
International Journal of Information Technology Vol. 12 No. 4 2006

1

Abstract

OWL-S can’t provide sufficient support for automatic composition of web services because
RDF and OIL don’t support overriding declaration in inheritance essentially. An ontology
model capable of overriding declaration and expressing virtual class is defined by
introducing into a monotonic inheritance mechanism. A method and framework of
automatic composition of web services at knowledge level are proposed. The hierarchical
matching from abstract to concretion in process ontology solves the task decomposing at
high level and goal planning. Three kinds of comprehensive searching strategies are used
to seek appropriate service from coarse granularity to thin granularity in turn.
Keywords: semantic web services, ontology, monotonic inheritance, process model.

I. Introduction

Due to their support of flexible connection, and high agility, web services are increasingly becoming
a prevailing technology for the integration of distributed and heterogeneous applications [1].
However, the more challenging problem is how to dynamically integrate web services on demand,
and especially how to compose them to meet some requirements automatically that are not realized
by the existing services. This is the research content of semantic web services [3-10].

The Semantic Web is an extension of the current web in which information is given a well-
defined meaning; better enabling computers and people to work in cooperation [11].The well-
defined information means to explicitly describe the semantics of web contents, properties, and
relations by markup language. Currently, the popular markup language for semantic web is
DAML+OIL [12]. Its revision now has been accepted by W3C as an international standard, namely,
OWL (Web Ontology Language). The sub-language of OWL, OWL-S [4,5], is used to describe the
semantics of web services, i.e., the semantic web services, which support automated service
discovery, invocation and composition.

OWL-S describes web services from three aspects: Profile, Model, and Grounding. The Profile
gives the functionalities and parameters of web services; the Model, the process model of web
services, and specifies control flows and data flows about service descriptions; and the Grounding
combines the process model, communication protocols, and the message description together.
Among them, the Model is the core. It tells “how the service works”, gives the bases for service

Composition of Web Services using Ontology with
Monotonic Inheritance

Chang-yun Li1,2, Bei-shui Liao2, and Li-jun Liao1

1Department of Computer, Zhuzhou Institute of Technology
 Zhuzhou 412008, P.R.China

2Institute of Computer Software, Zhejiang University
 Hangzhou 310027, P.R.China

lcy469@163.com, baiseliao@zju.edu.cn, liaolijun@163.com

Chang-Yun Li, Bei-Shui Liao, and Li-Jun Liao
Composition of Web Services using Ontology with Monotonic Inheritance

 2

composing and coordinating. However, the Model of OWL-S does not provide sufficient supports
for the automatic service integration. Consider the following two cases:

(1) Mortgage Loan is a special example of Loan. According to the description method of the
Model in OWL-S, the process model of Mortgage Loan can inherit from that of Loan. Now, suppose
that the activity in Mortgage Loan, Evaluation, needs to extend the homonymic activity of Loan
(Evaluation), i.e., the activity of inherited process needs to override the definition of the homonymic
activity of the super process. It is not difficult to achieve this purpose in the object-oriented
programming language such as java and c++. But there is no corresponding supporting mechanism
in OWL-S.

(2)Domain-specific processes, such as Registration of student recruitment in school management
services, Registration of new accounts in the bank management system and Registration of new
email users in email applications, have the similar decomposition and transition of activity. The
Registration can be regarded as a domain-independent abstract process. However, due to big
differences among the data types treated by these processes, in the Model of OWL-S these data types
are referred to different domain ontology, so that these processes are specified separately and the
abstract process Registration is difficult to express.

In the former case, the Model of OWL-S can’t provide a flexible mechanism for the
classification of the process, while in the latter case, during the service composition, the task
decomposition and the goal planning are difficult to be treated with at the knowledge level and by a
completely automatic manner. So in OWL-S, the gap between the notions used by human and the
data interpreted by machines has not been bridged completely. The reason is that RDF and OIL,
based on by OWL, adopt a monotonic inheritance mechanism without the ability of overriding
declaration. In addition, every class defined in RDF and OIL can be instantiated to get individuals,
while the virtual class similar to an object-oriented method does not exist, so the abstract process
such as Registration can’t be expressed.

