
International Journal of Information Technology, Vol.12, No.3, 2006 

 89

A Novel Ant Colony System Based on Delauney 
Triangulation and Self-adaptive Mutation for TSP 

Chao-Xue Wang, Du-Wu Cui, Yi-Kun Zhang, Zhu-Rong Wang  

School of Computer Science and Engineering,  
Xi'an University of Technology, Xi'an, 710048 China 

Wbllw@126.com 

 
Abstract 

 
A novel ant colony system which employs a candidate set strategy based on Delaunay 
triangulation (CSDT) and a self-adaptive mutation operator (SMO) for TSP (DSMACS) is 
proposed. Under the condition that all the edges in the global optimal tour are nearly all 
contained in the candidate sets, CSDT can limit the selection scope of ants at each step to 
average six cities below, and thus substantially reduce the size of search space. To the shortage 
that search is possibly trapped in local optimal regions owing to the locality of this candidate 
set, SMO, which can self-adaptively adjust the size of neighborhood search scope of mutation 
operator, is designed to improve the global search ability of DSMACS by combining inversion 
and inserting mutation operator in genetic algorithm. The Simulation of TSP shows 
DSMACS can not only greatly increase the convergence speed but also avoid the premature 
convergence phenomenon effectively.  
Keywords: ant colony system; candidate set strategy; Delauney Triangulation; self-adaptive 
mutation; TSP  

 

1 Introduction 

The Traveling Salesman Problem (TSP), where the task is to find the shortest closed 
tour through a given set of n cities with known inter-city distances such that each city 
is visited exactly once and the tour ends at the start city, is a well-known NP-hard 
problem [1]. Not only is TSP broadly applicable to a variety of routing and scheduling 
problem, but it is also usually considered as a standard test-bed for novel algorithmic 
ideas such as simulated annealing, tabu search, evolutionary algorithms including 
genetic algorithm, ant colony optimization (ACO) and so on, among which ACO 
inspired by the foraging behavior of real ant was first introduced by Dorigo and his 
colleagues [2, 3, 4] and has become one of the most efficient algorithms for TSP [3, 
5]. 

It is a perpetual topic in the research field of meta-heuristic how to improve the 
convergence speed under the condition of guaranteeing the solution quality, and ACO 
is no exception. Since ACO is a constructive meta-heuristic and at each step ants 
consider the entire set of possible elements before choosing just one, the vast majority 
of an ant algorithm's runtime is devoted to evaluating the utility of reachable 
elements. So, both comparative slow convergence speed and comparative long 
runtime are the quite prominent problems in ACO. In order to solve these problems, 
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the candidate set strategy that ants select from the narrowed set first and only if there 
are no feasible candidates are the remaining cities considered, which can limit this 
selection scope of ants to a narrowed set, is rifely adopted in ACO. The most 
commonly used candidate set strategy for TSP is the candidate set strategy based on 
nearest neighbor (CSNN), in which a set of the k nearest cities is maintained for each 
city. For example, some algorithms use CSNN (k=15 or k=20) [3, 5], some use CSNN 
(k= n/w, n is the total number of cities for TSP, w is a variable parameter varying with 
n) [6]. When candidate set strategy is used in ACO, the total number of edges in the 
global optimal solution contained in candidate sets and the limiting extent of 
candidate set to the selection scope of ants, which vary with the difference of 
candidate set strategy, will influence the performance of ACO.  

By applying a candidate set based on Delauney triangulation (CSDT) and a self-
adaptive mutation operator (SMO) to ant colony system (ACS) [3], a novel ant colony 
system (DSMACS) is presented. The theoretical analysis and experimental results for 
16 instances of TSP demonstrate that CSDT can limit the search scope of ants at each 
step to average six cities below under the condition that all edges in the global optimal 
tour are nearly all contained in the candidate sets and is superior to CSNN (k=20). 
The mechanism and algorithm of SMO, which can self-adaptively adjust the size of 
neighborhood search scope of mutation operator and prevent DSMACS from being 
trapped in local optimal regions, are given. The simulation of TSP shows that 
MMACS can not only increase convergence speed greatly but also avoid the 
premature convergence phenomenon efficiently. 

