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Abstract 
 

This paper presents a new method to the invariant approximations and disturbance attenuation  for 
constrained Linear Discrete-Time Systems. A novel condition in the form of LMIs is derived to 
guarantee the asymptotically stable of the system, based on which an optimization problem is 
constructed to compute the approximation of an invariant set contained in the domain of attraction. 
This new method contains more free parameters, which allow more freedom when we search the 
optimal solution and thus reduce the conservatism. Furthermore, a local 2L  gain, which can be used 
to measure the disturbance attenuation ability, is also computed. Finally numerical examples are 
presented to show the effectiveness of the proposed method. 
Keywords: Invariant set, Disturbance attenuation, Lyapunov function, 2L  gain 

I. Introduction 
 
This note concerns the stability analysis and disturbance attenuation for a general discrete-time 
system subject to input saturation and disturbance. Due to the practical significance and the 
theoretical challenges, problems for systems subject to saturation have attracted tremendous 
attention in recent years [1-7, 11, 13]. With the absolute stability analysis tools, such as the circle 
and Popov criteria, various methods have been developed to estimate the domain of attraction [8, 9]. 
Theory of set invariance plays a fundamental role in the control of constrained systems. Invariant set 
can be used to estimate the domain of attraction and much effort has been spent on the enlarging of 
the invariant set [3, 4].  
As for the constrained discrete-time systems, many results have appeared in the recent years. A new 
condition for an ellipsoid to be invariant was presented in [5] for discrete-time systems subject to 
actuator saturation, which is shown to be less conservative than the traditional circle criterion. Then 
in [12] the quadratic Lyapunov function approach was extended and a saturation-dependent 
Lyapunov function was developed. Fang et.al has developed a new method to do the disturbance 
rejection for systems subject to actuator saturation [15]. 
Much attention has also been drawn on the disturbance attenuation for systems subject to actuator 
saturation [5, 8, 9, 16, 18, 19]. In [16], a multi-objective optimization approach was adopted and the 
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sufficient conditions for the feasibility of a high-gain controller were derived. The work of [9] gave 
the definition of disturbance rejection and the 2L  gain bound, and these problems were formulated 
into LMI (Linear Matrix Inequality) optimization problems by circle and Popov criteria. Two 
ellipsoids were used to cope with the disturbance rejection problem in [5]. 
In this paper, we are interested in the estimation of domain of attraction and a new condition is 
derived to make the estimation as large as possible. A saturation-dependent Lyapunov function is 
introduced, which incorporates the information of the severity of saturation and thus reduces the 
conservatism. Furthermore, an original method is constructed to estimate the domain of attraction, 
which has more extra free parameters than other methods and thus reduces the conservatism.  
Moreover, in the presence of disturbance, a sufficient condition for a set to be invariant is derived. 
Then based on this condition, we use the local 2L  gain to measure the disturbance rejection ability 
for the discrete system and an optimization problem in the form of LMIs is constructed to solve this 
problem. 
The paper is organized as follows. Section 2 gives the problem statement and preliminary lemmas. 
Section 3 introduces the saturation-dependent Lyapunov function and derives an original 
optimization problem to estimate the domain of attraction. In Section 4, the disturbance rejection 
problem is addressed. Numerical examples will be presented in Section 5 to illustrate our approach, 
and the paper is concluded in Section 6. 
Notations: The following notations will be used throughout the paper. nR denotes the n dimensional 
Euclidean space with vector norm • , and m n×R denotes the set of all m n× real matrices. The 
notation 0M > is used to denote a symmetric positive definite matrix. ( , )P ρ∂Ω denotes the boundary 
of ( , )P ρΩ . σ  denotes the maximal singular value of a matrix. 2 ([0, ])ml N denotes the space of square 
summable vector sequence over [0, ]N , i.e., space formed by the sequence 0 1,{ , ..., }Nx x x x=  with 

m
kx = R and such that                1/ 2

2
0

( )
N

T
k k

k
x x x

=

= < ∞∑ . 

II. Preliminaries 
 
Consider the following system subject to actuator saturation  

1( 1) ( ) ( ) ( ( )),x k Ax k B w k B u kσ+ = + +       (1) 
( ) ( ),z k Cx k=                                                                                        

and nx = R denotes the state vector, mu = R the control input vector and n nA ×∈R , 1
n lB ×∈R , n mB ×∈R  are 

real-valued matrices.  Without loss of generality, we assume that the bounded disturbance w belongs 
to the set { }: : ( ) ( ) 1, 0Tw w k w k k= ≤ ∀ ≥W: . 
The function : m mσ →R R  is the standard saturation function defined by:  
                       [ ]1 2( ) ( ) ( ) ... ( ) T

mu u u uσ σ σ σ=   
where { }( ) ( ) min 1, .i i iu sign u uσ =  
Consider the following linear state feedback law ( ) ( ).u k Fx k=u We would like to know how the closed-
loop system behaves in the presence of saturation nonlinearity, in particular, to what extent the 
stability is preserved. In the first step, we aim at obtaining an estimate of the domain of attraction of 
the origin of the closed-loop system 

