
Li Lu and Shoubao Yang
DIRSS-G: an Intelligent Resource Scheduling System for Grid Environment Based on Dynamic Pricing

 120

Abstract

Existing resource management and scheduling systems for Grid have defects in scalability and load
balance. Based on computational economy framework, this paper presents a decentralized intelligent
resource scheduling system (DIRSS-G) for Grid environment using the supply and demand theory.
The system provides a bi-directional choosing mechanism and a QoS guaranteeing mechanism for
users and resources to supervise them heuristically. The simulation result of the system shows that
the system is scalable, flexible, and capable of handling load balance well. Meanwhile it guarantees
QoS of tasks. Task Accomplishment ratio in DIRSS-G is greater than that in Nimrod/G by 22.5%.
Keywords: computational economy-based model, bi-directional choosing, load balance, QoS.

1. Introduction

Grid technology is deemed as a critical element of current high performance computing
environments. The real and specific problems that underlie the Grid concept are coordinated
resource sharing and problem solving in dynamic, multi-institutional virtual organizations [1]. At
present, Grid technology is applied to many fields, such as scientific computing, data management,
system integration, etc. One of the most important problems in Grid technology is how to assign grid
resources and schedule grid tasks reasonably. And resource scheduling in Grid environment is
distinct from conventional distributed computing by autonomic heterogeneous resources and large-
scale resource sharing. Existing centralized resource-scheduling systems for Grid expose more and
more maladjustments. For these reasons, the computational economy-based model [2] is introduced,
harnessing economic principles to solve resource sharing in Grid environment. Now some resource
scheduling systems based on the model are proposed, yet they are in the primary stage, having many
deficiencies. In this paper, we design and simulate a decentralized intelligent resource scheduling
system (DIRSS-G) based on the model, which is an improvement on other systems of its kind.
DIRSS-G is characteristic of load balance and task QoS. Meanwhile it has good scalability and
flexibility.

The remainder of this article is organized as follows. In section 2, we review current resource
scheduling systems for Grid environment based on the model. In section 3, we describe abstract
entities in DIRSS-G. And then in section 4, we propose the design of DIRSS-G. In section 5, some

* This paper is supported by the National Natural Science Foundation of China under Grant No.60273041 and the
National ‘863’ High-Tech Program of China under Grant No. 2002AA104560.

DIRSS-G: an Intelligent Resource Scheduling System for
Grid Environment Based on Dynamic Pricing*

Li Lu 1 and Shoubao Yang 2

1, 2Department of Computer Science and Technology
University of Science and Technology of China

 Jinzhai Road, Hefei 230026, P.R.China
1lulixiao@mail.ustc.edu.cn

2syang@ustc.edu.cn

International Journal of Information Technology Vol. 12 No.4 2006

121

experiment results are shown and explained in detail. Finally, we draw a conclusion with regarding
future work in section 6.

2. Related Works

Representatives of current researches based on the model are POPCORN project [3] in Israel and
Nimrod/G [4] project in Australia. We will analyze them in detail.

In POPCORN, the scheduling system utilizes an entity called Market to distribute Grid tasks
under specific auction rules centrally. Obviously this mechanism has defects in scalability, forming a
bottleneck in Market entity. Moreover all buyers and sellers must comply with the same auction rule.
In Nimrod/G, although the scheduling system is decentralized, it distributes Grid tasks based on the
forecast that may be not accurate. And strategies in Nimrod/G are based on fixed prices. In this
condition, load is unbalance undoubtedly. In addition, choices between users and buyers are
unidirectional, i.e. users can choose resources freely, but resources only accept tasks passively.
Resources will accept more and more tasks with time go on, but couldn’t reject them. The running
time of a task will be prolonged. Task Accomplishment ratio and task QoS go down. In conclusion,
they couldn’t deal with resource scheduling well in Grid environment.

3. Abstract Entities in DIRSS-G

DIRSS-G possesses essential abstract entities in the model too. Behaviors of users and buyers abide
by economic principles. But these entities must be adapted for DIRSS-G. We will describe these
entities in detail.

One essential theory in economics is the supply and demand theory. We apply the theory to
DIRSS-G to balance load. A resource can adjust its price according to its load, to affect users’
choices.

myGridResource:
Resource ID: RID
Gdollor: ResMoney
Resource description file: ResourceCharacteristics
Pricing function: updatePrice(Current Load). An example is the formula 1.
Task scheduling: AllocPolicy: Round Robin Scheduling, or Time Slices Scheduling, etc.

pricePice
blcbliceb
blicelice

P

maxPrmin
)(/)10)((Prmin)1(
)0(PrminPrmin

2

≤≤
⎩
⎨
⎧

>×−+×+

≤≤+×
=

 (1)

In formula 1, P is the price of a Grid resource with certain load; variable l is a load factor

representing current load. Constant b represents the valve value of resource load for price increasing
or decreasing; c controls the intensity degree of price changing. Resource administrator should be
able to define minPrice and minPrice as the lowest and highest price threshold respectively.