Focusing on the shortcomings mentioned above, we have established a process ontology model
by adopting an inheritance mechanism with overriding declaration and monotonic inheritance. This
model is the extension of OWL-S. On the basis of this model, we set up a framework for the
composition of semantic web services at the knowledge level to further facilitate the automatic
composition and invocation of web services.

II. An Ontology Model with Monotonic Inheritance

A. Ontology Model

In philosophy, ontology is the systematic description of existing, while in AI, ontology is
regarded as an explicit specification of concepts and the relationships among them. The
purpose to establish ontology involves knowledge sharing and reasoning. Currently, there are a
lot of ontology languages, including Ontolingua, LOOM, OCML, FLogic and OKBC etc. In
recent years, there are also some web-based ontology languages such as RDF, XOL and OIL
etc. The detailed comparison of these ontology languages is referred to [14]. We define an
ontology model by adopting a monotonic inheritance mechanism.
Definition 1: An ontology is defined as a 4-tuple (C, I, P, R).
C — a set of classes that consists of Cr and Cv. Cr denotes common classes that can be
instantiated, while Cv denotes virtual classes that can’t be instantiated. Each class has a
globally unique identifier;
I — a set of individuals. Each individual has an individual identifier;
P — a set of properties. The properties are independent of classes. Each property has a
property identifier;

International Journal of Information Technology Vol. 12 No. 4 2006

3

R — a set of relations, R⊂ (C I P)×(C I P). The main relations include subClassOf, ∪ ∪ ∪ ∪
sameClass, hasPropertyOf, sameIndividual, Itype, Ptype, hasValue etc., which are explained in
Table 1.

Table 1. main meta-relations

Meta-relation Roles Sematics Instance
subClassOf C×C C1⊆C2 Human subClassof Animal
sameClass C×C C1≡C2 Handset sameClass Mobile Phone
hasValue P×I p=i Value hasValue RMB 13
sameIndividual I×I i1≡i2 Luxun sameIndividual Zhou Shuren
Itype I×Cr i∈C1 Newton Itype Human
Ptype P×C if (p=i)∧(p Ptype C1) then

i∈C1
Value Ptype Currency

hasProperty C×P p partyof C1 Human hasProperty Name
In Table 1, hasProperty denotes that Property is a part of Class. It means that in this definition,
Property of a class describes not only the general characteristics of Class, but also the
components that consist of Class. For example, the class Car has not only the properties such
as velocity, load, etc., but the property--- Engine. And yet in RDF, the relationship between
Car and Engine is expressed by a container. In addition, the type of property (PType) can be
referred to other classes. For instance, the type of property Engine is referred to the class
Engine. In this way, the relationships between domain concepts are established.
There are some other meta-relations, such as differentIndividualFrom, inverseOf,
transitiveProperty etc. Now, we focus on a further discussion about two forms of subClassOf.
Definition 2: Suppose c1,c2∈C，if(c1 subClassOf c2) and (∃p.((c1 hasProperty p)∧¬ (c2
hasProperty p))),where p∈P, it is called that c1 incrementally inherits from c2 ,which is
denoted as c1 AsubClassOf c2.
Definition 3: Suppose c1,c2,c3,c4∈C， If(c1 subClassOf c2)and((∃ p.(c2 hasProperty p))

(c1.p Ptype c3) (c2.p Ptype c4))∧ ∧ ，it is called that c1 extendedly inherits from c2. it is
denoted as c1 EsubClassOf c2, where p∈P，c3 subClassOf c4，i.e.,c4 is the supper class of
c3.
In definition 2, the inherited class has additional properties that do not exist in its super class.
In this case, it is the proper subset of its super class, i.e., c1⊂ c2. This type of inheritance is
supported by RDF and OIL. In definition 3, the declaration of the inherited class overrides the
properties inherited from its super class. Since c4 is the super class of c3, in Table 1, c1
subClassOf c2 still satisfies the semantic c1⊆ c2. This inheritance overriding declaration is
different from the general one, in that inherited property does not conflict with homonymic
property of its super class. On the contrary, there is a compatible relationship between them.
So, this is a monotonic inheritance.