1( 1) ( ) ( ) ( ( )),x k Ax k B w k B Fx kσ+ = + +                                    (2) 
( ) ( ),z k Cx k=     

  Let if be the ith row of the matrix F . We define the symmetric polyhedron 
{ }( ) : 1, 1,2,..., .iF x f x i m= ∈ ≤ =nL R  For 0(0) ,nx x= ∈ nR denote the state trajectory of the systems (2) as 
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0( , , )k x wϕ  at time k. A set is said to be invariant if all the trajectories starting from it will remain in it 
regardless of w∈W . 
Let n nP ×∈R be a positive-definite matrix. For a number 0ρ > , and ellipsoid ( , )P ρΩ = is defined 
as { }( , ) :n TP x x Pxρ ρΩ = ∈ ≤R . 
 Now we will introduce several important lemmas. Let V be the set of m m×  diagonal matrices 
whose diagonal elements are either 1 or 0. There are 2m elements in V . Suppose that each element of 
V  is labeled as , 1,2,..., 2m

iE i = , and denotes i iE I E− = − . Clearly iE− is also an element of V if iE ∈V . 
 Lemma 1 [5] Let , m nF H ×∈R be given. For nx∈R , if ( )x H∈L , then  
                     { }( ) : [1,2 ]m

i iFx co E Fx E Hx iσ −∈ + ∈                              
where { }co denotes the convex hull of a set. Consequently, ( )Fxσ can be expressed as 

                     
2

1
( ) ( )

m

i i i
i

Fx E F E H xσ η −

=

= +∑                                          (3) 

where iη is a parameter dependent on the severity of saturation and satisfies 
2

1
1,0 1

m

i i
i
η η

=

= ≤ ≤∑ . 

Note that one of the main advantages of the above lemma is that ( ( ))Fx kσ can be represented as a 
convex hull of a group of linear feedbacks, which will be seen in the following sections. 
Lemma 2 [10] Let ,n m nx H ×∈ ∈R R and assume that n nP ×∈R is a symmetric matrix, such 
that rankH r n= < . The following statements are equivalent :                        

                  1. 0, 0, 0
2. : 0.

T

n m T T

x Px Hx x
X P XH H X×

< ∀ = ≠

∃ ∈ + + <R
 

III. Stability Analysis by a Saturation-Dependent Lyapunov Function 
 
In this section, we will use a newly presented saturation-dependent Lyapunov function in [12] to 
analyze the stability of the saturated system (2) by the invariant set approach. 
To clearly present the problem, we denote ( )i i iA A B E F E H−= + + , where m nH ×∈R satisfies 1Hx

∞
≤ . 

Following Lemma1, we can rewrite the systems (2) as follows 
1( 1) ( ( )) ( ) ( ), ( )x k A k x k B w k x Hη+ = + ∀ ∈L%                                (4) 

( ) ( ),z k Cx k=  

where
2

1
( ( )) : ( )

m

i i
i

A k k Aη η
=

= ∑% , and 1 2 2
( ) ( ) ( ) ( )mk k k kη η η η⎡ ⎤= ⎣ ⎦L is time-varying parameter dependent on 

( )x k  and
2

1
( ) 1,0 ( ) 1

m

i i
i

k kη η
=

= ≤ ≤∑ . It is easy to see that parameters ( )kη depend on the severity of the 

saturation [12], for example, if all actuators are not saturated at time k , we have 
1( ) 1, ( ) 0ik kη η= = for 2,3,..., 2mi = . In what follows, we will use ( )i kη to denote ( ( ))i x kη . 

A. Stability analysis 
With a positive-definite matrix n nP ×∈R , a quadratic Lyapunov function can be defined 
as ( ( )) TV x k x Px= . For 0ρ > , a level set of ( )V , denoted by ( )VL ρ , 
is { }( ) : : ( ( )) ( , )n

VL x V x k Pρ ρ ρ= ∈ ≤ = ΩR . 
The unknown but measurable time-varying parameters ( )kη  can provide real-time information on the 
variations of the saturation. To reduce the conservatism in analyzing the stability of the saturated 
system (2), it is desirable to use this information on saturation.  In what follows, we introduce this 
new saturation-dependent Lyapunov function [12]: 
                      ( ( )) ( ) ( ( ( ))) ( )TV x k x k P x k x kη=                                 (5) 
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where
2

1
( ( ( ))) : ( ( ))

m

i i
i

P x k x k Pη η
=

= ∑ . Then the estimation of the domain of attraction is obtained by the 

Lyapunov level set approach. Define { }( ( ), ) ( , ) : ( ( ( ))) .n T
VP L P x x P x k xη η ρ ρ η ρΩ = = ∈ ≤R  