When bl > , the resource is over loads, we use quadratic function to raise its price rapidly until
reaching its maxPrice, to hamper users to choose the resource; when bl ≤≤0 , we use linear
function to reduce price slowly. So the resource will not quickly fall into overload again. In different
conditions, we can choose distinct pricing functions to adjust price in time.

myUser:
UserID: UID

Li Lu and Shoubao Yang
DIRSS-G: an Intelligent Resource Scheduling System for Grid Environment Based on Dynamic Pricing

 122

Gdollor: UserMoney
Resourcebroker: myBroker
Task queue: myTaskList queue of tasks needed completing

myBroker:
A myBroker acts as an agent of a special user and can be configured for special requirements, such
as cost optimization algorithm, time optimization algorithm, etc. It does some works for the user,
including choosing resources, submitting tasks, and receiving results.

myTask:
TaskID: GridletID
Task description: GridletScript, describing properties of a task, such as task Length, task deadline,
etc. You can record anything you concern in this file.

GridInfoServer:
The GridInfoServer provides public services in DIRSS-G, like storing resource location information,
some static resource descriptions and the user number. Its function is similar to Grid Information
Services in realistic Grid environment. In Globus Toolkits, the function is achieved by MDS module.

4. Design of DIRSS-G

4.1 Logical Design

The architecture of DIRSS-G is decentralized. Choices between users and resources are bi-
directional. The logic design for DIRSS-G is shown in Fig. 1.

Fig. 1 Logical Design of DIRSS-G

TRM: task-receiving module RSM: result-submitting module RCM: resource-choosing module RIM: resource
information module PM: pricing module.

MyBroker module consists of result-submitting module, task-receiving module, resource-

choosing module, and four task queues. Four task queues are, UnfinishedList queue which recodes
tasks needed completing; DispatchedList queue that recodes tasks which are already submitted but
haven’t finished; CanotdoList queue that recodes tasks which already exceed their deadlines; and
FinishedList queue which records tasks finished already.

DIRSS-G is a message-driven system. To assure task QoS, we implement the QoS guaranteeing
mechanism through bi-directional choosing. When a user submits a task to a resource, the resource
should decide whether accepts it or not. The decision is made by present running information of the
resource to assure quality of tasks running on it already. A task’s quality demand will be assured as
long as it is accepted by a resource.

International Journal of Information Technology Vol. 12 No.4 2006

123

4.2 Running Steps of myGridResource

1. A resource is initialized and registers itself in GridInfoServer.
2. When a task is submitted to it, the resource will decide whether accepts it or not. And then sends

reply to the task’s owner.
3. When some events occur, the pricing module will update its price. In our experiment, the event

set is {accepting a new task, a task finished, passing a specific time slice}. The set can be set
freely.

4. It executes tasks in its ExecuteList queue. When a task finished, the resource compiles its result,
sends the result and updates its ResMoney.

5. It just needs to send a quitting message to GridInfoServer for quitting.
6. The resource continues doing step2-step5 until an experiment is over.

4.3 Running Steps of myUser

1. A user is initialized and reports itself to GridInfoServer. It submits all tasks to its myBroker. The
myBroker adds these tasks to its UnFinishedList queue.

2. MyBroker firstly requests location information of all available resources registered in
GridInfoServer, and then requests running information of these resources when some events
occur. In our experiment, the event set is {submitting a task}.

3. MyBroker submits every task in its UnFinishedList queue to a suitable resource.
4. It waits for replies sent by elected resources. If a reply is an accepting message, it will delete the

task from UnfinishedList queue and add the task to DispatchedList queue. If a reply is a
rejecting message, the myBroker will submit the task again. If a task misses its deadline, it will
be added to the myBroker’s CanotdoList queue, and the myBroker will not submit it anymore.

5. When the myBroker receives a task’s result, the myBroker adds the task to its FinishedList
queue, updates its UserMoney and sends the result to the user.

6. The myBroker continues step3-step5, untill every task is completed, or misses its deadline, or
UserMoney of the myBroker equals zero. Then the user sends ending message to
GridInfoServer and quits from the system.

