables idE ,1 , idE ,2  , and 

21 / cc∆ are presented in Tab. 4. 

Tab. 4 The boundary settings of fuzzy variables idE ,1 , idE ,2  , and 21 / cc∆  

Fun Fuzzy 
Variables NB  NM  NS  Z  PS  PM  PB  

idE ,1  (-100,  -50) (-60, -20) (-30, 5) (-5, 5) (-5, 30) (20, 60) (50, 100) 

idE ,2  (-100,  -50) (-60, -20) (-30, 5) (-5, 5) (-5, 30) (20, 60) (50, 100) 
1f  

21 / cc∆
 

(-0.1,  -0.04) (-0.045,      
-0.015) 

(-0.025, 
0.005) 

(-0.005, 
0.005) 

(-0.005, 
0.025) 

(0.015, 
0.045) 

(0.04, 
0.1) 

idE ,1  (-600,  -300) (-400, -
100) (-125, 25) (-25, 25) (-25, 125) (100, 

400) (300,600) 

idE ,2  (-600,   -300) 
(-400, 

-100) 
(-125, 25) (-25, 25) (-25, 125) (100, 

400) (300,600) 2f  

21 / cc∆
 

(-0.1,  -0.04) (-0.045,      
-0.015) 

(-0.025, 
0.005) 

(-0.005, 
0.005) 

(-0.005, 
0.025) 

(0.015, 
0.045) 

(0.04, 
0.1) 

5 Results from Benchmarks Simulations 

We observed the performance in terms of quality of the average optimum value for 
100 trials, of the new algorithm developed in this paper under the same parameter 
setting except 21 ,cc . Tab.5 and Tab.6 show the simulation results and compares with 
SPSO, FPSO and MSPPSO for two benchmarks. In the table, figures in bold repre-
sent the comparatively best values.  

Tab.5  Comparison of the average values for 100 trials  

(Rosenbrock function) 
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Dim Gmax SPSO[11] FPSO[12] 
 

MSPPSO[13] 

10 1000 36.2945 15.8165 8.0234 

20 1500 87.2802 45.9999 32.8245 

30 2000 205.5590 124.418 53.8489 

Dim Gmax FAOPSO 
2.0)0(/ 21 =cc  

FAOPSO 
5.2)0(/ 21 =cc  

FAOPSO 
1)0(/ 21 =cc  

10 1000 6.0449 6.4582 5.0035 

20 1500 14.5275 13.9667 13.7362 

30 2000 30.5783 32.8956 30.7947 

 
Tab.6  Comparison of the average values for 100 trials 

(Griewank function) 

Dim Gmax SPSO[11] FPSO[12] 
 

MSPPSO[13] 

10 1000 0.07600 0.06832 0.08759 
20 1500 0.02880 0.02596 0.02410 
30 2000 0.01280 0.01495 0.01037 

Dim Gmax FAOPSO 
2.0)0(/ 21 =cc  

FAOPSO 
5.2)0(/ 21 =cc  

FAOPSO 
1)0(/ 21 =cc  

10 1000 0.8460 0.8276 0.8115 

20 1500 0.02456 0.02390 0.02478 

30 2000 0.00983 0.01047 0.00964 

 

The typical dynamic curves of 21 / cc are shown in Fig.4 (a~c) (30 dimensional 
function optimization, and initialization value is separately 1)0(/ 21 =cc 、

0.2)0(/ 21 =cc and 2)0(/ 21 =cc  ). 
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Fig.4 Typical dynamic curves of 21 / cc in FAOPSO 
 

In Tab.5 and Tab.6, we compare the performance of new algorithm in different ini-
tialization of 21 / cc  with SPSO, FPSO and MSPPSO for Rosenbrock function and 
Griewank function. From the results, FAOPSO always has the best average optimum 
solution (figures in bold) in different simulations. 

Fig.4 displays the typical dynamic variation of the ratio between the programming 
coefficients of binary optima information 21 / cc  from the different initial setting 
values ( 1)0(/ 21 =cc 、 0.2)0(/ 21 =cc and 2)0(/ 21 =cc ) in the process of 30 di-
mensional function optimization. 

Generally, the average optimum solutions and typical dynamic curves of 21 / cc  
above fully prove that the general optimization performance of the new algorithm is 
significantly good. From the average optimization results, we can also see that the 
performance of the algorithm was hardly not influenced by the initialization value of 
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1c and 2c (or 21 / cc ), that is to say, even when the sub-optimum is setting to have 
more attraction to particle than the optimum at initialization ( 1)0(/ 21 <cc ), 
FAOPSO can also find good optimization result.  From Fig.4, we can find that 21 / cc  
reach a similar value ( 5/ 21 =cc ) from different initialization values, which is con-
sistent with that 5/ 21 =cc is a preferable setting in the static multi-optimum pro-
gramming mode. 

Although the new fuzzy programming strategy is applied to the dynamic pro-
gramming of particle swarm optimization and the general optimization performance 
of the algorithm is improved, the fuzzy rules used in this paper are got from the spe-
cific problem, and can not apply them to other type of optimization problems directly, 
that is to say, when the algorithm is used for other kinds of problems, the fuzzy rules 
should be adjusted proper according to specific characteristics of the given function 
in order to achieve the best effects of speed and convergence. 

6 Conclusions 

We have described a novel fuzzy adaptive optimization strategy for particle swarm 
optimization algorithm aiming to dynamically adjust the proportion factor of multi-
optimum programming so that it can improve the performance in terms of the optimal 
solution within a reasonable number of generations. Initially, we introduced fuzzy 
control method into PSO and presented a kind of fuzzy control strategy on the basis 
of multi-optimum static programming mode.  Then we designed the fuzzy system 
with the double-variable and single-dimensional fuzzy control structure, and vali-
dated the performance using two benchmarks. The average results compared with 
other methods show that the new algorithm FAOPSO has significant performance of 
convergence. Further, in the view of the authors, the applications of fuzzy theory in 
particle swarm algorithm optimization with intelligent characteristics can be dis-
cussed further in future and the convergence pattern, dynamic and steady-state per-
formances of the algorithm can be improved to specific complex optimization func-
tions. 
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