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Abstract 
 
Combining the adaptive inverted control method based on a compound orthogonal neural network 
with generic mode control scheme, an adaptive control algorithm based on a compound orthogonal 
neural network has been proposed, which can embed the process model into the controller by the 
inverted control method with neural networks. It can guarantee the realizability of the generic model 
control scheme based on neural networks.  The reference trajectory is a pseudo-second-order curve. 
As the compound orthogonal neural network is easy to implement and very fast in convergence 
speed, it is suitable to apply in real control system. It is also very easy to tune for the controller. The 
simulation results show the effectiveness of the proposed control scheme. 
Keywords. Generic model control, Compound orthogonal neural network (CONN), Pseudo-second-
order system, Adaptive inverted control 

I. Introduction  
 
An early method [1] was to apply the nonlinear model in control law and it needed to calculate the 
numerical inversion of the complicated process model. Generic model control (GMC) [2][3][4] 
algorithm is an effective nonlinear control one, which can directly embed the nonlinear process 
model into the controller. The reference trajectory is a pseudo second order curve. It is easy to tune 
the controller. But it is very important that it can calculate the control law according to the first order 
differential equation of the controlled plant in GMC. Sometime it is very difficult to calculate the 
control law according to the first order differential equation in GMC. In order to overcome the 
weakness, an effective method is to apply neural networks to get the inverse model for the controlled 
plant in adaptive control. Generally BP and RBF neural networks have been widely applied in the 
inverse control system [9][10]. But BP neural network is of some weaknesses, for example, it is a 
complicated algorithm, slow learning speed and easy to get a local minimum value. RBF neural 
network is also of complicated algorithm. They are not very suitable in real time control system. The 
compound orthogonal neural network is a simple network and it is of a high-speed convergence of 
learning process [8]. Here we propose a generic model adaptive control scheme based on neural 
networks with the method of inverse system for the nonlinear process to directly embed the process 
model into the controller. It can guarantee the realizability of GMC. This paper is arranged as 
follows: first simply introduce generic model control, the inverse system method of the nonlinear 
process model, then explain a generic model adaptive control scheme based on a compound 
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orthogonal neural network, finally show the effectiveness of the control scheme by simulation 
results. 

II. Generic Model Adaptive Control Based on a Compound Orthogonal Neural 
Network 
 
A． Generic model control (GMC) 
We consider a nonlinear system described by differential equations of the type: 

          ( )θ,,,, tduyfy =&                                                                           (1) 
where u  is input vector of dimension m, d  the disturbance vector of suitable dimension, y  the 
output vector of suitable dimension and θ  the parameter vector of dimension n. According to the 
GMC basic principle [2], we develop the control algorithm, which consists of three terms (dynamic 
process model, proportional action term and integral action term, respectively), from  

   ( ) 0)()(,,,,
0

21 =−−−− ∫
t

spsp dtyyKyyKtduyf θ                                        (2) 

where spy  is a set point, 1K  and 2K  are parameter diagonal matrices of dimension n×n. Then the 
generic model control structure is shown in Figure 1.   

 
Fig.1. Generic model control structure 

 
The control algorithm in Eq. 2 is generally implicit. Here it is solved on-line by some iterative 
numerical methods. If ),,,,( θtduyf  is linear with respect to u , e.g. utdyhtduyf ),,,(),,,,( θθ = , then 
Eq. 2 becomes an explicit algorithm 
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Eq. 3 is a continuous form of GMC. In order to apply to the discrete system, the integral item must 
be represented by the discrete form. The discrete form of GMC is: 
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1K  and 2K  can be calculated as follows: 

  
i

i
iiK

τ
ξ2

),(1 =               2),(2
1

i
iiK

τ
=                                                     (5) 

where iξ  and iτ  determine the shape and speed of the desired closed loop trajectory (the reference 
trajectory), respectively. The reference trajectory for a step change in the set point has a pseudo-
second-order response. Yamuna et al [4] showed that the formulae can be used to accurately 
calculate the specified response for any values of iξ  and iτ . When the values of iξ  and iτ , which 
correspond to the desired specified response, are selected, and 1K  and 2K  can be calculated by Eq. 4.  
It is important to calculate the control law according to the first order differential equation in GMC. 
In order to overcome the weakness, we propose a generic model control scheme based on neural 
networks with the method of inverse system for the nonlinear process to directly embed the process 
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model into the controller. It can guarantee the realizability of GMC and then it can expand GMC to 
the neural networks field.  
B. Generic model control based on a neural network 
The GMC scheme based on a neural network is shown in Figure 2. Here P  is the controlled plant, d  
the internal disturbances, cNN  the neural network controller, I  the integral controller, spy  the set 
point for the system and y  the system output. PI  is a proportional-integral controller as shown in 
Figure 2.  