4.4 Running Steps of GridInfoServer

1. The GridInfoServer is initialized and set its resource queue empty at first.
2. The GridInfoServer waits for messages from other entities. If a message is a registration

message, it will register the entity. If a message is a quitting message, it will delete the entity
from the system. If a message is a requesting information message, it will send its running
information to the sender.

3. The GridInfoServer periodically sends “KeepAlive” messages to resources recorded in its
resource queue to check whether these resources are alive.

4. The GridInfoServer continues step2, step3, until the administrator of the GridInfoServer shuts
down it.
When the GridInfoServer receives quitting messages from all users, an experiment is over. The

sequence diagram of DIRSS-G is shown as Fig. 2.

Li Lu and Shoubao Yang
DIRSS-G: an Intelligent Resource Scheduling System for Grid Environment Based on Dynamic Pricing

 124

Fig. 2 Sequence Diagram of DIRSS-G: 1.register; 2.submit tasks; 3.request resource location information;
4.reply of 3; 5.request running information; 6.reply of 5; 7.submit a task; 8.reply of 7; 9.result; 10.result

5. Experiments and Results

5.1 Simulation Platform

We choose GridSim [5] as the simulation platform, which is a simulator for Grid environment.
Through rewriting some interfaces in it, we can define our own users and resources with their special
strategies. Furthermore GridSim is based on SimJava [6], which utilizes multi-thread mechanism in
Java to simulate entities in discrete events. So they are suitable for simulating diverse and discrete
events in Grid environment. Because of the implement mechanisms of GridSim and SimJava, using
GridSim to simulate resource scheduling in Grid environment is feasible and suitable. And the
simulating system provides easy access to users through graphic interface shown in Fig. 3.

Fig. 3 The interface of the simulating system

5.2 Experiment Configuration

For simplicity, in our experiment, each user has the same resource choosing strategy: cost
optimization algorithm, and each resource has the same pricing function, formula 1, and its task
scheduling is Round Robin scheduling. Of course, we can configure DIRSS-G with other special
requirements.

5.3 Experiment Data

To identify the performance of DIRSS-G, a simulation experiment is made based on the resources in
Hanhai Grid testbed environment. For simplicity, all tasks are assumed to be independent and have
no communications and data exchanges with each other. We set 25 users, and a modeled of task

International Journal of Information Technology Vol. 12 No.4 2006

125

farming application is established which consists of 25*120 tasks packaged containing the
parameters needed by myBroker. We simulated 5 resources shown in Table 1. We assume that the
costs of resources shown in Table 1 are their prices of low-load.

Table 1 Resource Information
Resource
Name

Resource
ID

Operating
System

CPU
Number

GHZ/
CPU

Gdollar/
Second

HP
superdome

R0 HP-Unix 32 2.8 1300

HP server 128 R1 RedHat 32*2 1.5 1000
Cluster R2 Debian 10 0.866 800
Dawn 2000 R3 AIX 128 0.375 700
SGI origin
2000

R4 IRIX 8 0.25 600

5.4 Analysis of Result

Because experiments are based on the multi-thread mechanism in Java, users and resources run
randomly, and results of experiments are random too. So the experiment result cited later is the
average of many experiment results with the same configuration.

5.4.1 Analysis of Task Accomplishment Ratio

In the same task set, task accomplishment ratios in DIRSS-G and in Nimrod/G are shown in Table 2.
Because of the information-requesting mechanism and bi-directional choosing mechanism in
DIRSS-G, its task accomplishment ratio is greater than that in Nimrod/G by 22.5%. But a myBroker
needs to request dynamic running information of resources and choose a suitable resource to submit
tasks according to special algorithm, so time cost affects the task accomplishment ratio little.

Table 2 Task Accomplishment Ratio in DIRSS-G and in Nimrod/G
System Name Nimrod/G DIRSS-G

Total Number of Tasks 25*120 25*120
Complete Number of

Tasks
2195 2872

Task accomplishment
ratio

73.2% 95.7%

5.4.2 Number of Tasks Completed on Each Resource

Fig. 4 is the histogram comparing the number of tasks completed on each resource in DIRSS-G with
that in Nimrod/G. We can observe that, in the same task set, a very few resources completed most
tasks with full load in Nimrod/G, while other resources are idle. Owing to some influences, such as
task deadlines and resource capabilities, although R4’s price is lower than any other resources, the
number of tasks accomplished on R4 is not the greatest for its low capability. In DIRSS-G, tasks
don’t concentrate on a few resources. When R4 is over loads, tasks will be submitted to other
resources. Because R2’s capability is comparatively great and its price is moderate, it completes the
most tasks of all resources. In DIRSS-G, for time cost, R2 completed most tasks, and R3, R4 follow
on.