B. Process Ontology Model

Process ontology describes the model of domain-specific processes in the form of declaration.
It provides sharing knowledge about the business process for service discovery, execution and
composition. Based on the ontology model described in the previous section, our process
ontology model is defined as follows.
Definition 4: Process ontology is a 4-tuple (pC, pI, pP, pR), where
pC — a set of classes of business processes;
PI — a set of process instances;
pP — a set of process properties, including purposes, tasks, categories and performances of a
process. According to the definition of our ontology, the components of a class are regarded as

Chang-Yun Li, Bei-Shui Liao, and Li-Jun Liao
Composition of Web Services using Ontology with Monotonic Inheritance

 4

its properties, so the inputs and the outputs of a process, other contained processes, and the set
of transitions are properties of the process. The list of inputs and outputs, and the set of
preconditions, effects, other contained processes , and transitions are signed as inputs, outputs,
pres, effects, subprocs and trans respectively;
pR — a set of relations, including inheritance relationships between process classes, instances
of processes, and is-a relationships between process classes.
The pres, inputs, outputs, effects and trans of a process all can be referred to other domain
ontology. According to the definition of virtual class (in Definition 1), if Ptype of a process
class is a virtual class, then this process class is also a virtual class.
In terms of Definition 2, we get Definition 5 as follows.
Definition 5: Suppose that c1,c2 are process classes，if(c1 subClassOf c2) and (∃ p.((c1
hasProperty p)∧¬ (c2 hasProperty p))), where p∈subprocs trans∪ ，then it is called that c1
inherits from c2 in the form of process increment, which denoted as c1 pAsubClassOf c2. This
definition means that c1 contains not only all the properties of c2, but the sub-processes or the
transitions that do not exist in c2.
As for the extended inheritance of the process class, there are two following forms.
Definition 6: Suppose c1 、 c2 ∈ pC, c3 、 c4 ∈ C ， If(c1 subClassOf c2)and((∃ p.(c2
hasProperty p)) (c1.p Ptype c3) (c2.p Ptype c4))∧ ∧ ， in which
p∈inputs outs pres effects∪ ∪ ∪ ，c3 subClassOf c4, it is called that c1 inherits from c2 in the
form of parameter extension，denoted as c1 pEsubClassOf c2.
Definition 7: Suppose c1、c2、c3、c4∈ pC，if(c1 subClassOf c2)and((∃ p.(c2 hasProperty
p)) (c1.p Ptype ∧ c3) (c2.p Ptype c4))∧ ，it is called that c1 inherits from c2 in the form of
sub-process extension. It is denoted as c1 sEsubClassOf c2, where p∈ subprocs，c3 is a
complex process，c4 is a simple process, and c3 is extended from c4.
Definition 6 explains the action that the inherited process class embodies abstract parameters
and types of variant that are referred by a super process class. On the contrary, Definition 7
explains the action that the inherited process class extends the simple processes contained in a
super process class, to a complex process.
At the same time, inheritance in the form of process increment is supported by OWL-S,
although these two kinds of inheritance as overriding declarations of sub process, which are not
supported by OWL-S. Different from common inheritance overriding declaration, the property
of derivation class will not contradict with the mark property of super class. It is a compatible
relationship. And this means c1⊆ c2 in subClassOf c2 still can be satisfied. As a result, it is a
kind of monotonic inheritance. In the perspective of the classification mechanism, our ontology
model contains OWL-S, so it can be interpreted by our ontology. Examples for the three forms
of inheritances mentioned above are shown in Figure 1.
In Figure A, a new sub-class is added to the inherited process class (denoted by a grey
rectangle). In Figure B, the simple sub-class Evaluation of the super process class is extended
to a complex sub-process of the inherited process class (this inherited process class denotes the
mortgage loan of bank possessions). In Figure C, the super process class is an abstract process,
Registration. The Ptype of its inputs, registration information, About the Ptype of its inputs,
registration information, it refers to a virtual class, registration information. The inherited
process class is specialized to the process registration of student recruitment, while it’s Ptype
of input about the Ptype of input, it refers to a concrete class, student information.