Definition 1 The closed-loop system (2) is regional asymptotically stable at the origin with the level 
set ( )VL ρ contained in the domain of attraction if ( ) ( )VL Hρ ⊂ L for some m nH ×∈R , and  
                     ( ( )) ( ( 1)) ( ( )) 0V x k V x k V x k∆ = + − <  
for any { }( ) ( ) \ 0Vx k L ρ∈ . 
In what follows, a condition under which ( ( )) 0V x k∆ < holds will be given with the general 

( ( ( )))P x kη for closed-loop system (2). 
Theorem 1 Consider the closed-loop system (2) with 0w ≡ under a given state feedback control 
matrix F . If there exist matrices 1 2, ,n n n n n n

iN N P× × ×∈ ∈ ∈R R R , and 0, 1, 2,..., 2m
iP i> = , such that  

            2 2 1 2

1 2 1 1

0, , [1, 2 ]
T T T T

i i i i m
T T

i j

N A A N P A N N
i j

N A N N N P
⎡ ⎤+ − −

< ∀ ∈⎢ ⎥− − − +⎢ ⎥⎣ ⎦
                        (6) 

and ( , ) ( )VL P Hρ ⊂ L . Then the closed-loop system (2) in absence of disturbance is regional 
asymptotically stable at the origin with the level set ( , )VL P ρ contained in the domain of attraction. 
Proof. Choose Lyapunov function (5). As the statement of definition 1, given ( , ) ( )VL P Hρ ⊂ L , the 
closed-loop system (2) is regional asymptotically stable at the origin, if  

            
2 2

1 1

2 2

1 1

( ( )) ( ( )) ( ( 1)) ( ( )) ( ( ))

( 1) ( 1) ( 1) ( ) ( ) ( )

( ) ( 1)( ( 1) ( 1) ( ) ( )) 0

m m

m m

T

T T
j j i i

j i

T T
i j j i

i j

V x k A k P k A k P k

x k k P x k x k k P x k

k k x k P x k x k Px k

η η η η

η η

η η

= =

= =

∆ = + −

= + + + −

= + + + − <

∑ ∑

∑∑

% %

          

for any { }( ) ( , ) \ 0Vx k L P ρ∈ . 
 It is easy to see that  

                        
2

1

0 ( )
( ) ( 1) 0 , [1,2 ]

0 ( 1)

( ) ( )
( ) 0, 0

( 1) ( 1)

m

iT T m

j

i i
i

P x k
x k x k i j

P x k

x k x k
k A I

x k x k
η

=

⎧ −⎡ ⎤ ⎡ ⎤⎡ ⎤+ < ∀ ∈⎪ ⎢ ⎥ ⎢ ⎥⎣ ⎦ +⎣ ⎦⎣ ⎦⎪
⎨

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ − = ≠⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ + +⎣ ⎦ ⎣ ⎦⎣ ⎦⎩
∑

            (7) 

is sufficient for ( ( )) 0V x k∆ < . 

      Let 1

2

N
H

N
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, and 1 2, n nN N ×∈R . By lemma 2, (7) is equivalent to  

2 2

2 2 2 1 2
1 1

2

1 2 1 1
1

2
2 2 1 2

1 1 2 1 1

( )( ) ( )

( )

( ) 0, , [1, 2 ]

m m

m

m

T T T T
i i i i i

i i

T T
i i j

i

T T T T
i i i i m

i T T
i i j

k N A A N P k A N N

k N A N N N P

N A A N P A N N
k i j

N A N N N P

η η

η

η

= =

=

=

⎡ ⎤
+ − −⎢ ⎥

⎢ ⎥
⎢ ⎥

− − − +⎢ ⎥
⎣ ⎦

⎡ ⎤+ − −
= < ∀ ∈⎢ ⎥− − − +⎢ ⎥⎣ ⎦

∑ ∑

∑

∑

                (8) 

Obviously, if inequality (6) holds, ( ( )) 0V x k∆ < . And then we can conclude system (2) is 
asymptotically stable at the origin with ( , )VL P ρ contained in the domain of attraction. 
Remark 1 Theorem 1 gives a condition that ensures the Lyapunov level set ( , )VL P ρ to be contained 
in the domain of attraction for the closed system (2) in absence of disturbance under a linear 
constant feedback control law, while maintaining the stability of the closed-loop system. Actually, if 
we set 2 0N = , inequality (6) becomes                  
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1

1 1 1

0, , [1, 2 ]
T T

i i m
T

i j

P A N
i j

N A N N P
⎡ ⎤−

< ∀ ∈⎢ ⎥− − +⎢ ⎥⎣ ⎦
                          (9) 

Inequality (9) is exactly the same as the Theorem 1 of [12]. Hence, the result of [12] is just a special 
situation of our paper. Free parameter 1 2,N N provides more freedom to obtain a less conservative 
result. 
B. Estimation of Domain of Attraction 
Actually, a sufficient condition for a level set to be invariant has been obtained in Theorem 1. A 
larger estimation of domain of attraction is more desirable in the stability analysis for systems. 
Hence it is natural for us to choose the largest level set to estimate the domain of attraction.  A shape 
reference set, in terms of a polyhedron or ellipsoid, is always adopted to measure the size of the 
domain of attraction [5]. Let n