Li Lu and Shoubao Yang
DIRSS-G: an Intelligent Resource Scheduling System for Grid Environment Based on Dynamic Pricing

 126

Fig. 4 Task Completed on Each Resource

5.4.3 Price Fluctuation of One Resource

The price fluctuation of each resource varies with its load. So a resource price reflects its load
information. When a resource price increases to a certain value, tasks do not choose the resource.
Then its price will decrease. Over a certain period, tasks will choose it again, causing its price to
increase again. This process continues until an experiment is over. Due to its expensive minPrice and
its great capability, R0 completes fewer tasks than any other resources, and its load and price remain
steady. Not losing generality, we depict the process of R2 in Fig. 5.

Fig. 5 Price Fluctuation of R2 Fig. 6 Price Fluctuation of Each Resource

5.4.4 Price Fluctuation of All Resources

The price fluctuation process of all resources in a period is shown in Fig. 6. The price of each
resource starts at its minPrice, and prices follow the rule mentioned in section 5.4.3. Since minPrices
of R1, R2, and R3 increase sequentially, we can find that prices of R1, R2, and R3 begin to increase
sequentially too. Moreover capabilities of R1, R2, and R3 increase sequentially, growth speeds of
their prices decrease sequentially. And we can know it by comparing slopes of price lines. The price
fluctuation of R0 is depicted in 5.4.3 previously.

6. Conclusion and Future Works

In this paper, we design and simulate a resource scheduling system, DIRSS-G in Grid environment.
The experiment result shows that, DIRSS-G could solve the problem of load balance well; at the
same time guarantees task QoS with good scalability and flexibility.

Our future researches mainly focus on two aspects. On the one hand, we’ll study resource
choosing strategy of users and pricing function of resources. On the other hand, we’ll deployed
DIRSS-G in the Hanhai Grid environment, which is based on China Nation Grid Software-VEGA

International Journal of Information Technology Vol. 12 No.4 2006

127

GOS[7]. DIRSS-G will provide transparent services to users through portals, effectively integrating
resources in USTC.

References

[1] I. Foster, C. Kesselman, and S. Tuecke. “The Anatomy of the Grid: Enabling Scalable

Virtual Organizations”. The International Journal of High Performance Computing
Applications, 2001, 15(3): 200-222.

[2] R. Buyya, H. Stockinger, J. Giddy, and D. Abramson. “Economic Models for Management
of Resources in Peer-to-Peer and Grid Computing”. Proceedings of the SPIE International
Conference on Commercial Applications for High-Performance Computing. Denver, CO,
U.S.A., August 20-24, 2001, Vol. 4528: 13-25.

[3] O. Regev, N. Nisan. “The POPCORN Market – an Online Market for Computational
Resources”. Proceedings of the first International Conference on Information and
Computation Economies. Charleston, SC, U.S.A., October 25-28, 1998: 148-157.

[4] D. Abramson, J. Giddy, L. Kotler. “High Performance Parametric Modeling with
Nimrod/G: Killer Application for the Global Grid?”. Proceedings of the 14th International
Parallel & Distributed Processing Symposium. Cancun, Mexico, May 1-5, 2000: 520-528.

[5] R. Buyya, M. Murshed. “GridSim: a toolkit for the modeling and simulation of distributed
resource management and scheduling for Grid computing”. Concurrency and Computation:
Practice and Experience, 2002, 14: 1175-1220.

[6] F. Howell, R. McNab. “Simjava: a discrete event simulation package for Java with
applications in computer systems modeling”. Proceedings of First International Conference
on Web-based Modeling and Simulation. San Diego, CA, U.S.A., January 11-14, 1998: 51-
56.

[7] China Nation Grid. http://vega.ict.ac.cn

Li Lu is a third-year MS student in the Department of
Computer Science and Technology at the University of
Science and Technology of China. She graduated from the
Department of Computer Science at the HuaZhong Normal
University in 2003, receiving a dual degree in Computer
Science and Mathematics and Applied Mathematics. Her
current research interests are Grid and Grid Computing,
including the task scheduling and the scalability in Grid,
and Web Services.

Shoubao Yang is a Professor and Ph.D. Supervisor in the
Department of Computer Science and Technology, and the
Director of USTC Network and Information Center,
University of Science and Technology of China. At the
same time, he is a Senior Member of China Computer
Federation. His interest areas include: Grid and Grid
Computing, Next Generation Network Protocol and Mobile
Computing, Modern Cryptography and Network Security.