2 The Ant Colony System  

The first ACO algorithm proposed is ant system (AS)[2], and since then Dorigo and 
other researchers have introduced many improved ACO algorithms based on AS, 
among which ant colony system (ACS)[3] has better performance and is a 
representative of ACO. The sketch of ACS can be shown in Fig.1. 

 
 
 
 
 
 
 
 
 
 
 

Initialize 
Loop /* at this level each loop is called an iteration */ 
    Each ant is positioned on a starting node 
    Loop /* at this level each loop is called a step */ 
         Each ant applies a state transition rule to incrementally build a solution and 

a local pheromone updating rule 
Until all ants have built a complete solution 
A global pheromone updating rule is applied 

Until End_condition 
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Fig. 1.  The sketch of ACS 

In the following, we take TSP as an example to explain ACS. For the purpose of 
convenient expression, we first give some symbols: n and m are the total number of 
cities and ants respectively, 0τ  is the initial pheromone level. 

Initially, m ants are placed on m cities randomly chosen, and there is the same 
pheromone level 0τ  on each edge. Suppose that an ant k is on city i and will chooses 
the next city j to move to, well then, the city j can be confirmed by applying the 
following state transition rule: 

arg max { ( )[ ] }, if  (exploitation)( ) 0
,                                      otherwise (biased exploration)

j
t q qu J t iu iuk

J

βτ η⎧ ≤⎪ ∈= ⎨
⎪⎩

 (1) 

where ( )iu tτ  is the pheromone level on edge (i, u) at the t-th step, iuη =1/ iud  is the 
inverse of the distance iud from city i to city u,  Jk (t) is the set of cities that remain to 
be visited by ant k at the t-th step, β  is a parameter that determines the relative 
importance of pheromone versus distance( β >0), q is a random number uniformly 
distributed in [0…1], q0 is a parameter ( 00 1q≤ ≤ ), and J is a random variable 
selected according to the probability distribution given in Eq.(2). 
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where ( )k
ijp t  is the probability with which ant k in city i chooses to move to the city j 

at the t-th step.  
The state transition rule resulting from Eq. (1) and Eq. (2) is called pseudo-

random-proportional rule. This state transition rule favors transitions toward cities 
connected by short edges and with a large amount of pheromone. The parameter q0 
determines the relative importance of exploitation versus exploration: every time an 
ant in city i has to choose a city j to move to, it samples a random number q. If 

0q q≤ then the best edge, according to Eq. (1), is chosen (exploitation), otherwise an 
edge is chosen according to Eq. (2) (biased exploration). 

While building a tour of the TSP, ants visit edges and change their pheromone 
levels by applying the local pheromone updating rule of Eq. (3). 

( 1) ( )(1 )ij ij ijt tτ τ ρ ρ τ+ ← − + ∆  (3) 

where ρ denotes the local pheromone decay parameter( 0< ρ <1), ijτ∆ = 0τ  denotes 
the amount of pheromone deposited on edge (i, j). 
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The role of the ACS local pheromone updating rule is to shuffle the tours, so that 
the early cities in one ant's tour may be explored later in other ants' tours. In other 
words, the effect of local pheromone updating is to make the desirability of edges 
change dynamically: every time an ant uses an edge this becomes slightly less 
desirable (since it loses some of its pheromone). In this way ants will make a better 
use of pheromone information: without local pheromone updating all ants would 
search in a narrow neighborhood of the best previous tour. 

The global pheromone updating is performed after all ants have completed their 
tours. The pheromone level is updated by applying the global pheromone updating 
rule of Eq. (4). 

( 1) (1 ) ( )ij ij ijt tτ α τ α τ+ ← − + ∇  (4) 

where 

1( ) ,if edge( , ) the best tour
0,             otherwiseij
L i jgbτ

− ∈
∇ =

⎧
⎨
⎩

 

0<α <1 is the global pheromone decay parameter, and abL  is the length of the best 
tour from the beginning of the trial. 