R ⊂X R be a prescribed bounded convex set containing the origin. For a 
set n⊂L R which contains the origin, define { }( , ) : sup 0 :R Rβ β β= > ⊂X L X L . Here we choose RX to be a 
polyhedron defined as { }1 2, ,...,R lco x x x=X . 
With the above shape reference sets, we can choose from all the ( , )VL P ρ ’s that satisfy the condition 
of Theorem 1 such that the quality β is maximized. This problem can be formulated as the following 
constrained optimization problems: 
 OPT1: 

1 20, , ,max , . . ( ) ( , ),
iP N N H R Vs t a L Pβ β ρ> ⊂X (b) inequality (6), and (c) 1, ( , )i Vh x x L P ρ≤ ∀ ∈ , where 

ih denotes the ith row of H . 
 As in [12], we use 2

1 ( , )
m

i iP ρ= ΩI to estimate ( , )VL P ρ . Hence OPT1 can be solved by the following 
optimization problem. 
OPT2: 

1 20, , ,max , . . ( ) ( , ),
iP N N H R is t a Pβ β ρ> ⊂ ΩX (b) inequality (6), and (c) 1, ( , )i ih x x P ρ≤ ∀ ∈Ω . 

Without loss of generality, we will let 1ρ = in the left part of this section. To solve problem OPT2, 
let 2 1 1, TN N X Nδ −= = , and T

i iQ X P X= . Note that 1T T
i iX Q X X X Q− ≥ + − . With the given shape reference 

set RX , constraint (a) is equivalent to  
2 2

2
11 0 0

( )

T T
j jT

j i j T T T
j i j i

x x
x Px

x X X P X X x X X Q
β β

β
− −

−

⎡ ⎤ ⎡ ⎤
≤ ⇔ ≥ ⇔ ≥⎢ ⎥ ⎢ ⎥+ −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

                    (10) 

Pre and post-multiplying inequality (6) by { },T Tdiag X X and { },diag X X respectively. Then it is clear 
that constraint (b) is equivalent to  

             *
0, , [1, 2 ]

( )

T T
i i i m

T T
i i j

A X X A Q
i j

AX B E FX E Z X X X Q
δ δ

δ−

⎡ ⎤+ −
< ∀ ∈⎢ ⎥+ + − − − +⎢ ⎥⎣ ⎦

                    (11) 

where Z HX= . Let j jz h X= . Constraint (c) is equivalent to  

1 1 1 1
1 1 ( ) 0 0 0 , [1, 2 ]j jT T T T m

T T Tj i j j i j
j i j i

h X z
h P h h X X P X X h i j

X h Q z Q
− − ⎡ ⎤ ⎡ ⎤

≤ ⇔ − ≥ ⇔ ≥ ⇔ ≥ ∀ ∈⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (12)     Based on 

the description above, the problem of enlarging the domain of attraction can be reduced to an LMI 
optimization problem defined as follows. 

                  

0, ,
OPT3    min , .

( ) 0 [1, ], [1, 2 ],

( )Inequalities  (11),(12)

iQ X Z

T
j m

T
j i

s t

x
a j l i

x X X Q

b

ϑ

ϑ

>

⎡ ⎤
≥ ∀ ∈ ∈⎢ ⎥+ −⎢ ⎥⎣ ⎦

                        (13) 

where 2ϑ β −= . 

IV. Disturbance Attenuation 
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In this section, we will do set invariance and Local 2L gain analysis for system (2). Before proceeding 
to the main result, definition concerning the disturbance rejection is given as what follows: 
Definition 2 ( γ -disturbance attenuation): Given an invariant set inΩ , the closed-loop system (2) is 
said to be regional stable at the origin with γ -disturbance attenuation if, for all w∈W and k inx ∈Ω , 
the origin of the closed-loop system is asymptotically stable and the response { }kz of the system 
under the zero initial condition satisfies  
                                

2 2
z wγ<                                        (14) 

Consider the system (2). For all w∈W , one principal concern is how far the trajectories will extend 
from the origin. Here we will use an ellipsoid to bound the trajectories of the system. We say that the 
ellipsoid ( , )P ρΩ is strictly invariant if  
                   1 1( ( ) ( ) ( ( ))) ( ( 1))( ( ) ( ) ( ( )))TAx k B w k B u k P k Ax k B w k B u kσ η σ ρ+ + + + + <    
for all ( ) ( , )x k P ρ∈Ω and ( )w k ∈W . 
 