International Journal of Information Technology Vol. 12 No. 4 2006

5

Accept
Order

Query
Repository

Sign
Agreement

Accept
Order

Query
Repository Sign

Agreement
Client

Ckecking

pAsubClassOf

A. Process of Order Signature

Evaluation

Start
Possession
Evaluation

Possession
Evaluation

Depreciation
Evaluation

Possession
Value

Sign
Agreement

Execute
Loan

Evaluation Sign
Agreement

Execute
Loan

sEsubClassOf

B. Process of Bank Loan

Register Check Grant{Registration
Information}

Registration
Information
｛virtual｝ Ptype

Register Check Grant
{Registration
Information of

Student Entrance}

Student
Information

Ptype

pEsubClassOfAsubClassOf

Name
Number

Grade of
Entrance Test

Entrance Category C. Registration Process

Fig. 1. Three forms of inheritances of process ontology

III. Ontology-based Integration of Web Services

A. Integration framework

To realize the automatic, on-demand integration of web services, it is necessary to resolve such
issues as the high-level task decomposition and the goal planning at the concept level. We
propose an integration framework for web services as shown in Figure 2.
In this figure, user’s applications
(Application) are problems and tasks the
user needs to resolve. The Process
ontology describes how the user’s task is
decomposed into a series of activities, and
how a process forms through the
transitions among activities. It is oriented
to users and problems for high-level goal
planning and task decomposing. The
solution of the user’s task may be cross-
domain, so process ontology should be
able to express the abstract, application-
independent solving process of problems.
In order to reduce the complexity of task decomposing, a layered structure is adopted.

Application

Process
Ontology

OWL-S
Ontology

Datatype
Ontology

SOAP WSDL UDDI

Multi-domain
Ontology

Domain Ontology

Fig. 2. Integration framework for web services

Chang-Yun Li, Bei-Shui Liao, and Li-Jun Liao
Composition of Web Services using Ontology with Monotonic Inheritance

 6

Meanwhile, the description of a process is independent of web services. The process ontology
model mentioned in the section 2.2 can meet this need. In addition, the expression of process
ontology needs to be referred to data type ontology, domain ontology and multi-domain
ontology.
The Data type ontology contains the basic data types of the concept properties of other
ontologies, such as integer, numerical value, and string etc. The XSD defined in XML Schema
can be used to describe the data type ontology. The domain ontology defines entities of a
specific application domain, and the relationships among them. It has a universe of discourse,
i.e., a set of objects to be expressed and treated with. The vocabulary of the knowledge of an
application domain is composed of the objects (concepts and individuals) and the describable
relations among them. The multi-domain ontology defines a classification for the value types
of parameters in an abstract process. It is established according to the ontology model defined
in section II.A. It depends on the existence of the process ontology, and is on the basis of
various domain ontologies. From the perspective of process, the multi-domain ontology links
several domain ontologies together. So ontologies of different application domains can be
comparable.
OWL-S ontology describes the semantics of web services by using OWL-S, and establishes
classification architecture of web services. During of the process of solving a task, the simple
process can be mapped to the port operation of web services. A series of web services perform
this task according to the process control flow and the data flow.
In the lowest layer, there are industry standards of web services, including SOAP, WSDL, and
UDDI.