The global pheromone updating is intended to provide a greater amount of 
pheromone to shorter tours. Eq. (4) dictates that only those edges belonging to the 
best tour will receive reinforcement. 

3 A Novel Ant Colony System Based on Delaunay Triangulation 
and Self-adaptive Mutation for TSP 

The sketch of DSMACS is shown in Fig.2, where Con_Max denotes the iterations 
when SMO can be applied. In the following, CSDT and SMO will be described in 
detail. 

 
 
 
 
 
 
 
 
 
 
 
 

Initialize 
Constructing CSDT 
Loop /* at this level each loop is called an iteration */ 
    Each ant is positioned on a starting node 
    Loop /* at this level each loop is called a step */ 
         Each ant applies a state transition rule with CSDT to incrementally build a 

solution and a local pheromone updating rule 
Until all ants have built a complete solution 
A global pheromone updating rule is applied 
SMO is applied to the current best solution when iterations >=Con_Max  

Until End_condition 
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Fig. 2. The sketch of DSMACS 

3.1 The Candidate Set Based on Delaunay Triangulation  

Firstly, we give some basis knowledge about Delaunay triangulation as follows. 
Definition 1 Triangulation: Suppose ip = {p ,i = 1,2,...,n}  is the set of points in a 

plane, let { | , , }i j i jp p p p p i jξ = ∈ ≠  be the set of line segments, then a graph 

( ) ( , )T TT p p ξ= can be defined. Where Tp p= , Tξ  is the biggest subset of ξ  and 
meanwhile satisfies the condition that there isn't any cross between its any two line 
segments, then T is defined as triangulation on P. 

Definition 2 Delaunay triangulation: If a triangulation has the property that for its 
each edge we can find a circle containing the edge's endpoints but not containing any 
other points, this triangulation is defined as Delaunay triangulation. 

 
Fig. 3. The Delaunay triangulation of eil51.tsp in the plane 

Theorem 1: For a Delaunay triangulation made up of n points, if there are n0 points 
in its convex hull, then it has 3n- n0-3 edges and 2n- n0-2 triangles. 

Proof: Suppose t is the total number of triangles, e is the total number of edges, 
then except for the edges on the convex null, all the edges inside the convex null are 
shared two triangles, so 2e- n0=3t holds. Meanwhile, according to the Ruler Formula, 
n-e+ (t+1) =2 holds. From the two equations above, we have e = 3n- n0 – 3 and t= 
2n- n0 – 2. 

Definition 3 the candidate set based Delaunay triangulation: all cities of the other 
endpoints of all edges incident to each city in the Delaunay triangulation of TSP make 
up of the candidate set of this city. 

A comparison of the percentage of their edges shared with the global optimal tour 
for 16 instances of TSP from TSPLIB between CSDT and CSNN (k=20) is shown in 
Fig.4, where their average percentage is 99.58% and 99.52% respectively. Hereby the 
two kinds of candidate set are approximately equal in quality, but their limiting extent 
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to the selection scope of ants at each step is obviously difference. According to the 
Theorem 1, if the total number of cities in TSP is n, then all the edges in Delaunay 
triangulation is 3n- n0-3(n0 is the total number of cites in convex null) and the size of 
candidate set of each city is below six. So the limiting extent of CSDT to the selection 
scope of ants at each step is bigger than CSNN (k=20). In addition, every two edges in 
Delaunay triangulation impossibly cross, and this is corresponding with the property 
that there is no cross in the global optimal tour. But CSNN (k=20) hasn't this merit.  

 

 
Fig. 4. A comparison of the quality of two kinds of candidate set 

Of course, constructing CSDT creates an overhead, but this overhead can be 
accepted since its time complexity can be limited to ( log )O N N according to the 
algorithm of Ref. [7]. Generally speaking, CSDT is superior to CSNN (k=20).  