Theorem 2 Consider system (2) and assume ( , ) ( )VL P Hρ ⊂ L . Given linear feedback law F , ( , )VL P ρ is 
an invariant set for system (2), if there exist matrices , ,n n n n

iS P× ×∈ ∈R R and 0, 1, 2,..., 2m
iP i> = , such 

that 

                        
*

0, , [1,2 ]i m
T

i j

gP
i j

SA S S P
−⎡ ⎤

≤ ∀ ∈⎢ ⎥− − +⎣ ⎦
,                          (15) 

where 1 11 ,
1

g µ σ
µ µ
⎛ ⎞+

= −⎜ ⎟+ ⎝ ⎠
and σ denotes 1 1( )TB PBσ  

Proof. Since ( , ) ( )VL P Hρ ⊂ L , and by Lemma 1, ( , )Vx L P ρ∀ ∈ system (2) can be rewritten as system 
(4). Select the Lyapunov function (5). By theorem 2 in [5], the invariance of ( , )VL P ρ can be obtained 
if there exists 0µ > , such 

        1 1
1(1 )( ( ( ))) ( ( 1))( ( ( ))) ( ( ( 1)) ) 1 ( ( )) 0T TA k P k A k B P k B P kµµ η η η σ η η
µ

⎛ ⎞+
+ + + + − ≤⎜ ⎟

⎝ ⎠
% %   

To simply the problem, let σ denote 1 1( ( ( 1)) )TB P k Bσ η + . By Schur complement , the above is 
equivalent to  

               
1

1 11 ( ( )) *
01

( ( )) ( ( 1))

P k

A k P k

µ σ η
µ µ

η η−

⎡ ⎤⎛ ⎞+
−⎢ ⎥⎜ ⎟ ≤+ ⎝ ⎠⎢ ⎥

⎢ ⎥− +⎣ ⎦%

                              (16) 

Let 1 11
1

g µ σ
µ µ
⎛ ⎞+

= −⎜ ⎟+ ⎝ ⎠
. Noting that inequality 1T TS PS S S P−− ≤ − − + and pre and post-multiplying (16) 

by { , }diag I S and { , }Tdiag I S respectively. It is sufficient for inequality (16) to hold if  

               

2

1

2

1

2 2

1 1

( ( ) ) *

( ( 1) )

*
( ) ( 1) 0, , [1, 2 ]

m

m

m m

i i
i

T
j j

j

i m
Ti j

i j i j

g k P

SA S S k P

gP
k k i j

SA S S P

η

η

η η

=

=

= =

⎡ ⎤
−⎢ ⎥

⎢ ⎥
⎢ ⎥

− − + +⎢ ⎥
⎢ ⎥⎣ ⎦

−⎡ ⎤
= + ≤ ∀ ∈⎢ ⎥− − +⎣ ⎦

∑

∑

∑∑

%                   (17) 

Obviously inequality (15) is sufficient for inequality (17) to hold. This complete the proof . 
By Theorem 2, we can obtain an invariant set ( , )VL P ρ to bound all the state trajectories. In what 
follows, we will use invariant set to deal with disturbance rejection for the closed-loop 
system. 2L gain is always used to measure the disturbance attenuation capability. For a linear system 
subject to actuator saturation, we can not get the global 2L  gain in the common sense. However, a 
local 2L gain can be obtained. That is to say we can use an invariant set to bound the state trajectories 
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of the system for all ( )w k ∈W and then we can estimate the upper bound on the 2L  gain for a closed-
loop system. 
Theorem 3 The system (2) is regional stable at the origin with γ -disturbance attenuation, i.e., 

2 2
z wγ< in invariant set ( , )VL P ρ for all the nonzero disturbance ( )w k ∈W under the zero initial 

condition, if in addition to (15), there exist matrices , , , 0, [1, 2 ]n n n n m
i iS M P P i× ×∈ ∈ > ∀ ∈R R and scalar 

0γ > , such that   

                
2

1 1

* *
* 0

T
j
T T T T T
i i i i

T T

P S S
A S M P C C A M M A

B S B M Iγ

⎡ ⎤− −
⎢ ⎥Γ = − − + + + <⎢ ⎥
⎢ ⎥−⎣ ⎦

                      (18) 

and ( , ) ( )VL P Hρ ⊂ L . 
 
Proof. Note that inequality (18) implies (6), so the closed-loop system (2) with ( ) 0w k = is regional 
asymptotically stable. Consider the system (2). Select the Lyapunov function (5). By Lemma 1, 
system (2) can be rewritten as system (4).  

By Theorem 2, inequalities (15) ensure that ( , )VL P ρ is an invariant set. Define
1

2

0
( )

N
T T

N k k k k
k

J z z w wγ
−

=

−∑ . 