IKKzPI 21)( +=                                                                   (6) 
where I  is an integral controller.  
Obviously, the impulse transfer function of the closed loop system for SISO is: 
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Fig.2. Generic model control based on a neural network 

 
So long as we design the neural network controller cNN  to achieve the inverse control for the 
controlled plant, we can achieve the generic model control based on neural networks. Obviously, in 
the perfect model, the impulse transfer function of the closed loop system is: 
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It is a discrete form for pseudo-second-order system. Therefore, It is very easy to tune for the 
controller and calculate the control law. 
C. Inverse realization of GMC and controller design 
If we can design the neural network controller cNN  to achieve the inverse control for the controlled 
plant, we can achieve generic model control based on neural networks. So its key is how to achieve 
the inverse model for the nonlinear controlled plant. Here, we apply NHARMA equation 9 to 
describe the n order nonlinear plant P  

)]1(,),1(),();1(,),1(),([)1( +−−+−−=+ mkukukunkykykyfky LL            (9) 
where Ru∈  is input variable, Ry∈  output variable, f  the nonlinear reflection, and nm,  is the order 
for the time series of input and output for nm ≤ . For the subset 1−++∈ nmRA , if there is any one 
element );1(,),1(),([ +−− nkykyky L )]1(,),1(),( +−− mkukuku L  for any two different inputs )(1 ku  and 

)(2 ku , there is the following expression: 
,),1(),([)]1(,),1(),();1(,),1(),([ 1 LLL −≠+−−+−− kykyfmkukukunkykykyf

)]1(,),1(),();1( 2 +−−+− mkukukunky L , we define the system Eq. 9 in the point 
Tmkukunkykyky )]1(,),1(,);1(,),1(),([ +−−+−− LL  is inversable. Here, we assume that the controlled 

plant is inversable. 
For the inverse model of the controlled plant, we can directly identify the controlled plant by neural 
networks. We assume the input vector for neural network is: 

)]1(,),1();1(,),(),1([ +−−+−+= mkukunkykykyIN LL                               (10) 
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Then the input )(ku  of the controlled plant is the output of the neural network controller cNN . 
Because the future output )1( +ky  of the system can be achieved, when the neural network is trained, 
it becomes the input of the neural network. Usually, the output )(ku  of the neural network is not the 
same as )(ku  for the training data. So the inverse neural network model describing the dynamic 
characteristics of the controlled plant is:   

)]1(,),1();1(,),(),1([)( 1 +−−+−+= mkukunkykykyfku LL                    (11) 

where 1f  is the reflection of the neural network controller cNN . 
In the real-time control of a nonlinear system, the computational load is a very important factor that 
affects the stability and dynamic performances of the closed-loop system. Current neural networks 
usually use BP or RBF network in the adaptive control system. But BP or RBF network’s algorithm 
is complex. Using the compound orthogonal neural network to approximate the nonlinear behavior 
of a system can reduce the learning process of the neural network effectively. We apply the 
compound orthogonal neural network (CONN) to construct the inverse model of the controlled plant, 
then to form the generic model adaptive control based on CONN. 
D. CONN approximation for the inverse model of the controlled plant 
CONN consists of three layers: an input layer, a hidden layer and an output layer as shown in Figure 
3. There is only relationship between neighborhood two layers and the connection weight between 
the input layer and the hidden layer is 1. The connection weight between the hidden layer and the 
output layer is jw ( gj ,,2,1 L= ) and g  is the number of the neuron of the hidden layer. The input 
vector of CONN is [ ]Tnk xxxR ,,, 21 L= . The output of the controlled plant is y  and the set point is r . 
Then the output of the neural network is: 

∑
=

=
g

j
jjk pwu

1
                                                                              (12) 

The jp  neuron of the hidden layer is Chebyshev compound orthogonal polynomial, that is, 
11 =p , Xp =2 , 212 −− −= jjj pXpp , gj ,,4,3 L= . Here we assume X as a unipolar sigmoid function: 

 nete
X .1

1
σ−+

=                                                                                (13) 

where ∑
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n

i
ixnet

1
. We can shift the input from the region [ ]+∞∞− ,  to [ ]1,0  with the unipolar sigmoid 

function and change the gradient of the unipolar sigmoid function through changing the parameter 
σ . Then we can change the learning adaptive performance and convergence of CONN. According to 
the reference trajectory or the learning signals we can get a learning algorithm for the parameter σ . 
The output error of CONN is: 

)()1( kykrEk −−=                                                                         (14) 
The performance index of the network is: 

2
kEJ =                                                                                              (15) 

The parameter learning algorithm for the connection weight is: 
PEWW kkk 11 η+=+                                                                               (16) 

where [ ]gk wwwW ,,, 21 L= , [ ]gpppP ,,, 21 L= , 1η  is a learning ratio for the connection weight and 
10 1 <<η .  