3.2 A Self-adaptive Mutation Operator 

If CSDT is adopted in DSMACS, this algorithm will quickly find out local optimal 
solutions. But it is likely to take comparative long time to find out the global optimal 
solution, and sometimes this algorithm can only converge to a local optimal solution.  

As we all know, mutation operator can keep the diversity of population to prevent 
search from being trapped in local optimal regions in genetic algorithm. The 
commonly used mutation operators for TSP have inversion and insertion operator [8], 
whose neighborhood search scopes are two edges and tree edges respectively. A 
measure of search difficulty, fitness distance correlation (FDC) is introduced in Ref. 
[9], and there exists a high and positive FDC for TSP, which indicates that the smaller 
the solution cost is, the closer are the solutions – on average – to the global optimal 
solution [10]. Hereby there is often a small quantity of different edges between a local 
optimal solution and the global optimal solution or a better local optimal solution. In 
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other words, we possibly find out a better local optimal solution or the global optimal 
solution so long as a small quantity of edges is changed. On the other hand, a local 
optimal solution with respect to one mutation operator is not necessary so for another 
owing to the different neighborhood search scopes, but the global optimal solution 
with respect to all mutation operators are the same one. 

Based on the consideration above, SMO is designed by combining inversion and 
inserting mutation operator in genetic algorithm in this paper. This operator can self-
adaptively adjust the size of neighborhood search scope of mutation operator, keep 
the diversity of solutions and improve the global search ability of DSMACS 
efficiently. In DSMACS, when the algorithm has evolved for many iterations and the 
search will possibly be in stagnation, this operator is applied to the current best 
solution. Suppose the search will possibly be in stagnation and the current best tour is 
(b1b2…bi…bj…bn) after the algorithm has evolved for Con_Max iterations, then the 
pseudo-code of this operator's algorithm can be given in the following. 
Begin 
for(i=1;i<n-1;i++) 
{ 
  for(j=i+2;j<n+1;j++) 
  { 
   if (j-i=n-1)break; 
   if (after the path between bi and bj is reversed, 
       tour's length is reduced)  
   { 
    reverse the path between bi+1 and bj; 
    continue; 
   } 
   else if (after city bj is inserted behind city bi, 
            tour's length is reduced)   
   { 
    insert city bj behind city bi ; 
   } 
  } 
} 
End 

4. The Simulation and Analysis 

DSMACS is realized in VC6.0 and run on a PC (CPU Pentium4 2.4GHz, 256 MB 
memory) with Windows 2000 Operating System. Many instances of TSP from 
TSPLIB are used in simulation, and perfect results are achieved. In all experiments 
the numeric parameters, except when indicated differently, are set to the following 
values: m=3~10, Con_Max=3~15, = 2,β q=0.9, a = 0.1 ~ 0.2, r = 0.1 ~ 0.2,  

0τ =(nLnn)-1  .(Lnn is the tour length produced by the nearest neighbor heuristic [11]). 
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4.1 The Comparison between DSMACS and the Algorithm in Reference 

An ant colony optimization algorithm based on mutation and dynamic pheromone 
updating (NDMACO), which adopted CSNN (k = n/w, n is the total number of cities 
for TSP, w is a variable parameter varying with n) and a unique mutation scheme, was 
introduced in Ref. [6]. In order to compare DSMACS with NDMACO, some 
instances of TSP that are the same as ones used in NDMACO are chose in our 
simulation. A comparison of the final solution and convergence number and a 
comparison of convergence time between DSMACS and NDMACO are shown in 
Table.1 (the results of NDMACO are directly taken from Ref. [6]) and Table.2 
respectively. It can be seen that DSMACS not only finds out the global optimal 
solutions for the four instances of TSP but also has very quick convergence speed 
while NDMACO only finds out the local optimal solutions for Pr107 and D198. 