Without loss of generality, the initial condition is assumed to be zero. Define [ ]1
T

k k k kx x x w+= . 
Then we obtain 

               
1 1

2
0

0 0
( ( ( 1)) ( ( )) ) ( )

N N
T T T

N k k k k N k k
k k

J z z V x k V x k w w V x x xγ
− −

= =

= + + − − − ≤ Ξ∑ ∑               (19) 

Where  

                    0
2

( ( 1)) 0 0
* ( ( )) 0
* *

T

P k
P k C C

I

η
η

γ

+⎡ ⎤
⎢ ⎥Ξ = − +⎢ ⎥
⎢ ⎥−⎣ ⎦

.                             (20) 

Note that 0 0Ξ < if the following is true 

                   0

1

0

0

T
k k

k k

x x

I A B x x

⎧ Ξ <⎪
⎨⎡ ⎤− ≠⎪⎣ ⎦⎩

%
                                            (21) 

Let
0

S
X M

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. By Lemma 2, (21) is equivalent to  

       
2 2

1 12
1 1

( ( 1)) * *
( ( )) * ( ) ( 1) 0

m m
T

T T T T T
i j

i jT T T T

P k S S
A S M P k C C A M MA k k

B S B M I

η
η η η

γ = =

⎡ ⎤+ − −
⎢ ⎥− − + + + = + Γ <⎢ ⎥
⎢ ⎥−⎣ ⎦

∑∑% % %         (22) 

Obviously, if (18) holds, the inequality (22) holds. Hence 0NJ < . That is to say
2 2

z wγ< . This 
completes the proof.  
Based on the Theorem 3, we can construct an optimization problem to determine the possible 
smallest 2L gain of the system (2) in some invariant set ( , )VL P ρ . However due to the parameter H , 
inequalities (15), (18) are not LMIs. What follows is presented to make the 2L gain problem solvable. 
Let ,T T

i iX S Q X P X−= = . Pre and post-multiplying inequality (15) by { , }T Tdiag X X  
and { , }diag X X respectively. Then inequality (15) is equivalent to  

                   

1

-g *
0

( )

*
0

i
T

i i j

T
j

Q
AX B E FX E Z X X Q

B X X Q
ς

−

′⎧⎡ ⎤
≤⎪⎢ ⎥+ + − − +⎪⎣ ⎦

⎨
⎡ ⎤⎪ ≥⎢ ⎥⎪ + −⎣ ⎦⎩

                              (23) 
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Where Z HX= and 1 11
1

g µ ς
µ µ
⎛ ⎞+′ = −⎜ ⎟+ ⎝ ⎠

. 

Let M Sδ= . Pre and post-multiplying inequality (18) by { , , }T Tdiag X X I and { , , }diag X X I respectively. 
Then inequality (18) is equivalent to  

                
1

1
2

0
* ( )

0
* * 0
* * *

T
j

T T T
i

Q X X X B
Q B X C

I
I

δ
δ δ

γ

⎡ ⎤− − Σ −
⎢ ⎥− + Σ + Σ⎢ ⎥ <
⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

                           (24) 

where ( )i iAX B E FX E Z−Σ = + + with Z HX= . 
       Hence, the following optimization problem can be constructed to compute the smallest 2L gain. 
OPT4: 2

0, ,max , . . (23)
iQ Z X s tγ> and (24). 

 Note that the maximal value of ς is 2(1 )g ′− . Hence given δ , OPT4 can be solved by varying 
g ′ from 0 to 1, which can be solved efficiently by [20].  
 
                           Table 1:   Fβ  for different δ  

δ  0 0.01 0.02 0.03 0.04 0.05   
Fβ  4.5236 4.5263   4.5284 4.5301 4.5305 4.5311  

                                        

V. Numerical Examples 
     
Example 1  First, we will present an example to illustrate the effectiveness of our new saturation-
dependent Lyapunov function in estimation of domain of attraction. Considering the following 
closed-loop system with [12]   

                  [ ]1

1 1 0.5 0.02
; ; 1 1

0 1 1.0 0.03
A B B C⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. 

We design the state feedback control law by the DLQR approach with Q I= and 0.1R = . For the 
above system, we obtain the following controller, [ ]0.6167 1.2703F = − − . 
Firstly, we consider the estimation of domain of attraction for this system. As in [12], we use the 

shape reference set of the form sin
, [0, 2 ]

cosR

θ
θ π

θ
⎧ ⎫⎡ ⎤⎪ ⎪= ∈⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

X . For this example, when 0.4θ π= , we have 

4.5311Fβ = with 0.05δ = by our method, while 4.5235sβ = by the method of [12]. Detailed result can be 
seen in Table 1, in which we can see that when 0δ = , we obtain the result as in [12]. Obviously our 
method is better. 
Now we consider the disturbance attenuation problem for this system. If we set 0δ = ，that is to 
mean there is no extra free parameter in Theorem 3, we obtain 0.0557γ = , while 0.0543γ = with 

0.1δ = − . Hence our method provides more freedom to search the better result and conservatism is 
reduced. 
Example 2  To further illustrate the effectiveness of our approach, we consider a more complex 
third-order system with  

                    [ ]1

1 1 0.5 1.67 0.02
0 1 1 , 0.5 , 0.03 , 1 1 1
0 0 1 1 0.03

A B B C
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

A  DLQR control law with Q I= and 0.1R = is given as [ ]0.3683 0.8498 0.7963F = − − − . 