B. Automatic Integration Process

Based on the integration framework, the integration of web services begins with the task
description. Through a parsing performed by a machine, the task description is transformed
into a normative task specification. Then, the task specification is mapped to executable
processes by a classified matching of the process ontology. And then, those web services that
can fulfill the simple process are selected according to the semantic descriptions of web
services. Finally, web services are executed. From abstract to concretion, and from concepts to
realization, this integration process has an explicit hierarchy, as shown in figure 3.

Parsing Matching Selection Executing

Process
Ontology

Muti-
domain
Ontology

Domain
Ontology

OWL-S
ontology

副标题

2004-7-5

WSDL SOAP

2 31 4

Task Description Task Specification Web ServicesProcess

Diction
-ary

Fig. 3. Automatic integration process of web services

In this figure, the task description is described by using a noun with an attribute, and the
parsing of the task description is achieved through automatic word segmentation. There are
many methods for automatic word segmentation, including mechanical matching, characteristic
word repository, constraints matrix, syntax parsing, and comprehending segmentation, etc.
Among them, the mechanical matching method, with the characteristics of simplicity,
feasibility, and fast rate, has no requirement of any specific Chinese knowledge. On account of
the task description using normative syntax (a noun with an attribute), we adopt a dictionary-

International Journal of Information Technology Vol. 12 No. 4 2006

7

based, and improved mechanical matching method for word segmentation. About its algorithm,
which the paper[15] is referred to. After matching, the results are expressed in the form of a 3-
tuple (<Domain>, <Restriction>, <Basic-Task>), then we get task specifications. For example,
“loan of possession mortgage of bank” is parsed as <Bank, Possession Mortgage, Loan>.
According to the task specification (<Domain>, <Restriction>, <Basic-Task>), the process
matching begins. Firstly, a high-level matching within the process ontology is conducted in
terms of <Basic-Task>. Secondly, in the inheritance tree of the process classification, the
hierarchical matching from the high-level to the low-level is done by using <Domain> and
<Restriction>. Finally, if the process that meets the requirements can’t be located. Then two
strategies, tight matching and loose matching , are used. As for the tight matching, a searching
in terms of <domain> and <Restriction> is conducted in the domain ontology and the cross-
domain ontology at first. Then the classification hierarchy matching of the process is
performed by using <inherited domain> and <inherited restriction>. As we know from the
definition of an ontology model, <inherited domain> and <inherited restriction> are the
specializations of <Domain> and <Restriction>, so they comply with all constraints of
<Domain> and <Restriction>, and their semantics are tighter. On the other hand, as to the loose
matching, a searching in terms of <domain> and <Restriction> is conducted in the domain
ontology and the cross-domain ontology firstly, to obtain their higher-level <super domain>
and <super restriction>. And then the classification hierarchy matching of the process is
performed by using <super domain> and <super restriction>. The <super domain> and <super
restriction> are the generalizations of <Domain> and <Restriction>, hence, their semantics are
looser. So, generally speaking, the tight matching is used first. For example, if “loan of
possession mortgage of bank” can’t be located, then “loan of house property mortgage of
bank” or “loan of possession mortgage of finance industry” may be located instead. The former
is tight matching, and the latter is loose matching. In respect that the virtual class can’t be
instantiated, when it is matched, the tight matching strategy will be applied to do searching
until an ordinary process class is found.
The simple process should be mapped to the operation of web services. OWL-S describes
semantics of web services from three aspects: general information, input and outputs,
preconditions and effects, which provide a base for developing an insistent searching
mechanism for structural services. The insistent searching depends on the ontology. In
terminology classification architecture, if the node corresponding to the terminology A is an
ancestor of the node corresponding to the terminology B, B is called semantically consistent
with A. The tight matching mentioned above is a kind of consistent searching. Corresponding
to these three aspects, we propose three kinds of consistent filtering strategies: (1)
classification filtering — is to select consistent and available services (called candidate
services) from the service ontology, according to the domain classification of requested
services in general information and properties of the simple process. (2) parameter filtering —
is to select parameter consistent services from the candidate services (called loosely selected
services) in accordance with the inputs and outputs described by the simple process; (3)
constraint filtering — is to select constraint consistent services (called accurately selected
services) from loosely selected services, in terms of preconditions, effects and resource
constraints of the simple process. The selections from classification filtering to parameter
filtering, and the accurate selection by constraint filtering are conducted from coarse-
granularity to fine-granularity .So, the selection efficiency is higher.
If the requested services of the simple process can’t be found in the Selection stage, it will
return to the Matching stage, in which a certain inherited process class in the form of process
extension may be located, so that this simple process is extended to a composite process. The
composite process contains finer-granularity and lower-level simple processes. With these
simple processes as objective activities, a searching is conducted to obtain related services
described in the OWL-S ontology.