Table 1. A comparison of the final solution and convergence number between DSMACS and 
NDMACO  

Name Best length of 
DSMACS 

Best length  
of NDMACO 

Convergence  
number of DSMACS 

Convergence number 
of NDMACO 

Eil51 426 426 5 7 
Berlin52 7542 7542 4 11 

Pr107 44303 44383 33 330 
Dl98 15780 15796 243 800 

Table 2. A comparison of convergence time between DSMACS and NDMACO  

Name Convergence time of DSMACS(s) Convergence time of NDMACO(s) 
Eil51 0.01 0.02 

Berlin52 0.01 0.02 
Pr107 0.08 0.6 

4.2 The Comparison between DSMACS and ACS 

DSMACS and ACS are tested on five hard and large-scaled TSP respectively, and the 
experimental results are shown in Table.3, where each experiment consists of at least 
20 trials and the experimental results of ACS are directly taken from Ref. [3]. It can 
be seen from Table.3 that DSMACS makes not only the quality of solutions better 
than ACS but also the speed of convergence hundreds of times faster than ACS. 

Table 3. A comparison between DSMACS and ACS 

Name Optimum 
(1) 

DSMACS 
best 

integer 
length 

(2) 

DSMACS 
number of 

tours 
generated to 

best 

DSMACS 
average 
integer 
length 

Relative 
error 

(2) (1)
(1)
−

 

ACS best 
integer 
length 

(3) 

ACS 
number 
of tours 

generated 
to best 

ACS 
average 
integer 
length 

Relative 
error 

(3) (1)
(1)
−

 

D198 15780 15780 1458 15785 0% 15888 585000 16054 0.68% 

Pcb442 50779 50979 2100 51180 0.39% 51268 595000 51690 0.96% 
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Att532 27686 27705 3500 27729 0.07% 28174 830658 28523 1.67% 

Rat783 8806 8860 4300 8893 0.61% 9015 991276 9066 2.37% 

Fl1577 22249 22453 15890 22560 0.92% 22977 942000 23163 3.48% 

 

4.3 The Analysis of Diversity  

When DSMACS is used for solving d198.tsp, the variation of tour length with 
iteration is shown in Fig.5. It can be seen that the best solution has verged on local 
optimal solutions after 18 iterations and then the global optimal solution is obtained 
after SMO is adopted and DSMACS have evolved about 220 iterations. In the 
meantime, the average tour length has been in shaking randomly all the time after 18 
iterations and can have kept certain distance to the best solution. Therefore, DSMACS 
can greatly reduce the size of search space and improve the convergence speed after 
CSDT is adopted; meanwhile SMO can self-adaptively adjust the size of 
neighborhood search scope and maintains the diversity of solutions. This is one of the 
reasons why the DSMACS have the satisfying ability of global optimization while 
improving the convergence speed greatly. 

 
Fig. 5. The variation of best tour length and average tour length with iteration 

5. Conclusions 

On the basis of in-depth investigation into the domain knowledge of TSP, CSDT is 
designed. Although the global optimal solution is not a subset of Delauney 
triangulation [12], CSDT contains the edges of the global optimal solution at high 
probability. CSDT can make the selection scope of ants at each step reduce from n (n-
1)/2 to 6n below, thus the runtime of DSMACS is reduced greatly and the 
convergence speed is improved greatly. In the meantime, in order to prevent 
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DSMACS from being trapped in local optimal regions caused by the locality of 
CSDT, SMO, which can self-adaptively adjust the size of neighborhood search scope 
of mutation operator, is designed by combining inversion and inserting mutation 
operator in genetic algorithm to improve the global search ability of DSMACS. The 
simulation tests of TSP show that DSMACS can restrain premature convergence 
phenomenon effectively during the evolutionary process while greatly increasing the 
convergence speed.  

One of the main ideas underlying DSMACS is hybridization of meta-heuristics 
[13], by which mutation operator in genetic algorithm is introduced to DSMACS. 
Another idea is to give full play to the role of guidance function of domain knowledge 
[14], namely, the Delauney triangulation and the fitness landscape of TSP [9, 10, 12], 
by which CSDT is obtained and SHO is designed. Although DSMACS takes TSP as 
an example for explaining its mechanism, its idea can be used for other related 
algorithms. 
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