The parameter learning algorithm for the sigmoid function is: 
221 pEkkk ησσ +=+                                                                              (17) 

where 2η  is a learning ratio for the parameter σ  and 10 2 <<η . 
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Fig.3. The neural network structure  
 

E. The generic model adaptive control based on CONN 
According to Figure 2, we can achieve the generic model adaptive control scheme based on CONN 
(simply, called as GMAC) as shown in Figure 4. Here P  is the controlled plant, d  the internal 
disturbances, cNN  the neural network controller, I  the integral controller, spy  the set point for the 
system and y  the system output. e  is the error of the controlled system, PINN is a proportional-
integral controller or a single neuron PI controller as shown in Figure 4. TDL in Figure 4 is the 
multi-component time delay system as shown in Figure 5. The outputs consist of the time delay 
signals for the input as follows: 

 
Fig.4. The generic model adaptive control scheme based on CONN  

Tntxtxtz )](,),1([)( −−= L                                                       (18) 

 
Fig.5. Multi-point time delay system 

 
The design steps for the generic model adaptive control scheme based on CONN are as follows: 
Step1: according to control performance, select the parameters 1K  and 2K  of GMC; 
Step2: initialize the parameter σ  and the weight W  with small random numbers; 
Step3: input a set of data and calculate the neuron output according to the old weight W ; 
Step4; calculate the output and the output error according to the formulas 12~15; 
Step5: calculate 1+kW  and 1+kσ  according to the updating formulas of the weight 1+kW  and the 

parameter 1+kσ ; 
Step6: again input a set of data and go to Step 2. 

II. Simulations 
 
In order to verify the effectiveness of the proposed control scheme, we execute a series of simulation 
experiments. The nonlinear controlled plant is: 

cuybuayy ++= 2&                                                                                  (19) 
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 that has been modeled as: 
uycubyaym ˆˆˆ 2 ++=&                                                                               (20) 

where 25.0ˆ −=a , 5.0ˆ =b  and 75.1ˆ =c are perfect model parameters. 
The structure of the neural network in the adaptive control system is 144 ××N . The input signals of the 
neural network are [ ]Tk kukykykvR )(),1(),(),( −= . The learning ratio is selected with trial and error 
approach as 006.01 =η  and 01.02 =η . The control system will reduce the control error through 
updating the weight W  and the parameter σ  in every sampling interval according to the parameter 
learning algorithms. 

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time(s)

y/
y sp

GMAC 

GMC 

reference trajectory 

 
Fig. 6. Overdamped responses with parameter reduction in c   

 
In order to compare the control performance, we respectively execute the simulation experiments 
according to the generic model adaptive control scheme based on CONN (GMAC) and the generic 
model control scheme (GMC) for the nonlinear plant. The controlled system is worked out with 
overdamped and underdamped reference trajectories: 25.01 =K  and 0001.02 =K  for overdamped reference 
trajectory and 25.01 =K  and 1.02 =K  for underdamped reference trajectory. Suppose that there is –50% 
parameter mismatch in c: aa ˆ= , bb ˆ=  and cc ˆ5.0= . The simulation results are shown in Figures 6 and 
7. When there is +80% parameter mismatch in c: aa ˆ= , bb ˆ=  and cc ˆ8.1= . The simulation results are 
shown in Figures 8 and 9.  
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 Fig. 7. Underdamped responses with parameter reduction in c 
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Fig. 8. Overdamped responses with parameter increase in c 
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Fig. 9. Underdamped responses with parameter increase in c 

The nonlinear process, Eq. 19, has been approximated as a linear model: 
ubyaym

ˆˆ +=&                                                                               (21) 

with 1764.0ˆ =a  and 4225.0ˆ =b . There is a structural mismatch between the process and the model. 
The simulation results are shown in Figures 10 and 11.  

The simulation results in Figures 6, 7, 8, 9, 10 and 11 show the effectiveness of the proposed 
control scheme. 
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Fig. 10. Overdamped responses with a structural mismatch 
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Fig. 11. Underdamped responses with a structural mismatch 

IV. Conclusions  
 
In the paper, we have proposed a generic model adaptive control scheme based on CONN, which 
can embed the process model into the controller by the inverted control method with CONN. It can 
guarantee the realizability of the generic model control scheme based on neural networks. The 
reference trajectory is a pseudo-second-order curve. It is very easy to tune for the controller. The 
proposed control scheme is of robustness and it is an effective nonlinear control scheme. 
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