Chang-Yun Li, Bei-Shui Liao, and Li-Jun Liao
Composition of Web Services using Ontology with Monotonic Inheritance

 8

Finally, web services are invoked via SOAP and WSDL. The Grounding of OWL-S binds the
semantic web services with WSDL descriptions. When web services are executed, the
parameters are transferred in the form of WSDL message. Meanwhile, the communication
between service provider and consumer is via SOAP. The details of SOAP and WSDL are
referred to [1].

IV. Related Work and Conclusions

Literatures [7] and [16] propose a non-monotonic inheritance mechanism as the basis of the process
classification. Based on the Process Handbook developed by the MIT Center for Coordination
Science (CCS), [7] focuses on the flexible process reuse, but it has no strict definitions of the
ontology model. And [16] aims at facilitating process designing and dynamic modification, but it
does not take the integration of web services into considerations. Both inheritance mechanisms in
these two papers are unrestricted non-monotonic inheritance. They support the inherited class to do
overriding declaration of properties over its super class, and allows the semantics conflicts between
the inherited class and its super-class. On the contrary, our inheritance mechanism is monotonic, and
is defined formally. In this mechanism, the overriding declaration of the inherited class should
maintain the semantics of the properties of its super-class, so the containing relationship between the
super-class and the inherited class are guaranteed. This also lays a theoretical foundation for tight
matching, loose matching and consistent searching of web services during the integration process of
web services.

In addition, Narayanan and McIlraith [8] have defined he semantics of a subset of the OWL-S
specification with the first order logic language. Based on this work, they use Petri Net to formally
describe the process model of services and the analysis of service integration, simulation and
composition. However, this method is difficult to use and realize.

And besides, there are many researches on the semantic web services-based integration by
directly using the process model and the reasoning ability of OWL-S or DAML-S [9]. These
methods have the advantages of describing and integrating web services from one perspective and
adopting a unified language. However, as mentioned above, the disadvantages are obvious, i.e., due
to the direct connections between service operations and specific parameters, and the bindings from
process structures to specific domains. Besides, the level of process abstraction is so low that it is
difficult to perform the high-level task decomposition and integrate. In order to cope with these
problems, many methods have been proposed, such as the integration framework of web services
based on Problem Solving Method (PSM) [6], the automatic web service composition using AI
planning techniques [10], etc. Our method presented in this paper enables the service integration at
the knowledge level, with a formal theoretical basis and an explicit hierarchy, and is understandable
and highly automatic. Currently, we have developed a prototype system to test the integration
framework and the methods proposed in this paper.

Our future researches will be done on continually improving the ontology model described in
this paper, especially on its reasoning mechanism, the theory of semantic inconsistency checking,
issues of integrating with OWL, and the improvement of process matching and the services
searching strategies, etc. We believe that the service integration system realized with our integration
mechanism will further facilitate the service integration to be more automatic and intelligent.