Yongqiang Wang, Shanbin Li, Yongyan Cao, Youxian Sun, and Jianxia Shou 
Invariant Approximations and Disturbance Attenuation for Constrained Linear Discrete-Time Systems 

 96

To estimate the domain of attraction of this system, we use the shape reference set
0.7071
0.7071

1
R

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥= ⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

X . 

With 0.06δ = − , we obtain 1.2370Fβ = , while 1.2359sβ = with 0δ = . Now consider the disturbance 
attenuation problem of this system. We obtain 0.7800γ = if we 0δ = , which mean there is no free 
parameter in Theorem 3. This result can also be obtained by extending the result of [12] in the way 
of our approach in Section 4. Then if we set 0.08δ = , we obtain 0.7000γ = , which is much better than 
the result when there is no extra free parameter.  

VI. Conclusion 
 
In this paper, we have considered the problem of analysis and controller synthesis for discrete-time 
systems in the presence of actuator saturation and disturbance. We use a newly defined saturation-
dependent Lyapunov function to estimate the domain of attraction, which is then formulated and 
solved as a constrained LMI optimization problem by a new technique.  Then as for the disturbance 
rejection problem, the regional 2L  gain is determined by an optimization problem, which can be used 
to measure the disturbance rejection ability of the system. Our method is better than that of [12], 
which is demonstrated by numerical examples.  
 

VII. Acknowledgement 
  
This work is supported by the  National Natural Science Foundation of China (under Grant No. 
60474045), 973 Plan of China ( under Grant No.2002CB312200) 

References 

 
[1]. H.J.Sussmann, E.D.Sontag, and Y.Yang. A general result on the stabilization of linear systems 

using bounded controls, IEEE Trans. Automat. Contr., 39, PP. 2411-2425, 1994  
[2]. L. Zaccarian and A. R. Teel, A common framework for anti-windup,bumpless transfer and 

reliable designs, Automatica, 38, pp. 1735-1744, 1999 
[3]. F. Blanchini, Set invariance in control, Automatica, 35(11), pp. 1747-1767 
[4]. F. Blanchini, S. MIani, and M. Sznaier, Ultimate bounded ness control for uncertain discrete-

time systems via set-induced Lyapunov functions., IEEE Trans. Automat. Contr., 39(2), pp. 
428-433, 1994 

[5]. T. Hu and Z. Lin and B. M. Chen , Analysis and designfor discrete-time linear systems subject 
to actuator saturation, System & Control Letters, 45(2), pp. 97–112, 2002 

[6]. T. Hu and Z. Lin, Composite Quadratic Lyapunov Functions for Constrained Control 
Systems, IEEE Trans. Automat. Contr., 48, pp. 440-450, 2003 

[7]. Y.-Y. Cao and Z. Lin and D.G.Ward. An anti-windup approach to enlarging domain of 
attraction for linear systems subject to actuator saturation, IEEE Trans. Automatic Control, 
2002, 47(1): 140~145 

[8]. Paim. C, Tarbouriech. S, Gomes da Silva Jr. J.M, and Castelan E. B., Control design for linear 
systems with saturating actuators and 2L -bounded disturbances, Proceedings of the 41st IEEE 
conference on Decision and Control, pp. 4134-4138.2002 



International Journal of Information Technology     Vol. 12   No. 5   2006 
 

                                                                                                                                                                

 

97

[9]. Hindi. H and Boyd. S, Analysis of Linear Systmes with Saturation using Convex 
Optimization, Proceedings of the 37th IEEE conference on Decision and Control, pp. 903-
908.1998 

[10]. M. C. de Oliveira and R. E. Skelton, Stability tests for constrained linear systems, Perspective 
in Robust Control, Lecture Notes in Control and Information Science, pp. 241-257, Springer-
Verlag, 2001. 

[11]. Bennett D, Burge SE, Bradshaw A, Design of a controller for a highly coupled V/STOL 
aircraft, TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 21 
(2-3), pp. 63-75. 1999 

[12]. Y.-Y. Cao and Z. Lin, Stability analysis of discrete-time systems with actuator saturation by a 
saturation-dependent Lyapunov function, Automatica, 39, pp. 1235-1241, 2003 

[13]. Chen J, Patton RJ, Chen Z, Active fault-tolerant flight control systems design using the linear 
matrix inequality method, TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND 
CONTROL, 21 (2-3): 77-84 1999 

[14]. Y.Q. Wang, Y.-Y. Cao, and Y.X. Sun, Stability analysis and anti-windup design for discrete-
time systems by a saturation-dependent Lyapunov function approach, IFAC 2005. 

[15]. Haijun Fang, Zongli Lin, and Tingshu Hu, Analysis of linear systems in the presence of 
actuator saturation and 2L -disturbance. Automatica, 40, pp. 1229-1238, 2004 

[16]. Nguyen. T and Jabbari. F, Disturbance attenuation for systmes with input saturation: An LMI 
approach. IEEE Trans. Automatic Control, 44(4), pp. 852-857, 1999. 

[17]. A.Benzaouia, L. Saydy, Stability and Control Synthesis of Swithced Systems Subject to 
Actuator Saturation. Proceeding of the 2004 American Control Conference, pp. 5818-5823, 
2004 

[18]. Duan GR, Wu ZY, Howe D, Robust control of a magnetic-bearing flywheel using dynamical 
compensators, TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND 
CONTROL, 23 (4): 249-278 2001 

[19]. Nguyen. T and Jabbari. F, Output feedback controllers for disturbance attenuation with 
actuator amplitude and rate saturation. Automatica, 36, pp. 1339-1346, 2000.  

[20]. S.Boyd, L.El Ghaoui, E.Feron and V.Balakrishnan. Linear Matrix Inequalities in System and 
Control Theory. SIAM,Philadelphia, 1994. 

 
Yongqiang Wang  Received his bachelor degree from Zhejiang University in 
2003. Now he is a Master Candidate of the Department of Control Science and 
Engineering at Zhejiang University. His research interests include the nonlinear, 
roust control, constrained system control, and networked control systems.  

 
 

 
 

Shanbin Li was born in Jiangxi, China, in 1978. He received his B.S. degree in 
Industrial Automation from Nanchang Univeristy, China in 2000. From 
September 2000, he was a Ph.D. candidate and received the Ph.D. degree in 
control science and control engineering in 2005 from Department of Control, 
Zhejiang Univeristy, China. From April 2004 and May 2004, he was a Research 
Associate at TRIO-LORIA (Laboratoire Lorrain de Recherche en Informatique et 
ses Applications), France. From July 2005 to August 2005, he was a Research 



Yongqiang Wang, Shanbin Li, Yongyan Cao, Youxian Sun, and Jianxia Shou 
Invariant Approximations and Disturbance Attenuation for Constrained Linear Discrete-Time Systems 

 98

Associate at the University of Hong Kong. He is now a Post-doctoral Research Fellow at CRAN, 
Universit´e Henri Poincar´e, France. His reasearch interests include networked control systems, 
stochastic systems, time-delay systems, robust control, fault detection and fault-tolerant control. 
 
Yong-Yan Cao  was born in Hunan, China, in 1968. He received the B.E. and M.Sc. degrees in 
electrical engineering from Wuhan University of Science and Technlogy, China, and the Ph.D. 
degree in industrial automation from Zhejiang University, China, in 1990, 1993, and 1996, 
respectively. From 1997 to 1998, he was a Visiting Research Associate in the Department of 
Mechanical Engineering, The University of Hong Kong. From 1998 to 1999, he held an Associate 
Professor position at Zhejiang University. He then spent a year-and-a-half with the Department of 
Measurement and Control, Duisburg University, Germany, as an Alexander von Humboldt Research 
Fellow. He has published more than 50 papers in some reputed journals and conferences such as the 
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, Automatica, and Systems and Control 
Letters. He also has been active both in his own research and in his service as a Reviewer for many 
journals and conferences. His current research interests include robust and nonlinear control, 
constrained control, time-delay systems, sampled-data systems, and fuzzy control.  
 

SUN You-Xian Youxian Sun was born in Zhejiang, China in 1940. He graduated 
in Chemical Engineering Dept.at Zhejiang Univ. in 1964. In the same year, he 
became a teacher in the Chemical Engineering Dept. and Institute of Industrial 
Process Control. From 1984 to 1987, he went to Chemical Engineering Dept. at 
Univ of Stuttgart, Germany as a visitor. He was promoted as Professor in 1988 and 
Ph.D. advisor in 1991. He was awarded the model worker in the National 
Educational System and the Medal of the People Teacher. He was the delegate of 
the Eighth National Peoples Congress. And in 1995, he was elected as the 
Academician of the Engineering Academics and the Zhejiang primary commissary 

of Chinese Democracy Federation in 1996. He was awarded the first National Excellent Science and 
Technology worker in 1999. In the same year, he was elected the Adjunct Director of the Standing 
Committee of People’s Congress of Zhejiang Province. His research fields include robust control 
theory and its application, FD/FTC theory and its application, H1 control theory and its application, 
pulp and paper-making process computer control. 
 
Jianxia Shou was born in Zhejiang, China, in 1964. She received the B.S. and M.S. degrees in 
computer science from Northeast University, China, in 1987 and 1990 respectively. From 1990 to 
1993, she was with the Automation Instrument Company, Hangzhou, China, as a Embedded 
Software Developer. From 1994 to 2000, she was with the Hangzhou University of Electronic 
Technology, China, as a Lecturer. From 2001 to 2002, she was with the Sprint Corporation, Kansas, 
USA, as a Software Developer (Contractor). From 2003 to now, she was with the College of 
Software, Zhejiang University of Technology, China, as an Associate Professor. She has published 
more than 10 papers in some reputed journals and conferences. Her current research interests include 
learning control, artificial intelligence, etc. 
 