References

International Journal of Information Technology Vol. 12 No. 4 2006

9

[1] A. Tsalgatidou, T. Pilioura, “An Overview of Standards and Related Technology in Web
services”. Distributed and Parallel Databases, Kluwer Academic Publishers, 2002, 12(3), pp.
135–162

[2] F. Curbera, Y. Goland, J. Klein, etc, “Business Process Execution Language for Web
Services”. http://dev2dev.bea.com/techtrack/BPEL4WS.jsp, 2003.

[3] A.S.McIlraith, T.CaoSon, Z.Honglei, “Semantic Web Services”. IEEE intelligent
systems,2001,16(2), pp. 46–53.

[4] A.Ankolenkar, M.Burstein, etc, “DAML-S: Web Service Description for the Semantic
Web”. In Proceedings of the First International Semantic Web Conference, Sardinia,
Italy.2002, pp. 348–363.

[5] M.Dean, etc. “OWL-S: Semantic Markup for Web Services”.
http://www.daml.org/services/owl-s/1.0/owl-s.pdf, 2004.

[6] A.Gomez-Perez ,R.G.Cabero, “A Framework for Design and Composition of Semantic Web
Services”. 2004 AAAI Spring Symposium Series. Palo Alto, California, 2004 .

[7] A.Bernstein, B.Grosof, “Beyond Monotonic Inheritance: Towards Semantic Web Process
Ontologies”. Working Paper, University of Zurich, Department of Information Technology,
2003.

[8] S. Narayanan, S. McIlraith. Simulation, “Verification and Automated Composition of Web
Services”. In Proceedings of the Eleventh International World Wide Web Conference
(WWW-2002), Hawaii, USA. 2002, pp. 77–88.

[9] E.Sirin, J.Hendler, B. Parsia, “Semi Automatic Composition of Web Services using
Semantic Descriptions”. In Proceedings of the ICEIS-2003 Workshop on Web
Services:Modeling, Architecture and Infrastructure. Angers, France, 2003.

[10] J.Peer, “Towards Automatic Web Service Composition using AI Planning Techniques”.
http://sws.mcm.unisg.ch/docs/wsplanning.pdf, 2003.

[11] T. Berners-Lee, J. Hendler, O. Lassila, “The Semantic Web”. Scientific American,
2001,284(5), pp. 34–43.

[12] I.Horrocks, F.van Harmelen, etc, “Reference Description of the DAML+OIL Ontology
Markup Language”. http://www.daml.org/2001/03/reference.html, 2001.

[13] M. Dean, G. Schreiber, etc, “OWL Web Ontology Language Reference”. W3C Candidate
Recommendation, http://www.w3c.org/TR/owl-ref/, 2003.

[14] O. Corcho, A. Gomez-Perez, “A Roadmap to Ontology Specification Languages”. 12th
International Conference on Knowledge Engineering and Knowledge Management, Juan-
les-Pins, French Riviera, 2000.

[15] LuoZhengqing, ChenZengwu, WangZebing, HuShangxu, “A review of the study of chinese
automatic segmentation”. Journal of Zhejiang University (NaturalScience), 1997, 31(3), pp.
306–312.

[16] G.Greco, A.Guzzo, etc, “An Ontology-Driven Process Modelling Framework”.
http://wwwinfo.deis.unical.it/~sacca/Papers/dexa04-submitted.pdf, 2004.

Chang-Yun Li, born in 1971, associate professor. His
research interests include software architecture and multi-
agent system.

Chang-Yun Li, Bei-Shui Liao, and Li-Jun Liao
Composition of Web Services using Ontology with Monotonic Inheritance

 10

Bei-Shui Liao, born in 1971, Ph.D. candidate. His Current
research interests include intelligent agent and multi-agent
system.

Li-Jun Liao, born in 1973, Ph.D. candidate. Her research
interests include software automation, formal methods and
environments.

